intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Toán học: Một số lớp phương trình hàm trong số học

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:90

38
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Phương trình hàm là một lĩnh vực quan trọng của giải tích. Bài toán giải phương trình hàm có lẽ là một trong những bài toán lâu đời nhất của giải tích. Nhu cầu giải phương trình hàm xuất hiện ngay khi bắt đầu có lí thuyết hàm số. Nhiều phương trình hàm xuất phát từ nhu cầu thực tế của Toán học hoặc của các ngành khoa học khác.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Toán học: Một số lớp phương trình hàm trong số học

  1. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC PHẠM THANH LINH MỘT SỐ LỚP PHƯƠNG TRÌNH HÀM TRONG SỐ HỌC LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - 2015
  2. i Mục lục Lời cảm ơn iii Mở đầu 1 1 Lớp hàm số học cơ bản 3 1.1 Hàm số học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Hàm nhân tính . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Hàm nhân tính mạnh . . . . . . . . . . . . . . . . . . . . . 11 1.2 Hàm số xác định trên tập các số nguyên . . . . . . . . . . . . . . . 11 1.2.1 Hàm cộng tính trên tập các số nguyên . . . . . . . . . . . . 11 1.2.2 Hàm nhân tính trên tập các số nguyên . . . . . . . . . . . . 11 1.2.3 Lớp hàm tuần hoàn, phản tuần hoàn cộng tính, nhân tính . . 12 1.3 Một số bài tập áp dụng . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Các phương trình hàm số học 20 2.1 Hàm chuyển đổi các phép tính số học . . . . . . . . . . . . . . . . 20 2.1.1 Hàm chuyển đổi phép cộng thành phép cộng . . . . . . . . 20 2.1.2 Hàm chuyển đổi phép cộng thành phép nhân . . . . . . . . 21 2.1.3 Hàm chuyển đổi phép nhân thành phép cộng . . . . . . . . 22 2.2 Các dạng toán xác định dãy số liên quan . . . . . . . . . . . . . . . 22 2.3 Các bài tập áp dụng . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Các dạng toán liên quan 33 3.1 Phương trình hàm trên N và trên Z . . . . . . . . . . . . . . . . . . 33
  3. ii 3.1.1 Lớp các bài toán áp dụng nguyên lý quy nạp toán học . . . . 33 3.1.2 Lớp các bài toán áp dụng nguyên lí cực hạn . . . . . . . . . 42 3.1.3 Lớp các bài toán áp dụng hệ đếm cơ số . . . . . . . . . . . 46 3.1.4 Lớp các bài toán áp dụng các tính chất số học . . . . . . . . 53 3.1.5 Lớp các bài toán áp dụng các tính chất dãy số . . . . . . . . 62 3.1.6 Lớp các bài toán áp dụng các tính chất hàm số . . . . . . . . 66 3.2 Phương trình hàm trên Q . . . . . . . . . . . . . . . . . . . . . . . 73 Kết luận và Đề nghị 81 Tài liệu tham khảo 82
  4. iii Lời cảm ơn Luận văn này được thực hiện và hoàn thành tại Trường Đại học Khoa học - Đại học Thái Nguyên. Đầu tiên em xin bày tỏ lòng biết ơn sâu sắc nhất tới người thầy đáng kính GS.TSKH. Nguyễn Văn Mậu - Trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Hà Nội. Thầy đã dành nhiều thời gian hướng dẫn và giải đáp các thắc mắc trong suốt quá trình xây dựng đề cương, làm và hoàn thiện luận văn. Em xin gửi lời cảm ơn chân thành nhất đến các Thầy cô khoa Toán, phòng Đào tạo sau Đại học, trường Đại học Khoa học - Đại học Thái Nguyên, cùng các Thầy cô giáo tham gia trực tiếp giảng dạy lớp cao học khóa 1/2014 - 1/2016. Đồng thời tôi xin gửi lời cảm ơn tới tập thể lớp K7C Cao học Toán - Đại học Khoa học đã động viên giúp đỡ tôi trong quá trình học tập và làm luận văn này. Em xin chân thành cảm ơn! Thái Nguyên, 2015 Phạm Thanh Linh Học viên Cao học Toán K7C, Trường ĐH Khoa học - ĐH Thái Nguyên
  5. 1 Mở đầu Phương trình hàm là một lĩnh vực quan trọng của giải tích. Bài toán giải phương trình hàm có lẽ là một trong những bài toán lâu đời nhất của giải tích. Nhu cầu giải phương trình hàm xuất hiện ngay khi bắt đầu có lí thuyết hàm số. Nhiều phương trình hàm xuất phát từ nhu cầu thực tế của Toán học hoặc của các ngành khoa học khác. Các nhà toán học đã có công nghiên cứu và đặt nền móng cho phương trình hàm phải kể đến: Nicole Oresme, Gregory of Saint-Vincent, Augusstin-Louis Cauchy, Carl Friedrich Gauss, D’Alembert . . . Ngày nay ở nước ta phương trình hàm được giảng dạy theo chuyên đề ở các trường THPT chuyên. Các dạng toán phương trình hàm trong số học là dạng toán khó thường xuất hiện trong các kì thi học sinh giỏi cấp tỉnh, thành phố, cấp quốc gia, khu vực và quốc tế. Một phương trình hàm bao gồm ba thành phần chính: Tập nguồn, tập đích, phương trình hay hệ phương trình hàm. Từ ba thành phần này có sự phân loại tương ứng. Phương trình hàm trên N, phương trình hàm trên Z, phương trình hàm trên Q, phương trình hàm trên R · · · ; phương trình hàm với một biến tự do, hai biến tự do, nhiều biến tự do, phương trình hàm chuyển đổi các giá trị trung bình · · · ; phương trình hàm trên lớp hàm khả vi, phương trình hàm trên lớp hàm liên tục · · · Việc xác định rõ cấu trúc và tính chất của tập nguồn, tập đích và các điều kiện ràng buộc sẽ quyết định sự thành công hay thất bại khi giải phương trình hàm. Điều này có thể thấy rõ qua phương trình hàm Cauchy. Bài toán tổng quát tìm tất cả các hàm số f : R → R thỏa mãn phương trình f (x + y) = f (x) + f (y) với mọi x, y ∈ R theo một nghĩa nào đó không có lời giải, thế nhưng với giới hạn tập nguồn, tập đích, các tính chất của hàm số (đơn điệu, liên tục · · · ) thì phương trình hàm này giải được trọn vẹn. Trong luận văn này tôi chỉ xin trình bày về một lớp phương trình hàm mà
  6. 2 tập nguồn xác định trên N, Z, Q. Trên thực tế khi tìm hiểu lớp các phương trình hàm này xuất hiện rất nhiều trong các kì thi Olympic toán các nước, khu vực và quốc tế. Xuất phát từ thực tế đó, dưới sự định hướng và hướng dẫn nhiệt tình của GS.TSKH. Nguyễn Văn Mậu, tôi đã tiến hành nghiên cứu về đề tài "Một số lớp phương trình hàm trong số học" nhằm mục đích học tập và nghiên cứu sâu về một chuyên đề khó của toán sơ cấp. Cấu trúc luận văn gồm 3 chương. Chương 1. Lớp hàm số học cơ bản Trong chương này sẽ trình bày định nghĩa, các tính chất của các hàm số học cơ bản và một số ứng dụng của chúng vào việc giải các bài toán sơ cấp. Chương 2. Các phương trình hàm số học Trong chương này sẽ trình bày về hàm chuyển đổi các phép tính số học, các dạng toán xác định dãy số liên quan và các bài tập áp dụng. Chương 3. Các dạng toán liên quan Trong chương này sẽ trình bày các dạng toán từ các đề thi Olympic các nước và quốc tế liên quan đến tính toán, ước lượng và các tính chất số học (nguyên tố, chính phương, tính đơn điệu, tính tuần hoàn. . . ) của các hàm số trên các tập số tự nhiên, tập số nguyên và tập số hữu tỷ. Dù đã nghiêm túc nghiên cứu và rất cố gắng thực hiện luận văn, nhưng do năng lực của bản thân cùng nhiều lý do khác, luận văn chắc chắn không tránh khỏi những thiếu sót. Kính mong được sự góp ý của các Thầy cô, các bạn và các anh chị đồng nghiệp để luận văn này hoàn chỉnh và có nhiều ý nghĩa hơn. Thái Nguyên, ngày 28 tháng 11 năm 2015 Phạm Thanh Linh Học viên Cao học Toán lớp C, khóa 01/2014 - 01/2016 Chuyên ngành phương pháp Toán sơ cấp Trường Đại học Khoa học - Đại học Thái Nguyên Email: bobaki2010@gmail.com
  7. 3 Chương 1 Lớp hàm số học cơ bản Trong chương trình phổ thông, các bài toán số học đóng vai trò quan trọng trong việc hình thành tư duy toán học. Việc tìm hiểu và sử dụng các hàm số học đã giải quyết được những lớp bài toán cơ bản trong các bài toán sơ cấp và lớp các bài toán phương trình hàm trong số học. Trong chương này sẽ trình bày định nghĩa, các tính chất của các hàm số học cơ bản và một số ứng dụng của chúng vào việc giải các bài toán sơ cấp. 1.1 Hàm số học Định nghĩa 1.1 ([9]). Hàm số học tức là hàm xác định trên tập các số nguyên dương. 1.1.1 Hàm nhân tính Định nghĩa 1.2 ([9]). Một hàm số học f được gọi là nhân tính nếu với mọi m, n nguyên tố cùng nhau, ta có đẳng thức f (mn) = f (m)f (n). Những ví dụ đơn giản nhất về hàm nhân tính là f (n) = n và f (n) = 1. Ngoài các hàm nhân tính đơn giản kể trên thì ta phải kể đến các hàm nhân tính quan trọng khác như : Phi-hàm Euler, hàm sinh bởi các ước, hàm tổng các ước số, hàm số các ước số, hàm Mobius. Trong các hàm số học, hàm Euler mà ta định nghĩa sau đây có vai trò rất quan trọng.
  8. 4 Định nghĩa 1.3 ([9]). Giả sử n là số nguyên dương. Phi-hàm Euler ϕ(n) là hàm số học có giá trị tại n bằng số các số không vượt quá n và nguyên tố cùng nhau với n. Ví dụ 1.1. Từ định nghĩa ta có ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2, ϕ(5) = 4, ϕ(6) = 2, ϕ(7) = 6, ϕ(8) = 4, ϕ(9) = 6, ϕ(10) = 4. Từ định nghĩa trên đây, ta có ngay hệ quả trực tiếp. Hệ quả 1.1 ([9]). Số p là nguyên tố khi và chỉ khi ϕ(p) = p − 1. Chứng minh. Nếu p là số nguyên tố thì với mọi số nguyên dương nhỏ hơn p đều nguyên tố cùng nhau với p. Do có p − 1 số nguyên dương như vậy nên ϕ(p) = p − 1. Ngược lại, nếu p là hợp số thì p có các ước d, 1 < d < p. Tất nhiên p và d không nguyên tố cùng nhau. Như vậy trong các số 1, 2, · · · , p − 1 phải có số không nguyên tố cùng nhau với p, nên ϕ(p) < p − 2. Điều này trái với giả thiết ϕ(p) = p − 1. Định nghĩa 1.4 ([2]). Một tập hợp A nào đó được gọi là một hệ thặng dư đầy đủ (mod n) chính là n số mà không có hai số nào đồng dư nhau theo (mod n). Ví dụ 1.2. Ta có A = {0, 1, 2, · · · , n − 1} là một hệ thặng dư đầy đủ theo (mod n). Hay đơn giản hơn tập B = {0, 1, 2, 3, 4, 5, 6, 7} và C = {2, 3, 4, 5, 6, −7, 8} là các hệ thặng dư đầy đủ theo (mod 8). Định nghĩa 1.5 ([2]). Một hệ thặng dư thu gọn môđulô n là tập hợp gồm ϕ(n) số nguyên sao cho mỗi phần tử của tập hợp đều nguyên tố cùng nhau với n và không có hai phần tử khác nhau nào đồng dư môđulô n. Ví dụ 1.3. Tập hợp {1, 3, 5, 7} và tập {3, −7, 5, 7} là các hệ thặng dư thu gọn (mod 8).  Định lí 1.1 ([2]). Giả sử r1 , r2 , . . . , rϕ(n) là một hệ thặng dư thu gọn (mod n),  a là số nguyên dương và (a, n) = 1. Khi đó tập ar1 , ar2 , · · · , arϕ(n) cũng là hệ thặng dư thu gọn (mod n).
  9. 5  Chứng minh. Vì r1 , r2 , . . . , rϕ(n) là một hệ thặng dư thu gọn (mod n) nên  tập ar1 , ar2 , · · · , arϕ(n) có ϕ(n) số. Ta chỉ cần chứng minh khi i 6= j thì ar1 ∼ = arj . (mod n). Thật vậy: Giả sử ari ≡ arj (mod n) suy ra a (ri − rj ) .. n, vì (a, r) = 1 .  nên ri − rj .. n suy ra ri ≡ rj (mod n), trái với r1 , r2 , . . . , rϕ(n) là hệ thặng dư thu gọn ( Vì hệ thặng dư thu gọn không có hai số nào đồng dư nhau). Ví dụ 1.4. Tập {1, 3, 5, 7} là một hệ thặng dư thu gọn (mod 8). Do (3, 8) = 1 nên tập {3, 9, 15, 21} cũng là một hệ thặng dư thu gọn (mod 8) . Định lí 1.2 (Định lí Euler). Giả sử n là số nguyên dương và a là số nguyên với (a, n) = 1. Khi đó aϕ(n) ≡ 1 (mod n). Chứng minh. Xét hệ thặng dư thu gọn (mod n) r1 , r2 , · · · , rϕ(n) Suy ra ar1 , ar2 , · · · , arϕ(n) cũng là một hệ thặng dư thu gọn (mod n). Do đó ta có ar1 .ar2 . . . arϕ(n) ≡ r1 .r2 . . . rϕ(n) (mod n) ⇒ aϕ(n) .r1 .r2 . . . rϕ(n) ≡ r1 .r2 . . . rϕ(n) (mod n)  . ⇒ aϕ(n) − 1 r1 .r2 . . . rϕ(n) .. n . ⇒ aϕ(n) − 1 .. n ⇒ aϕ(n) ≡ 1(mod n). Chú ý 1.1. Ta có thể tìm nghịch đảo của (mod n) bằng cách sử dụng định lí Euler. Giả sử (a, m) = 1 khi đó a.aϕ(n)−1 = aϕ(n) ≡ 1(mod n) trong đó aϕ(n)−1 là nghịch đảo của a(mod n). Ví dụ 1.5. 2ϕ(9)−1 = 26−1 = 25 = 32 ≡ 5(mod 9) là ngịch đảo của 2(mod 9). Hệ quả 1.2 ([2]). Nếu (a, b) = 1 thì aϕ(b) + bϕ(a) ≡ 1(mod ab). Hệ quả 1.3 ([2]). Với (a, b) = 1 và n, v là hai số nguyên dương nào đó thì anϕ(b) + bvϕ(a) ≡ 1 (modab) .
  10. 6 Hệ quả 1.4 ([2]). Giả sử có k (k ≥ 2) số nguyên dương m1 , m2 , · · · , mk và chúng nguyên tố với nhau từng đôi một. Đặt M = m1 m2 . . . mk = mi .ti với i = 1, 2, . . . , k ta có n tn1 + tn2 + · · · + tnk ≡ (t1 + t2 + · · · + tk ) (mod M), với n nguyên dương. Định lí 1.3 ([2]). Phi-hàm Euler là hàm nhân tính. Chứng minh. Ta viết các số nguyên dương không vượt quá mn thành bảng sau: 1 m+1 2m + 1 ... (n − 1) m + 1 2 m+2 2m + 2 ... (n − 1) m + 2 3 m+3 2m + 3 ... (n − 1) m + 3 ... ... ... ... ... m 2m 3m ... mn Bây giờ giả sử r là một số nguyên không vượt quá m. Giả sử (m, r) = d > 1. Khi đó, không có số nào trong dòng thứ r nguyên tố cùng nhau với mn, vì mỗi phần tử của dòng đó đều có dạng km + r, trong đó 1 ≤ k ≤ n − 1, d| (km + r), vì d|m, d|r. Vậy để các số trong bảng mà nguyên tố cùng nhau với mn, ta chỉ cần xét các dòng thứ r với (m, r) = 1. Ta xét một dòng như vậy, nó chứa các số r, m+r, . . . , (n − 1) m+r. Vì (m, r) = 1 nên mỗi số nguyên trong dòng đều nguyên tố cùng nhau với n. Như vậy n số nguyên trong dòng lập thành hệ thặng dư đầy đủ Môđulô n. Do đó có đúng ϕ(n) số trong hàng đó nguyên tố cùng nhau với n. Do các số đó cũng nguyên tố cùng nhau với m nên chúng nguyên tố cùng nhau với mn. Vì có ϕ(m) dòng, mỗi dòng chứa ϕ(n) số nguyên tố cùng nhau với mn nên ta suy ra ϕ(mn) = ϕ(m)ϕ(n). Định lí 1.4 ([2]). Giả sử n = pa11 pa22 . . . pakk là phân tích n ra thừa số nguyên tố. Khi đó      1 1 1 ϕ(n) = n 1 − 1− ... 1 − . p1 p2 pk
  11. 7 Chứng minh. Vì ϕ là hàm có tính chất nhân nên nếu n có phân tích như trên thì ϕ (n) = ϕ (pa11 ) ϕ (pa22 ) . . . ϕ (pakk ) . Mặt khác   aj  aj aj −1 aj 1 ϕ p j = p j − pj = pj 1 − , j = 1, 2 . . . , k pj Vậy       1 1 ak 1 ϕ (n) = pa11 1− p a2 1− . . . pk 1 − p1  2 p 2   pk  1 1 1 = pa11 pa22 . . . pakk 1 − 1− ... 1 −   p1  p2  pk 1 1 1 =n 1− 1− ... 1 − . p1 p2 pk Định lí 1.5 ([2]). Giả sử n là số nguyên dương. Khi đó X ϕ(d) = n, d|n trong đó tổng được lấy theo mọi ước của n. Chứng minh. Tổng trên đây được lấy theo các ước của n. Ta phân chia tập hợp các số tự nhiên từ 1 đến n thành các lớp sau đây. Lớp Cd gồm các số nguyên m, 1 ≤ m ≤ n, mà (m, n) = d. Như vậy m thuộc lớp Cd nếu và chỉ nếu d là ước chung của m, n và (m/d, n/d) = 1. Như vậy, số phần tử của lớp Cd là số nguyên dương không vượt quá n/d và nguyên tố cùng nhau với n/d; tức là Cd gồm ϕ(n/d) phần tử. Vì mỗi số nguyên m từ 1 đến n thuộc một và chỉ một lớp Cd nào đó (d = (m, n)) nên n bằng tổng của số các thành phần trong các lớp Cd , d là ước số của n. Ta có P n n= ϕ . d|n d Bên cạnh Phi-hàm Euler thì ta cần nghiên cứu đến lớp các hàm sinh bởi các ước, trước tiên ta tìm hiểu về hàm tổng các ước. Định nghĩa 1.6 ([2]). Hàm tổng các ước dương của số tự nhiên n được kí hiệu là σ(n). Ví dụ 1.6. σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28. P Chú ý 1.2. Ta có thể biểu diễn σ(n) dưới dạng σ(n) = d. d|n
  12. 8 Bổ đề 1.1 ([2]). Giả sử m, n là các số nguyên dương nguyên tố cùng nhau. Khi đó nếu d là ước chung của mn thì tồn tại cặp duy nhất các ước dương d1 của m và d2 của n sao cho d = d1 d2 . Ngược lại, nếu d1 , d2 là ước dương tương ướng của m và n thì d = d1 d2 là ước dương của mn. Chứng minh. Giả sử m, n có phân tích ra thừa số nguyên tố như sau m = pm1 m2 ms n1 n2 nt 1 p2 . . . p s , n = q 1 q 2 . . . q t . Vì (m, n) = 1 nên tập hợp các số nguyên tố p1 , p2 , . . . , ps và tập hợp các số nguyên tố q1 , q2 , . . . , qt không có phần tử chung. Do đó phân tích ra thừa số của mn có dạng mn = pm1 m2 ms n1 n2 nt 1 p2 . . . ps .q1 q2 . . . qt . Như vậy, nếu d là một ước chung của mn thì d = pe11 pe22 . . . pess .q1f1 q2f2 . . . qtft , trong đó 0 ≤ ei ≤ mi (i = 1, 2, . . . , s) ; 0 ≤ fi ≤ ni (i = 1, 2, . . . , t) . Đặt d1 = pe11 pe22 . . . pess , d2 = q1f1 q2f2 . . . qtft . Rõ ràng d = d1 d2 và (d1 , d2 ) = 1. Ngược lại, giả sử d1 và d2 là các ước dương tương ứng của m và n khi đó d1 = pe11 pe22 . . . pess trong đó 0 ≤ ei ≤ mi (i = 1, 2, . . . , s) và d2 = q1f1 q2f2 . . . qtft trong đó 0 ≤ fi ≤ ni (i = 1, 2, . . . , t) . Số nguyên d = d1 d2 = pe11 pe22 . . . pess .q1f1 q2f2 . . . qtft là ước của mn = pm1 m2 ms n1 n2 nt 1 p2 . . . ps .q1 q2 . . . qt . Vì lũy thừa của mỗi số nguyên tố xuất hiện trong phân tích ra thừa số nguyên tố của d bé hơn hoặc bằng lũy thừa của số nguyên tố đó trong phân tích của mn. Bổ đề 1.2 ([2]). Giả sử p nguyên tố a nguyên dương. Khi đó: pa − 1 σ(pa ) = 1 + p + p2 + · · · + pa = p−1 τ (pa ) = a + 1 Chứng minh. Các ước của pa là 1, p, p2 , . . . , pa . Do đó pa có đúng a + 1 ước 2 pa − 1 dương. Suy ra τ (p ) = a + 1 và σ(p ) = 1 + p + p + · · · + p = a a a . p−1 P Định lí 1.6 ([9]). Giả sử f là hàm có tính chất nhân. Khi đó hàm F (n) = f (d) d|n cũng có tính chất nhân.
  13. 9 Chứng minh. Ta sẽ chỉ ra rằng nếu m, n là các số nguyên dương nguyên tố cùng P nhau thì F (mn) = F (m).F (n). Giả sử (m, n) = 1, ta có F (mn) = f (d). Vì d|mn (m, n) = 1 nên theo bổ đề 1.1, mỗi ước của mn có thể viết duy nhất dưới dạng tích các ước d1 của m và d2 của n và d1 , d2 nguyên tố cùng nhau, đồng thời mỗi cặp ước số d1 của m và d2 của n tương ứng với ước d1 .d2 của mn. Do đó ta có thể viết P P P F (mn) = f (d1 ) f (d2 ) = f (d1 ) . f (d2 ) = F (m) F (n) . d1 |m d1 |m d2 |n d2 |n Từ định lí 1.6 và bổ đề 1.2 ta suy ra trực tiếp tính chất sau đây. Tính chất 1.1. σ(n) là hàm nhân tính. Tính chất 1.2. Nếu p nguyên tố thì σ(p) = p + 1. Tính chất 1.3. Giả sử n là số nguyên dương và có khai triển chính tắc α1 α2 αk pα1 1 +1 − 1 pα2 2 +1 − 1 pαk k +1 − 1 n = p1 p2 . . . pk thì σ(n) = . ... p1 − 1 p2 − 1 pk − 1 Chứng minh. Do hàm σ là hàm nhân tính nên ta có σ(n) = σ(pα1 1 )σ(pα2 2 ) . . . σ(pαs s ) = (1 + p1 + · · · + pα1 1 ) (1 + p2 + · · · + pα2 2 ) . . . (1 + pk + · · · + pαk k ) pα1 1 +1 − 1 p2α2 +1 − 1 pαk k +1 − 1 = . ... p1 − 1 p2 − 1 pk − 1 Trong lớp hàm sinh bởi các ước thì ta cũng phải kể đến hàm số các ước được định nghĩa như sau. Định nghĩa 1.7 ([2]). Số các ước dương của số tự nhiên n được kí hiệu là τ (n). Ví dụ 1.7. τ (1) = 1, τ (2) = 2, τ (12) = 6. Định lí 1.7 ([9]). Hàm τ (n) là hàm nhân tính. Chứng minh. Xét hàm f (n) ≡ 1 với mọi số tự nhiên n. Khi đó f (n) là hàm nhân tính. Gọi d1 , d2 , . . . , dk là tất cả các ước dương của n (kể cả 1 và n). Khi đó τ (n) = k = f (d1 ) + f (d2 ) + · · · + f (dk ) . Vậy τ (n) là hàm nhân tính.
  14. 10 Định lí 1.8 ([9]). Nếu p là nguyên tố thì τ (p) = 2. Chứng minh. Vì p nguyên tố nên p chỉ có hai ước dương là 1 và p. Do đó τ (p) = 2. Định lí 1.9 ([9]). Nếu số nguyên dương n có khai triển ra thừa số nguyên tố dạng n = pα1 1 pα2 2 . . . pαk k thì τ (n) = (α1 + 1) (α2 + 1) . . . (αk + 1) . Chứng minh. Vì τ (n) là hàm nhân tính nên ta có τ (n) = τ (pα1 1 ) τ (pα2 2 ) . . . τ (pαk k ) = (α1 + 1) (α2 + 1) . . . (αk + 1) , bởi vì pαi i có αi + 1 ước dương với i = 1, 2, . . . , k. Ngoài các hàm nhân tính kể trên thì ta cũng cần xét đến hàm nhân tính sau Định nghĩa 1.8 (Hàm Mobius). Hàm Mobius là hàm số học xác định như sau:    1 nếu n = 1;   µ(n) = 0 nếu p2 |n đối với số nguyên tố p > 1;     (−1)k nếu n = p p . . . p ở đó p , . . . , p 1 2 k 1 k là các số nguyên tố phân biệt. Ví dụ 1.8. µ(2) = −1, µ(6) = 1, µ(12) = µ(22 .3) = 0. Định lí 1.10 ([9]). Hàm Mobius là hàm nhân tính. Chứng minh. Giả sử m, n là những số nguyên dương sao cho gcl (m, n) = 1. Nếu p2 |m với moi p > 1 thì p2 |mn và µ (m) = µ (mn) = 0 và khẳng định trên là đúng. Bây giờ xét m = p1 .p2 . . . pk và n = q1 .q2 . . . qh với p1 , p2 , . . . , pk và k h q1 , q2 , . . . , qh là các số nguyên tố phân biệt. Khi đó µ (m) = (−1) , µ (n) = (−1) và mn = p1 .p2 . . . pk .q1 .q2 . . . qh . Suy ra k+h k h µ (mn) = (−1) = (−1) (−1) = µ (m) .µ (n) . P Định lí 1.11 ([9]). Cho f là một hàm số học và F (n) = f (d). Khi đó d|n X n f (n) = µ (d) F . d d|n
  15. 11 Chứng minh. Ta có     P n P P  P P  µ (d) F = µ (d)   n f (c) =   µ (d) f (c)  n  d|n d d|n d|n c| c|  d  d  PP  P P  =  µ (d) f (c)  = f (c)  µ (d) = f (n) .  n   n  c|n c|n d| d| c c n P no nn no Từ > 1 ta có µ (d) = 0. Thực tế các tập (d, c) |d|n, c| và (d, c) |c|n, d| c n d d d| c là bằng nhau. 1.1.2 Hàm nhân tính mạnh Định nghĩa 1.9 ([9]). Một hàm số học f được gọi là nhân tính mạnh nếu với mọi m, n (không nhất thiết nguyên tố cùng nhau), ta có đẳng thức f (mn) = f (m)f (n). Những ví dụ đơn giản nhất về hàm nhân tính mạnh là f (n) = n và f (n) = 1. 1.2 Hàm số xác định trên tập các số nguyên 1.2.1 Hàm cộng tính trên tập các số nguyên Định nghĩa 1.10 ([9]). Một hàm số f (x) xác định trên tập số nguyên được gọi là hàm cộng tính nếu với mọi m, n ta có đẳng thức f (m + n) = f (m) + f (n). 1.2.2 Hàm nhân tính trên tập các số nguyên Định nghĩa 1.11 ([9]). Một hàm số f (x) xác định trên tập số nguyên được gọi là hàm nhân tính nếu với mọi m, n ta có đẳng thức f (mn) = f (m)f (n).
  16. 12 1.2.3 Lớp hàm tuần hoàn, phản tuần hoàn cộng tính, nhân tính Định nghĩa 1.12 ([5]). Cho hàm số f (x) xác định trên tập số nguyên. Hàm f (x) được gọi là hàm tuần hoàn trên Z nếu tồn tại số nguyên dương a sao cho   ∀x ∈ Z ta đều có x ± a ∈ Z  f (x + a) = f (x) , ∀x ∈ Z a được gọi là chu kỳ của hàm tuần hoàn f (x). Chu kỳ nhỏ nhất (nếu có) trong các chu kỳ của f (x) được gọi là chu kỳ cơ sở của hàm tuần hoàn f (x). Ví dụ 1.9. Cho cặp hàm f (x), g(x) xác định trên tập số nguyên, tuần hoàn trên a Z và có chu kỳ lần lượt là a và b (a, b ∈ Z+ ) với ∈ Q+ . Chứng minh rằng b F (x) := f (x) + g(x) và G(x) := f (x)g(x) cũng là những hàm tuần hoàn trên Z. a m Lời giải. Theo giả thiết tồn tại m, n ∈ Z+ , (m, n) = 1 sao cho = . Đặt b n T = na = mb. Khi đó   F (x + T ) = f (x + na) + g(x + mb) = f (x) + g(x) = F (x)  G(x + T ) = f (x + na)g(x + mb) = f (x)g(x) = G(x) Hơn nữa, dễ thấy ∀x ∈ Z thì x ± T ∈ Z. Vậy F (x) và G(x) là những hàm tuần hoàn trên Z. 2π Ví dụ 1.10. Xét hàm số f (x) = sin x xác định trên Z. Chứng minh rằng f (x) là 3 hàm tuần hoàn với chu kỳ T = 3. Lời giải. Ta có ∀x ∈ Z thì x ± 3 ∈ Z và     2π 2π f (x + 3) = sin (x + 3) = sin x + 2π = f (x). 3 3 Vậy f (x) là hàm tuần hoàn với chu kỳ T = 3. Định nghĩa 1.13 ([5]). Cho hàm số f (x) xác định trên tập số nguyên. Hàm f (x) được gọi là hàm phản tuần hoàn trên Z nếu tồn tại số nguyên dương a sao cho   ∀x ∈ Z ta đều có x ± a ∈ Z  f (x + a) = −f (x) , ∀x ∈ Z
  17. 13 a được gọi là chu kỳ của hàm phản tuần hoàn f (x). Chu kỳ nhỏ nhất (nếu có) trong các chu kỳ của f (x) được gọi là chu kỳ cơ sở của hàm phản tuần hoàn f (x). Ví dụ 1.11. Chứng minh rằng mọi hàm phản tuần hoàn xác định trên tập số nguyên cũng là hàm tuần hoàn xác định trên tập số nguyên. Lời giải. Theo giả thiết tồn tại số nguyên dương b sao cho ∀x ∈ Z thì x ± b ∈ Z và f (x + b) = −f (x), ∀x ∈ Z. Suy ra ∀x ∈ Z thì x ± 2b ∈ Z và f (x + 2b) = f (x + b + b) = −f (x + b) = f (x), ∀x ∈ Z. Vậy f (x) là hàm tuần hoàn với chu kỳ 2b trên Z. π Ví dụ 1.12. Xét hàm số f (x) = sin x xác định trên Z. Chứng minh rằng f (x) là 3 hàm phản tuần hoàn với chu kỳ T = 3. Lời giải. Ta có ∀x ∈ Z thì x ± 3 ∈ Z và π  π  f (x + 3) = sin (x + 3) = sin x + π = −f (x). 3 3 Vậy f (x) là hàm phản tuần hoàn với chu kỳ T = 3. Định nghĩa 1.14 ([5]). Hàm f (x) xác định trên tập số nguyên được gọi là tuần hoàn nhân tính chu kỳ nguyên dương a (a ∈ / {−1, 0, 1}) trên Z nếu   ∀x ∈ Z ⇒ a±1 x ∈ Z  f (ax) = f (x) , ∀x ∈ Z Ví dụ 1.13. Xét hàm số f (x) = sin (2πlog2 x) xác định trên Z+ . Khi đó f (x) là hàm tuần hoàn nhân tính chu kỳ 2. Thật vậy, ta có ∀x ∈ Z+ thì 2±1 x ∈ Z+ và f (2x) = sin (2πlog2 (2x)) = sin (2π (1 + log2 x)) = sin (2πlog2 x) = f (x), ∀x ∈ Z+ .
  18. 14 Định nghĩa 1.15 ([5]). Hàm f (x) xác định trên tập số nguyên được gọi là hàm phản tuần hoàn nhân tính chu kỳ dương a (a ∈ / {−1, 0, 1}) trên Z nếu   ∀x ∈ Z ⇒ a±1 x ∈ Z  f (ax) = −f (x) , ∀x ∈ Z Ví dụ 1.14. Xét hàm số f (x) = sin (πlog2 x) xác định trên Z+ . Khi đó f (x) là hàm phản tuần hoàn nhân tính chu kỳ 2. Thật vậy, ta có ∀x ∈ Z+ thì 2±1 x ∈ Z+ và f (2x) = sin (πlog2 (2x)) = sin (π (1 + log2 x)) = − sin (πlog2 x) = −f (x), ∀x ∈ Z+ . 1.3 Một số bài tập áp dụng Bài toán 1.1. Tìm tất cả các số tự nhiên n có tính chất n chia hết cho ϕ(n). Lời giải. Ta xét các trường hợp sau. - Nếu n = 1 thì ϕ(n)|n. - Nếu n > 1, giả sử n có phân tích thành thừa số nguyên tố là n = pk11 pk22 . . . pki i . Khi đó, ta có      1 1 1 ϕ(n) = n 1 − 1− ... 1 − . p1 p2 pi Từ điều kiện n = xϕ(n) ta suy ra p1 p2 . . . pi = x (p1 − 1) (p2 − 1) . . . (pi − 1) . Điều này có nghĩa là phải có pj nào đó bằng 2 (vì nếu ngược lại thì sẽ dẫn đến vô lí vì vế trái là số lẻ, trong khi vế phải là số chẵn). Do p2 , . . . , pi khác 2 nên từ trên suy ra rằng n có nhiều nhất một ước nguyên tố lẻ, chẳng hạn p2 . Đặt p2 = 2y + 1. Ta có 2p2 = x(2y). Do p2 là nguyên tố nên x = p2 , y = 1. Như vậy p2 = 3 và n có dạng n = 2k 2m với k ≥ 1 và m ≥ 0. Thử lại thấy n = 2k 2m với k ≥ 1, m ≥ 0 thỏa mãn.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2