BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM

HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ -----------------------------

ĐINH THỊ HÀ

NGHIÊN CỨU PHÂN LẬP, CHUYỂN HÓA VÀ ĐÁNH GIÁ TÁC

DỤNG SINH HỌC CỦA STEROID TỪ LOÀI SAO BIỂN

ACANTHASTER PLANCI Chuyên ngành: Hóa học các Hợp chất thiên nhiên

Mã số: 9 44 01 07

TÓM TẮT LUẬN ÁN TIẾN SĨ HÓA HỌC

Hà Nội-2020

Công trình được hoàn thành tại: Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam.

Người hướng dẫn khoa học 1: PGS. TS. Trần Thị Thu Thủy Người hướng dẫn khoa học 2: PGS. TS. Ngô Đại Quang

Phản biện 1: Phản biện 2: Phản biện 3:

Luận án sẽ được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp Học viện, họp tại Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam

vào hồi ..… giờ …., ngày .… tháng … năm 2020

Có thể tìm hiểu luận án tại: - Thư viện Học viện Khoa học và Công nghệ - Thư viện Quốc gia Việt Nam

MỞ ĐẦU

1. Lý do chọn đề tài

Việt Nam có nguồn tài nguyên sinh vật biển vô cùng đa dạng và phong phú với hàng trăm ngàn loài thực vật, động vật và vi sinh vật khác nhau...Tuy

nhiên, các giá trị cung cấp về nguồn dược liệu cho y học và dược học của các loài sinh vật biển vẫn còn rất hạn chế. Trong đó, có các nghiên cứu về hợp

chất steroid phân cực từ sinh vật biển đã thể hiện hoạt tính sinh học chống lại nhiều dòng tế bào ung thư, có thể ứng dụng trong y, dược học. Các hoạt chất

này cũng góp phần quan trọng cho lĩnh vực tổng hợp hữu cơ. Chúng trở thành hình mẫu để tổng hợp từ các steroid phổ biến trong tự nhiên bằng các phương

pháp hiệu quả và kinh tế.

Lớp Sao biển thuộc ngành Da gai là một trong những nguồn cung cấp

dồi dào các hợp chất steroid phân cực. Lớp chất này có cấu trúc rất đa dạng và chúng thể hiện nhiều hoạt tính sinh học như: kháng khuẩn, kháng nấm, kháng

viêm, chống ung thư, chống virut, ức chế sự thụ tinh.... Steroid phân cực từ sao biển đã và đang thu hút sự quan tâm của nhiều nhà khoa học trên thế giới.

Ở Việt Nam có rất ít công trình nghiên cứu về lớp chất này. Các nghiên cứu chỉ theo hướng phân lập các hợp chất từ tự nhiên và đánh giá một số hoạt tính

sinh học của chúng. Hiện nay, chưa có công trình nào đi sâu vào nghiên cứu phân lập, chuyển hóa hóa học và đánh giá hoạt tính của các steroid phân lập

được từ sinh vật biển. Sao biển Acanthaster planci là loài sao biển phổ biến ở vùng biển Việt Nam, chúng là mối đe dọa với sự tồn vong của các rạn san hô

sống do đây là nguồn thức ăn ưu thích của chúng. Các nghiên cứu bước đầu cũng chỉ ra thành phần hóa học chính của sao biển Acanthaster planci là các

steroid, đặc biệt là các steroid phân cực. Điều này định hướng cho tác giả lựa chọn đề tài nghiên cứu của luận án là: “Nghiên cứu phân lập, chuyển hóa và đánh giá tác dụng sinh học của steroid từ loài sao biển Acanthaster planci”.

2. Mục tiêu nghiên cứu của luận án

1

Nghiên cứu thành phần hóa học loài sao biển Acanthaster planci của

Việt Nam, thực hiện tổng hợp các dẫn xuất steroid theo định hướng hydroxyl và oxime hóa từ một steroid phân lập được từ loài sao biển này và đánh giá

hoạt tính sinh học của chúng.

3. Các nội dung nghiên cứu chính của luận án

Để đạt được các mục tiêu trên, luận án đã thực hiện các nội dung sau:

• Phân lập và xác định cấu trúc hóa học của các hợp chất từ loài sao biển

Acanthaster planci, đặc biệt là các steroid

• Chuyển hóa các dẫn xuất theo định hướng hydroxyl hóa và oxime hóa từ 1

steroid có hàm lượng lớn trong sao biển Acanthaster planci.

• Thử nghiệm một số hoạt tính sinh học của các chất phân lập và tổng hợp được.

CHƯƠNG 1. TỔNG QUAN TÀI LIỆU

Phần này tập hợp các nghiên cứu trong nước và quốc tế về các vấn đề:

1.1. Giới thiệu chung về lớp sao biển (Asteroidea) 1.2. Các nghiên cứu về lớp chất steroid phân cực từ sao biển 1.3. Hoạt tính sinh học của các hợp chất steroid phân cực từ sao biển 1.4. Tổng quan về đối tượng nghiên cứu 1.5. Tình hình nghiên cứu tổng hợp các hợp chất polyhydroxysteroid và

hydroximinosteroid từ steroid tự nhiên

CHƯƠNG 2. ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU

Phần này mô tả thông tin của đối tượng nghiên cứu; các phương pháp phân

lập, xác định cấu trúc các hợp chất và các phương pháp đánh giá hoạt tính sinh học. 2.1. Đối tượng nghiên cứu

Loài sao biển Acanthaster planci được thu thập ở độ sâu 5-10 m, tại Vịnh Vân Phong, Nha Trang, Khánh Hòa, Việt Nam. Tên loài được giám định bởi PGS.TS. Đỗ Công Thung, Viện Tài nguyên và Môi trường biển – Viện Hàn lâm Khoa học và Công nghệ Việt Nam.

2

Mặt phía trên Mặt phía dưới

2.2. Phương pháp nghiên cứu 2.2.1. Phương pháp phân lập

Các phương pháp sắc ký được sử dụng để phân lập các hợp chất bao gồm: sắc ký bản mỏng (TLC), sắc ký cột silica gel (CC) pha thường

hoặc pha đảo, sắc ký cột Polychrome 1, Sephadex LH-20, sắc ký lỏng hiệu năng cao (HPLC), ngoài ra còn dùng phương pháp kết tinh.

2.2.2. Phương pháp xác định cấu trúc

Các phương pháp được sử dụng để xác định cấu trúc hóa học của các

hợp chất bao gồm: phổ khối ion hóa phun mù điện tử (ESI-MS), phổ khối phân giải cao (HR ESI-MS), độ quay cực ([α]D), phổ cộng hưởng từ hạt nhân một chiều (1H, 13C, DEPT, 1D TOCSY) và hai chiều (HSQC, HMBC, COSY, NOESY, ROESY) được ghi trên máy Bruker Avance 500 MHz

hoặc Bruker Avance III 700 MHz, sử dụng TMS là chất chuẩn nội.

2.2.3. Các phương pháp đánh giá hoạt tính 2.2.3.1. Phương pháp đánh giá hoạt tính gây độc tế bào

Hoạt tính gây độc tế bào của các hợp chất được đánh giá theo phương

pháp MTS thực hiện tại: Viện hóa học các hợp chất thiên nhiên – Viện HLKHCNVN (Hep G2, HeLa); Trung tâm nghiên cứu Hợp chất tự nhiên -

Viện Khoa học và Công nghệ Hàn Quốc (KIST) (T98G); Viện Hóa sinh hữu cơ Thái Bình Dương (PIBOC) – Viện Hàn lâm Khoa học liên bang Nga – Vladivostok (HCT-116, HT-29, RPMI-7951, T-47D, MDA-MB-231).

2.2.3.2. Phương pháp thử nghiệm khả năng ức chế hình thành khối u trên thạch mềm

3

Các chất thử nghiệm được thêm vào môi trường nuôi tế bào ở các nồng

độ không gây độc 5, 10 và 15 μM, ủ trong 4 tuần. Các khối u hình thành được đo bằng kính hiển vi và phần mềm ảnh theo phương pháp của Colburn. Thực hiện tại PIBOC – Viện Hàn lâm Khoa học LB Nga.

2.2.3.3. Phương pháp thử nghiệm hoạt tính ức chế sự di căn của tế bào ung thư biểu mô tuyến vú bằng xét nghiệm chữa lành vết thương (wound-healing assay)

Các chất thử nghiệm (10 μM) được đưa vào môi trường đã được tạo

một vết thương trên khối tế bào ung thư biểu mô tuyến vú MDA-MB-231 đã phát triển và để trong 48 giờ. Độ đóng vùng tổn thương được đo và xác định

phần trăm khoảng cách di chuyển của tế bào. Thực hiện tại PIBOC – Viện Hàn lâm Khoa học LB Nga.

CHƯƠNG 3. THỰC NGHIỆM

3.1. Phân lập các hợp chất từ loài sao biển Acanthaster planci

Phần này trình bày cách thức phân lập các hợp chất từ mẫu sao biển A.

planci. Việc phân tách các hợp chất được nêu tóm tắt trong sơ đồ hình 3.1.

Hình 3.1. Sơ đồ phân lập các hợp chất từ sao biển A.planci 4

3.2. Hằng số vật lý và dữ kiện phổ của các hợp chất phân lập được

3.3. Tổng hợp các dẫn xuất của cholesterol

Hợp chất AP7 được xác định là cholesterol, được lựa chọn là chất đầu

để chuyển hóa thành các dẫn xuất polyhydroxysteroid và hydroximinosteroid. 3.3.1. Tổng hợp các dẫn xuất polyhydroxyl của cholesterol

3.3.2. Tổng hợp các dẫn xuất hydroximinosteroid từ cholesterol 3.4. Hoạt tính sinh học của các chất phân lập và các dẫn xuất tổng hợp được

3.4.1. Hoạt tính sinh học của các hợp chất steroid phân cực phân lập từ sao biển Acanthaster planci

3.4.2. Hoạt tính gây độc tế bào của các dẫn xuất tổng hợp từ cholesterol

Các hydroxysteroid (15c-21c), hydroximinosteroid (23c, 25c, 29c,

31c) và các chất trung gian (22c, 24c, 26c-28c, 30c) được đánh giá hoạt tính gây độc tế bào trên ba dòng tế bào Hep G2, HeLa và T98G.

CHƯƠNG 4. KẾT QUẢ VÀ THẢO LUẬN

Chương này trình bày các kết quả nghiên cứu phân lập, chuyển

hóa và xác định cấu trúc của các hợp chất, kết quả hoạt tính sinh học của các hợp chất được thử nghiệm.

4.1. Nghiên cứu thành phần hóa học loài sao biển Acanthaster planci Phần này trình bày chi tiết kết quả phân tích phổ và xác định cấu

trúc hóa học của 14 hợp chất phân lập từ loài sao biển A.planci. Trong đó có 4 hợp chất mới và 8 hợp chất đã biết.

Bảng 4.21: Bảng tổng hợp các chất phân lập từ sao biển A. planci

AP2. Planciside B (chất mới) AP1. Planciside A (chất mới)

5

AP4. Planciside D AP3. Planciside C (chất mới)

AP5. 3-O-sulfothornasterol A AP6. 5-ergost-7-en-3-ol

AP7. Cholesterol AP8. Astaxanthin

AP9. Thymin AP10. Uracil

AP12. Pentareguloside G

AP11. Acanthasglycoside G (chất mới)

AP13. Acanthasglycoside A AP14. Maculoside 6

* Dưới đây trình bày các phân tích phổ và xác định cấu trúc hóa học của

1 steroid glycoside mới đại diện là Acanthaglycoside G (AP11): • Hợp chất AP11: Acanthaglycoside G (hợp chất mới)

[(M–Na)–3xC6H10O4]−, 557

Hình 4.21: Phổ (+) HR-ESI-MS của AP11

Hình 4.22: Phổ (-) HR-ESI-MS của AP11

Hợp chất AP11 được phân lập dưới dạng chất rắn, vô định hình. Công thức phân tử của AP11 được xác định là C51H81O26SNa (M = 1164) từ pic ion giả phân tử [M+Na]+ tại m/z 1187,4533 (tính toán lý thuyết cho CTPT C51H81Na2O26S = 1187,4532) trong phổ (+) HR-ESI-MS và pic ion giả phân tử [M–Na]− tại m/z 1141,4735 (tính toán lý thuyết cho CTPT C51H81O26S = 1141,4737) trong phổ (-) HR-ESI-MS, trong đó M là khối lượng phân tử của AP11. Ngoài ra, trên phổ (–) HR-ESI-MS/MS của pic ion [M–Na]− ở m/z 1141 xuất hiện tín hiệu của các pic ion tại m/z 995 [(M–Na)–C6H10O4]−, 849 [(M–Na)–2xC6H10O4]−, 703 [(M–Na)– 4xC6H10O4]−, 411 [(M–Na)–5xC6H10O4]−, tương ứng với các tín hiệu này là sự mất lần lượt của 1, 2, 3, 4, và 5 đơn vị đường 6-deoxyhexose, và pic ion tại m/z 393 [(M–Na)–4 x C6H10O4 –C6H12O5]− tương ứng với sự mất của 1 chuỗi oligosaccharide trong AP11. Từ dữ liệu phân tích phổ MS có thể dự đoán AP11 có chứa 5 đơn vị đường 6-deoxyhexose trong chuỗi carbohydrate.

Phổ 1H-NMR của AP11 xuất hiện tín hiệu của 3 nhóm –CH3 đặc trưng của khung steroid bao gồm 2 nhóm methyl góc CH3-18 (s, 0,58 ppm) và CH3-19 (s, 0,94 ppm); 1 tín hiệu ở vùng trường yếu hơn của CH3-21 (s, 2,08 ppm). Ngoài ra còn có tín hiệu của 1 proton olefin ở δH

7

5,24 (brt, J 4,2 Hz); 1 nhóm oxymetin liên kết với một nhóm sulfate ở δH 4,87 (m) ppm; một nhóm oxymetin liên kết trực tiếp với một chuỗi carbohydrate ở vị trí CH-6 với δH 3,78 (m). Ở vùng trường yếu quan sát thấy 5 tín hiệu doublet của 5 proton anome của 5 đơn vị monosaccharide ở δH 4,82 (1H, d, J = 7,6 Hz), 4,84 (1H, d, J = 7,9 Hz), 4,97 (1H, d, J = 6,8 Hz), 5,03 (1H, d, J = 7,7 Hz), 5,27 (1H, d, J = 7,7 Hz).

Hình 4.23: Phổ 1H-NMR của AP11

Hình 4.24: Phổ 13C-NMR của AP11

Phổ 13C-NMR của AP11 cho thấy sự có mặt của 51 nguyên tử carbon, trong đó có 8 nhóm CH3, 7 nhóm CH2, 32 nhóm CH và 4 carbon bậc 4. Sự có mặt của nối đôi bị thế ba lần trong phân tử được xác định tại δC 116,4/145,8 ppm. 5 tín hiệu carbon nhóm CH tại δC 102,3; 103,6; 104,9; 104,9; 106,9 ppm được xác định là các carbon anome của 5 gốc đường. Ngoài ra, trong vùng từ

60 – 90 ppm có các tín hiệu cộng hưởng của 23 nguyên tử carbon liên kết trực tiếp với nguyên tử oxy, bao gồm 22 carbon oximetin trong đó có 2 carbon của phần aglycon tại δC 77,4 (C-3) liên kết với nhóm sulfate; δC 80,1 (C-6) liên kết với chuỗi carbohydrate; và 20 carbon thuộc các phân tử đường tại δC 73,8; 91,0; 74,4; 71,7; 82,3; 75,1; 85,7; 71,4; 84,3; 77,5; 75,7; 72,8; 73,7; 74,9; 72,3; 71,8; 76,2; 77,5; 75,5; 73,4 ppm; và 1 carbon bậc 4 của nhóm C=O tại δC 208,0 ppm. Độ chuyển dịch hóa học trong phổ 1H và 13C chỉ ra rằng phần aglycon của AP11 có dạng đã biết là 3β,6α-dihydroxy-5α-pregn-9(11)-en-20-

8

one (asterone) đã bị sulfate hóa ở vị trí C-3 và có liên kết glycoside ở vị trí C-6

trong nhân steroid.

Các tương tác nhận được trên phổ COSY và HSQC cho phép ghép

nối các mảnh cấu trúc từ C-1 đến C-8, C-11 đến C-12, và C-8 đến C-17 của phần aglycon. Trên cơ sở kết quả phổ COSY, cùng các tương tác HMBC

giữa các proton với các carbon cho phép khẳng định vị trí của các nhóm H- 18, H-19, H-21 và một liên kết đôi ở vị trí 9(11) của phần khung steroid

cũng như chứng minh cho toàn bộ cấu trúc của phần aglycon. Phổ ROESY cho thấy các tương tác chìa khóa giữa H-5 với H-3α, H-7α; H-14 với H-12α, H-17; H3-18 với H-8, H-15β, H-16β; và H3-19 với H-2β, H-4β, H-6β, H-8. Điều này chứng minh cấu hình khung steroid ở các vị trí được xác định là

5α/8β/10β/13β/14α/17α và cấu hình tương đối của các nhóm thế ở C-3 và C- 6 là 3β và 6α. Trên phổ HMBC có xuất hiện tương tác của proton anome H- 1 của đơn vị đường Qui1 ở δH 4,82 ppm với C-6 ở δC 80,1 ppm của aglycon và trong phổ ROESY có xuất hiện tương tác của proton anome H-1 của Qui1 ở δH 4,82 ppm với H-6 ở δH 3,78 ppm của aglycon. Điều này chứng tỏ vị trí liên kết của chuỗi oligosaccharide với phần aglycon là vị trí C-6.

Hình 4.25: Phổ 1D TOCSY của hợp chất AP11

Phổ 1D TOCSY cho thấy sự có mặt của 4 đơn vị đường Qui và 1

đơn vị đường Fuc do có các tín hiệu cộng hưởng của H-1 – H-6 của 4 đơn vị quinovose và H-1 – H-4 của 1 đơn vị fucose, chiếu xạ 1 nhóm methyl tương ứng dẫn đến tín hiệu H-5 của đơn vị fucose. Thứ tự liên kết giữa các phân tử đường và phần aglycon được khẳng định dựa trên

9

các tương tác trong phổ HMBC. Từ các tương tác chìa khóa giữa H-1 của Quip1 và H-6 (C-6) của aglycon, H-1 của Quip2 và H-3 (C-3) của Quip1, H-1 của Quip3 và H-4 (C-4) của Quip2, H-1 của Fucp và H-2 (C-2) của Quip3, H-1 của Quip4 và H-2 (C-2) của Quip2 có thể suy ra vị trí liên kết giữa các phân tử đường với nhau và giữa phần đường với phần

aglycon của hợp chất steroid là Fuc(1→2)-Qui3(1→4)-[Qui4(1→2)]- Qui2(1→3)-Qui1-Aglycon. Dựa vào các tín hiệu trên phổ 1D-, 2D-NMR

ta xác định được các giá trị carbon và proton của phần đường (bảng 4.9).

Hình 4.26: Cấu trúc hóa học của AP11

Hình 4.27: Các tương tác chính trong phổ HMBC và ROESY của AP11

Cấu hình của các đơn vị đường trong AP11 được chứng minh bằng phương pháp của Leontein và cs, kết quả phân tích phổ GC thu được chứng minh các đơn vị đường của AP11 đều có cấu hình D.

Từ các kết quả phân tích dữ liệu phổ AP11 được xác định là: muối natri

6α-O-{β-D-fucopyranosyl-(1→2)-β-D-quinovopyranosyl-(1→4)-[β-D- quinovo-pyranosyl-(1→2)]-β-D-quinovopyranosyl-(1→3)-β-D-quinovo-

10

pyranosyl}-6α-hydroxy-5α-pregn-9(11)-en-20-one-3β-yl sulfate. Đây là asterosaponin hiếm với chuỗi carbohydrate gồm duy nhất hai dạng đơn vị đường β-D-fucopyranosyl và β-D-quinovopyranosyl. Như vậy, AP11 là chất mới và lần đầu tiên được phân lập từ tự nhiên và được đặt tên là acanthaglycoside G. Bảng 4.8: Dữ liệu phổ phần aglycon của hợp chất AP11

ac

H

HMBC (H→C)

35,8

29,3

77,4 30,6

49,1 80,1 41,3

35,4 146,0 35,8 115,8 40,4 42,3 53,5 25,3

23,0

ROESY (H→H) H-11, H3-19 H-3, H-11 H3-19 H-1, H-5 H3-19 H-3, H-7 H3-19 H-5 H3-18, H3-19 H-1 H-14, H-17 H-12, H-17 H3-18 H3-18

ab (JHz) 1,63 m 1,38 m 2,81 (brd, J 13,6 Hz) 1,89 (brq, J 12,5 Hz) 4,87 m 3,45 (brd, J 12,6Hz) 1,70 m 1,48 m 3,78 m 2,66 m 1,28 m 2,06 m ‒ ‒ 5,24 (brt, J 4,2 Hz) 2,14 brs ‒ 1,33 m 1,76 m 1,20 m 2,34 (brq, J 10,9 Hz) 1,61 m 2,51 (t, J 8,7 Hz) 0,58 s

C C 1β 1α 2α 2β 3 4α 4β 5 6 7β 7α 8 9 10 11 12 13 14 15α 15β 16β 16α 17 18

63,2 12,9

H-12, H-14, H3-21 H-8, H-15, H-16

0,94 s

19

19,0

C-13, C-18 C-12, C-13, C-14, C-17 C-1, C-5, C-9, C-10

‒ 2,08 s

20 21

208,0 30,8

H-1, H-2, H-4, H-6, H-8 H-17

C-17, C-20

a C5D5N, b 500,13 MHz, c 125,75 MHz

11

Bảng 4.9: Dữ liệu phổ NMR của chuỗi đường của hợp chất AP11

ac

δC

δH

ab (JHz)

ROESY

HMBC (H→C) C-6 of aglycon

C Qui 1 1

104,9 4,82 (d, J 7,6 Hz) H-6 of aglycon; H-3, H-5 Qui1 3,97 (t, J 8,3 Hz) 3,77 (t, J 8,6 Hz) H-1 Qui1, H-1 Qui2 3,55 (t, J 9,0 Hz) H-6 Qui1 3,69 m H-1 Qui1 1,60 (d, J 6,0 Hz) H-4 Qui1

73,8d 91,0 74,4 71,7d 18,2 103.6 4,97 (d, J 6,8 Hz) H-3, H-5 Qui2; H-3

C-1, C-3 Qui1 C-1 Qui 2 C-3, C-6 Qui1 C-4, C-5 Qui1 C-3 Qui1

2 3 4 5 6 Qui 2 1

Qui1

H-1 Qui2

4,09 (t, J 7,6 Hz) H-1 Qui4 4,12 (t, J 8,7 Hz) H-1 Qui2 3,56 (t, J 8,7 Hz) H-6 Qui2, H-1 Qui3 3,90 m 1,73 (d, J 6,1 Hz) H-4 Qui2, H-1 Qui3

82.3 75.1 85.7 71.4 18,0 102,3 4,84 (d, J 7,9 Hz) H-3, H-5 Qui3; H-4, H-

C-2 Qui2 C-3 Qui2 C-4, C-5 Qui2 C-4 Qui2

2 3 4 5 6 Qui 3 1

6 Qui2

2

84,3

4,00 (t, J 8,3 Hz) H-1 Fuc

H-1, H-3 Qui3

4,13 (t, J 9,3 Hz) H-1, H-5 Qui3 3,62 (t, J 8,9 Hz) H-6 Qui3 3,71 m 1,48 (d, J 6,0 Hz) H-4 Qui3

C-3 Qui3, C-1 Fuc C-2, C-4 Qui3 C-5, C-6 Qui3 C-3 Qui3 C-4, C-5 Qui3

77,5 75,7 72,8 17,7d 106,9 5,03 (d, J 7,7 Hz) H-3, H-5 Fuc; H-2 Qui3 C-2 Qui3 73,7d

C-1, C-3 Fuc

3 4 5 6 Fuc 1 2

74,9

H-1, H-5 Fuc

3

4,41 (dd, J 8,6; 9,5 Hz) 4,06 (dd, J 3,6; 9,5 Hz) 3,99 (d, J 4,0 Hz) H-5, H-6 Fuc 3,78 (q, J 6,5 Hz) H-3, H-4 Fuc 1,49 (d, J 6,2 Hz) H-4 Fuc

72,3 71,8d 16,9 104,9 5,27 (d, J 7,7 Hz) H-3, H-5 Qui4;

C-3 Fuc C-1, C-4 Fuc C-4, C-5 Fuc C-2 Qui2

4 5 6 Qui 4 1

76,2

4,04 (t, J 8,8 Hz)

H-2 Qui2

2

12

77,5 75,5 73,4 17,8d

4,12 (t, J 8,8 Hz) H-1 Qui4 4,01 (t, J 8,7 Hz) H-6 Qui4 3,70 m H-1 Qui4 1,79 (d, J 6,1 Hz) H-4 Qui4

C-4, C-5 Qui 4

3 4 5 6 a C5D5N, b 500,13 MHz, c 125,75 MHz, d các vị trí có thể hoán đổi cho nhau

4.2. Chuyển hóa hóa học của cholesterol

Các hợp chất polyhydroxysteroid, hydroximinosteroid có mạch

nhánh giống cholesterol được đánh giá là các hợp chất tiềm năng có hoạt

tính gây độc trên nhiều dòng tế bào ung thư. Vì vậy, cholesterol (hợp

chất AP7) được lựa chọn làm nguyên liệu đầu cho các phản ứng chuyển

hóa tạo các sản phẩm hydroxyl và oxime hóa. 4.2.1. Chuyển hóa các dẫn xuất polyhydroxysteroid

Cholesterol được hydroxyl hóa để tạo ra nhiều nhóm OH xung quanh vị trí nối đôi C5/C6. Các tác nhân hydroxyl hóa được sử dụng chủ yếu là các tác nhân oxy hóa và có khả năng tạo sản phẩm dạng diol. Bảy hợp chất polyhydroxysteroid (15c-21c) đã được tổng hợp từ cholesterol theo sơ đồ 4.1 dưới đây.

Sơ đồ 4.1. Tổng hợp các dẫn xuất polyhydroxysteroid từ cholesterol

13

Tác nhân và điều kiện phản ứng: (i): BH3.THF, H2O2, NaOH, 0 oC, 1 giờ (15c: 71%, 16c: 9%); (ii): SeO2, dioxane, H2O, 80 oC, 80 giờ (17c: 50%, 18c: 2,0%, 19c: 3,5%); (iii): 4% OsO4/H2O, NMO, đun hồi lưu, 48 giờ (20c: 74%); (iv): 1. HCOOH 88%, THF/H2O2, 12 giờ, 2. KOH 3% trong MeOH (21c: 75%).

Các hợp chất tổng hợp được mặc dù không phải là những chất mới, tuy nhiên nội dung nghiên cứu này nêu ra các phương pháp tổng hợp đơn giản và hiệu quả hơn so với các phương pháp đã biết cho các chất có hoạt tính và chỉ đi qua một bước phản ứng. Các phương pháp này đồng thời có thể áp dụng trên các hợp chất steroid khác từ sao biển để tổng hợp ra các dẫn xuất polyhydroxysteroid. 4.2.2. Chuyển hóa các dẫn xuất hydroximinosteroid

Các nghiên cứu gần đây về mối liên hệ hoạt tính - cấu trúc của các hợp chất hydroximinosteroid cho thấy đây là lớp chất tiềm năng thể hiện nhiều hoạt tính sinh học lý thú. Đồng thời, các nghiên cứu cũng chỉ ra rằng vị trí của các nhóm oxime và loại mạch nhánh ở vị trí C-17 của khung steroid giống của cholestane có hoạt tính tốt hơn cả so với các loại mạch nhánh khác như của stigmastane hay sitostane. Vì vậy, cholesterol được lựa chọn làm nguyên liệu đầu để tổng hợp các dẫn xuất hydroximinosteroid. Các sản phẩm được tổng hợp có nhóm oxime ở vị trí C-3; hoặc C-3 và C-6; và vòng epoxy ở vị trí C-4,5. Bốn hydroximinosteroid (23c, 25c, 29c, 31c) trong đó có 2 chất mới (29c, 30c) và 7 chất trung gian (15c, 22c, 24c, 26c, 27c, 28c, 30c) trong đó có 1 chất mới (30c) đã được tổng hợp theo như sơ đồ 4.2 dưới đây.

Từ cholesterol thực hiện chuyển hóa theo các hướng khác nhau để tạo các dẫn xuất trung gian có nhóm ketone (C=O) ở vị trí C-3 và C-6; ở vị trí C-4,5 có liên kết đôi (22c), không có liên kết đôi (24c) hoặc có vòng epoxy (27c). Cuối cùng các sản phẩm ketone này được chuyển hóa thành các hydroximinosteroid (>C=N-OH) tương ứng (23c, 25c, 29c, 31c) bằng tác nhân hydroxylamine hydrochloride (NH2OH.HCl) trong pyridine theo phương pháp mô tả bởi Javier. Đặc biệt, khi thực hiện oxime hóa chất 27c (có vòng epoxy ở vị trí C-4,5 và nhóm ketone ở vị trí 14

C-3) thu được 2 sản phẩm trong đó có 1 sản phẩm đã bị oxime hóa (29c) và 1 sản phẩm không bị oxime hóa nhưng bị mở vòng epoxy ở vị trí C- 4,5 (30c).

Sơ đồ 4.2. Tổng hợp các dẫn xuất hydroximinosteroid từ cholesterol

Tác nhân và điều kiện phản ứng: (i): PCC/CH2Cl2, rt, 48 giờ (22c: 80,0 %, 24c: 82,0 %); (ii): BH3.THF/H2O2, NaOH, 0 oC, 1 giờ (15c: 80,0 %); (iii): CeCl3.7H2O/NaBH4, CH2Cl2&MeOH (1:1), rt, 1 giờ (26c: 89,0 %); (iv): 1. m- CPBA/CH2Cl2, 2. Dess-Martin/CH2Cl2, 0 oC (27c: 12,3 %, 28c: 14,5 %); (v): NH2OH.HCl/Pyridine, 24 giờ (23c: 85,0 %, 25c: 81,0 %, 29c: 19,3 %, 30c: 13,4 %, 31c: 22,5 %).

Các sản phẩm được chứng minh oxime hóa thành công do có sự thay đổi rõ ràng sự chuyển dịch hóa học của nhóm cacbonyl trong khoảng δC 195-210 ppm thành nhóm oxime ở δC 155-160 ppm. Kết hợp các phương pháp hóa lý hiện đại và các phương phổ cộng hưởng từ hạt nhân cấu trúc hóa học của tất cả các sản phẩm đã được chứng minh.

4.3. Kết quả thử nghiệm hoạt tính sinh học

15

4.3.1. Hoạt tính của các hợp chất steroid glycoside phân lập từ sao

biển Acanthaster planci

a. Hoạt tính sinh học của các hợp chất polyhydroxysteroid glycoside

Hợp chất AP1 được thử nghiệm hoạt tính gây độc tế bào trên ba

dòng tế bào HCT-116, T-47D và RPMI-7951. Kết quả hợp chất AP1 có

khả năng gây độc tế bào trên dòng tế bào HCT-116 và RPMI-7951 với

giá trị IC50 tương ứng là 36 và 58 µM, so với đối chứng dương cisplatin.

Cả AP1 và cisplatin không gây độc trên dòng tế bào T-47D (bảng 4.23). Bảng 4.23: Hoạt tính gây độc tế bào in vitro của hợp chất AP1 Dòng tế bào (IC50 µM)

HCT-116 T-47D RPMI-7951 AP1 36 >150 58 Cisplatin 75 > 150 43

Control

Cisplatin, 15 μM

Hình 4.54: Ảnh hưởng của AP1 đến sự tăng sinh của các dòng tế bào HCT-116,

T-47D và RPMI-7951 ở nồng độ 15 μM

A C B AP1, 15 μM

Chất AP1 ức chế sự tăng sinh của dòng tế bào T-47D sau 72 giờ là

35%, dòng tế bào RPMI-7951 sau 48 giờ là 27% (hình 4.54 B, C). Trong khi cisplatin gần như ức chế hoàn toàn sự phát triển của các dòng tế bào

T-47D và RPMI-7951 (hình 4.54 B, C).

b. Hoạt tính sinh học của các hợp chất asterosaponin

16

Hợp chất AP13 và AP14 có khả năng gây độc trên các tế bào ung thư

trực tràng HT-29; tế bào ung thư biểu mô tuyến vú MDA-MB-231, nhưng không gây độc tế bào ung thư sắc tố ác tính RPMI-7951 ở nồng độ trên 150 µM. Giá trị nồng độ IC50 với từng dòng tế bào xem ở bảng 4.24.

Bảng 4.24: Hoạt tính gây độc tế bào và ảnh hưởng tới sự hình thành khối u trên

thạch mềm của các hợp chất asterosaponin AP11-AP14

RPMI-7951

HT-29

MDA-MB-231

Hợp chất AP13 và AP14 ức chế hiệu quả sự hình thành khối u của các dòng tế bào HT-29 và dòng tế bào MDA-MB-231, và ít hiệu quả hơn với dòng tế bào RPMI-7951. Giá trị IF50 tương ứng với các dòng tế bào xem ở bảng 4.24.

Chất AP11 AP12 AP13 AP14

IC50, µM >150 >150 >150 >150

IF50, µM >15 >15 15 14

IC50, µM >150 >150 109 90

IF50, µM >15 >15 11 7

IC50, µM >150 >150 30 24

IF50, µM >15 >15 13 8

IC50: Nồng độ gây giảm 50% khả năng sống sót của các tế bào

IF50: Nồng độ gây giảm 50% sự hình thành khối tế bào của các tế bào

Hình 4.55: Ảnh hưởng của các asterosaponin AP11-AP14 đến sự di chuyển của tế bào ung thư biểu mô tuyến vú MDA-MB-231 ở người

Hợp chất AP13 và AP14 ở nồng độ 10 µM có thể ngăn chặn sự di chuyển của các tế bào MDA-MB-231 với tỷ lệ tương ứng là 26% và 45% so với đối chứng sau 48 giờ ủ tế bào (hình 4.55). Trong khi, hợp chất AP11 và AP12 không thể ngăn chặn sự di chuyển của các tế bào này. 4.3.2. Hoạt tính sinh học của các dẫn xuất cholesterol

17

a. hoạt tính sinh học của các dẫn xuất polyhydroxysteroid

Ba chất 16c, 18c, 21c thể hiện hoạt tính gây độc tế bào Hep G2 với giá trị IC50 tương ứng 11,69; 11,89 và 6,87 μM. Chỉ có chất 21c thể hiện hoạt tính gây độc tế bào T98G với IC50 = 2,28 μM, so với đối chứng dương là Paclitaxel (xem bảng 4.25).

Hai cặp chất 15c và 16c; 20c và 21c khác nhau ở cấu hình nhóm OH ở vị trí C-6 (6α-OH ở chất 15c và 20c; 6β-OH ở chất 16c và 21c). Trong khi chất 16c có hoạt tính gây độc trên dòng tế bào Hep G2 và chất 21c có hoạt tính gây độc trên cả hai dòng tế bào Hep G2 và T98G thì chất 15c và 20c lại không thể hiện hoạt tính trên các phép thử này. Như vậy, cấu hình β của nhóm OH ở C-6 của dạng cấu trúc này có thể là một trong những yếu tố quyết định hoạt tính gây độc tế bào của chúng. Bảng 4.25: Hoạt tính gây độc tế bào Hep G2, T98G của các chất 15c-21c

IC50 µM

IC50 µM

Chất 15c 16c 17c 18c

Hep G2 >100 11,59 >100 11,89

T98G >100 >100 >100 >100

Chất 19c 20c 21c Paclitaxela

Hep G2 >100 >100 6,87 0,040

T98G >100 >100 2,28 0,023

a đối chứng dương b. Hoạt tính sinh học của các dẫn xuất hydroximinosteroid và các chất trung gian Ba dẫn xuất 3,6-dihydroximino (23c, 25c, 31c) có hoạt tính gây độc tế bào mạnh hơn so với 3-hydroximino-6α-hydroxy (29c) trên 3 dòng tế bào thử nghiệm. Chất 3,6-dihydroximino 25c không có liên kết đôi ở vị trí C4/5 có thể là nguyên nhân gây mất hoạt tính gây độc trên 2 dòng tế bào Hep G2 và HeLa so với chất Δ4-3,6-dihydroximino 23c. Trong khi chất 31c có 2 nhóm oxime ở vị trí C-3, C-6 và vòng epoxy ở vị trí C-4,5 có hoạt tính gây độc tế bào chọn lọc trên dòng tế bào T98G (IC50 = 2,9 μM) thì chất 29c có một nhóm oxime ở vị trí C-3 và vòng epoxy ở vị trí C-4/5 nhưng không có hoạt tính này.

18

Chất

Chất

Bảng 4.26: Hoạt tính gây độc tế bào Hep G2, HeLa, T98G của các chất 22c-31c

27c 28c 29c 30c 31c

22c 23c 24c 25c 26c Paclitaxel

IC50 (µM) HepG2 HeLa T98G >100 >100 >100 68,6 42,4 70,3 >100 >100 >100 69,8 >100 >100 >100 >100 >100 0,031 0,023 Paclitaxela 0,040

IC50 (µM) HepG2 HeLa T98G >100 72,4 74,6 >100 >100 >100 18,5 >100 >100 2,9 0,031 0,023

41,8 >100 >100 >100 >100 0,040

a đối chứng dương

Ba chất trung gian (27c, 28c, 30c) có sự xuất hiện của nguyên tố oxy

tại C-4 hoặc C-5 có hoạt tính gây độc vừa phải đối với ít nhất một dòng tế bào trong khi các chất còn lại không thể hiện hoạt tính.

Như vậy, các steroid dạng này có liên kết đôi ở vị trí C4/5 hoặc có liên kết với nguyên tố oxy ở vị trí C-4, C-5 có thể có tác dụng tích cực đối với hoạt tính gây độc tế bào trên các dòng tế bào ung thư được thử nghiệm.

KẾT LUẬN

1. Đã phân lập được 14 hợp chất từ loài sao biển Acanthaster planci. Cấu trúc của các hợp chất này được xác định bằng các phương pháp phổ khối

lượng, phổ cộng hưởng từ hạt nhân và các phương pháp hóa lý khác. Các hợp chất phân lập và xác định được cấu trúc bao gồm: planciside A (AP1);

planciside B (AP2); planciside C (AP3); planciside D (AP4); (3-O- sulfothornasterol A (AP5); 5-ergost-7-en-3-ol (AP6); cholesterol (AP7);

astaxanthin (AP8); thymin (AP9); uracil (AP10); acanthaglycoside G (AP11); pentareguloside G (AP12); acanthaglycoside A (AP13); maculoside (AP14).

Trong đó có 4 hợp chất steroid glycoside AP1, AP2, AP3 và AP11 là các chất mới. Ngoài ra, hợp chất pentareguloside G (AP12) lần đầu tiên được tìm thấy ở loài Acanthaster planci của Việt Nam.

2. Từ cholesterol đã tổng hợp được 17 dẫn xuất, trong đó có 7 dẫn xuất polyhydroxysteroid (15c-21c), 4 dẫn xuất hydroximinosteroid (23c, 25c, 29c,

19

31c) và 6 dẫn xuất trung gian (22c, 24c, 26c, 27c, 28c, 30c). Các hợp chất bao

gồm: cholestane-3β,6α-diol (15c); cholestane-3β,6β-diol (16c); cholestan-5- ene-3β,4β-diol (17c); cholestan-5-ene-3β,7β-diol (18c); cholestan-5-ene-

3β,4β,7β-triol (19c); cholestane-3β,5α,6α-triol (20c); cholestane-3β,5α,6β-triol (21c); cholest-4-ene-3,6-dione (22c); (3E,6E)-dihydroximinocholest-4-ene

(23c); cholestane-3,6-dione (24c); (3E,6E)-dihydroximinocholestane (25c); cholest-4-ene-3β,6α-diol (26c); 6-hydroxy-4,5-epoxycholestane-3-one (27c);

4α,5α-epoxycholestane-3,6-dione (28c); 4α,5α-epoxy-6-hydroxycholestane-3- 4α,5α- 4α,5α,6α-trihydroxy-cholestane-3-one oxime (29c); (30c);

epoxycholestane-3,6-dioxime (31c). Trong đó 29c, 30c, 31c là các chất mới.

3. Đã khảo sát hoạt tính gây độc tế bào và đánh giá ảnh hưởng của các

hợp chất AP1, AP11, AP12, AP13, AP14 đến sự hình thành khối u trên thạch mềm của các dòng tế bào ung thư ở người. Kết quả cho thấy:

- Hợp chất AP1 có hoạt tính gây độc tế bào trên dòng tế bào ung thư ruột kết (HCT-116) và ung thư sắc tố ác tính (RPMI-7951) với giá trị IC50 tương ứng là 36 µM và 58 µM. Hợp chất AP1 có hoạt tính ức chế sự tăng sinh tế bào

HCT-116, T-47D và RPMI-7951 nhưng không có ảnh hưởng đến sự hình thành khối tế bào của các dòng tế bào này.

- Hợp chất AP13 và AP14 có hoạt tính gây độc nhẹ trên dòng tế bào ung thư đại trực tràng HT-29 với giá trị IC50 tương ứng là 109 µM và 90 µM; và dòng tế bào ung thư biểu mô tuyến vú MDA-MB-231 với giá trị IC50 tương ứng là 30 µM và 24 µM. Hợp chất AP13 và AP14 ức chế hiệu quả sự hình thành khối u trên thạch mềm của hai dòng tế bào HT-29 (với giá trị IF50 tương ứng là 11 µM và 7 µM) và MDA-MB-231 (với giá trị IF50 tương ứng là 13 µM và 8 µM); ít hiệu quả hơn trên dòng RPMI-7951 (với giá trị IF50 tương ứng là 15 µM và 14 µM).

4. Đã khảo sát khả năng ức chế sự di căn của tế bào ung thư biểu mô tuyến vú MDA-MB-231 bằng phương pháp đánh giá khả năng chữa lành vết thương trong ống nghiệm của các hợp chất asterosaponin (AP11-AP14). Kết 20

quả cho thấy: hợp chất AP13 và AP14 ở nồng độ 10 µM có thể ngăn chặn sự

di chuyển của các tế bào ung thư biểu mô tuyến vú MDA-MB-231 với tỷ lệ tương ứng là 26% và 45% so với đối chứng sau 48 giờ ủ tế bào.

5. Đã khảo sát hoạt tính gây độc tế bào của 07 dẫn xuất

polyhydroxysteroid (15c-21c), 04 dẫn xuất hydroximinosteroid (23c, 25c, 29c,

31c) và 06 dẫn xuất trung gian của chúng (22c, 24c, 26c, 27c, 28c, 30c) tổng hợp được từ cholesterol trên các dòng tế bào ung thư gan (Hep G2), ung thư

cổ tử cung (Hela) và ung thư não (T98G). Kết quả cho thấy:

- Năm hợp chất (16c, 18c, 21c, 23c, 27c) có hoạt tính gây độc tế bào trên dòng tế bào ung thư gan (Hep G2) với các giá trị IC50 tương ứng là 11,59; 11,89; 6,87; 42,40; 41,80 µM. - Ba hợp chất (23c, 27c, 28c) có hoạt tính yếu gây độc tế bào ung thư cổ tử cung (HeLa) với các giá trị IC50 tương ứng là 68,6; 72,4 và 74,6 µM. - Năm hợp chất (21c, 23c, 25c, 30c, 31c) có hoạt tính gây độc tế bào trên dòng tế bào ung thư não (T98G) với các giá trị IC50 tương ứng là 2,28; 70,3; 69,8; 18,5 và 2,9 µM. Trong đó chất 21c và 31c là hai chất có tiềm năng để nghiên cứu và đánh giá sâu hơn về hoạt tính gây độc tế bào ung thư não.

KIẾN NGHỊ

Đối với loài sao biển A.planci: cần có những nghiên cứu sâu hơn nữa

về thành phần hóa học, đặc biệt là các lớp chất polyhydroxysteroid glycoside để từ đó có thể phát triển các sản phẩm nâng cao sức khỏe, phòng ngừa và hỗ

trợ điều trị các căn bệnh như ung thư, viêm nhiễm…

Tiếp tục mở rộng hướng chuyển hóa cũng như thử nghiệm hoạt tính

của các dẫn xuất của cholesterol trên một số dòng tế bào ung thư khác.

21

NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN

1. Từ loài sao biển Acanthaster planci thu thập được từ vùng biển Việt Nam đã phân lập được 14 hợp chất. Trong đó, bốn hợp chất steroid glycoside là các hợp chất mới lần đầu tiên được phân lập từ tự nhiên, bao

gồm 3 hợp chất polyhydroxysteroid glycoside là planciside A (AP1); planciside B (AP2); planciside C (AP3) và 1 hợp chất asterosaponin là

acanthaglycoside G (AP11).

2. Cholesterol phân lập từ sao biển Acanthaster planci được sử dụng làm nguyên liệu đầu đã chuyển hóa được 17 dẫn xuất, bao gồm 07 dẫn xuất polyhydroxysteroid, 04 dẫn xuất hydroxyminosteroid, và 06 dẫn xuất trung

gian. Các hợp chất polyhydroxysteroid đã được tổng hợp bằng phương pháp ngắn gọn và hiệu quả với 1 hoặc 2 bước phản ứng. Bốn dẫn xuất

hydroxyminosteroid với nhóm oxime ở các vị trí C-3, C-6 và có liên kết đôi ở vị trí C4/5 hoặc có liên kết với nguyên tố oxy ở vị trí C-4, C-5 đã được tổng

hợp thông qua 6 dẫn xuất trung gian. Trong số các dẫn xuất tổng hợp được có là 4α,5α-epoxy-6-hydroxycholestane-3-oxime (29c); 3 dẫn xuất mới

(30c); 4α,5α-epoxycholestane-3,6-

4α,5α,6α-trihydroxy-cholestane-3-one dioxime (31c) lần đầu tiên được tổng hợp.

3. Hoạt tính gây độc tế bào và hoạt tính ức chế sự hình thành khối u trên thạch mềm chống lại 05 dòng tế bào ung thư (HCT-116, HT-29, RPMI-7951,

MDA-MB-231) của các hợp chất steroid glycoside phân lập được đã được đánh giá. Hợp chất AP1 gây độc vừa phải trên hai dòng tế bào HCT-116 và RPMI-7951 với giá trị IC50 tương ứng là 36 và 58 µM. Hợp chất AP13 và AP14 gây độc vừa phải trên 3 dòng tế bào RPMI-7951, HT-29, MDA-MB- 231 với giá trị IC50 nằm trong dải từ 24 đến 109 µM. Hai hợp chất AP13 và AP14 còn có khả năng ức chế sự di căn của tế bào ung thư biểu mô tuyến vú MDA-MB-231 với tỷ lệ 26% và 45%.

22

Các kết quả liên quan đến các hợp chất asterosaponin đã phân lập được phù

hợp với giả thuyết rằng một chuỗi bên ngắn của các hợp chất steroid có thể có ảnh hưởng đến hoạt tính gây độc tế bào của các asterosaponin này.

4. Các dẫn xuất tổng hợp được từ cholesterol đã được đánh giá hoạt tính gây độc tế bào trên 03 dòng tế bào ung thư ở người (HepG2, HeLa,

T98G). Các hợp chất 16c, 18c, 21c, 23c, 25c, 27c, 28c, 30c và 31c thể hiện khả năng gây độc tế bào trên ít nhất 1 dòng tế bào được thử nghiệm. Đặc

biệt, hai hợp chất 21c và 31c thể hiện hoạt tính tốt và chọn lọc trên dòng tế bào ung thư não T98G với giá trị IC50 tương ứng là 2,28 và 2,9 µM.

CÁC CÔNG TRÌNH CÔNG BỐ LIÊN QUAN 1. Dinh T. Ha, A.A. Kicha, A.I. Kalinovsky, T.V. Malyarenko, R.S. Popov, O.S. Malyarenko, S.P. Ermakova, T.T.T. Thuy, P.Q. Long, and N.V.

Ivanchina. Asterosaponins from the tropical starfish Acanthaster planci and their cytotoxic and anticancer activities in vitro. Natural Product Research,

2019, 1-8 (SCI-E). 2. A.A. Kicha, Thi H. Dinh, N.V. Ivanchina, T.V. Malyarenko, A.I. Kalinovsky, R.S. Popov, S.P. Ermakova, T.T.T. Tran, and L.P. Doan. Three new steroid biglycosides, Plancisides A, B, and C, from the starfish Acanthaster

planci. Nat. Pro. Commun., 2014, Vol. 9, No.9, 1269-1274 (SCI-E) 3. Bằng sáng chế: Hợp chất (24S)-28-O-[beta-D-galactofuranosyl-(1→5)- alpha-L-arabinofuranosyl]-24-methyl-5alpha-cholestane-3beta, 4beta, 6alpha, 8, 15beta, 16beta, 28-heptol và phương pháp phân lập hợp chất này từ loài sao

biển Acanthaster planci. Đoàn Lan Phương, Trần Thị Thu Thủy, Đinh Thị Hà, A.A. Kicha, N.V. Ivanchina, T.V. Malyarenko, A.I. Kalinovsky, R.S.

Popov, S.P. Ermakova, Phạm Minh Quân, Số 18377, Quyết định số 6820/QĐ-SHTT, 05/02/2018. 4. Giải pháp hữu ích: Hợp chất [(24S)-28-O-[alpha-L-fucopyranosyl- - (1→2)-3-O-methyl-beta-D-xylopyrano-syl]-24-methyl-5alpha-cholestane

23

3beta,4beta,6alpha,8,15beta,16beta,28-heptol; [(24S)-28-O-[2,4-di-O-methyl-

beta-D-xylopyranosyl-(1→2)-alpha-L-arabino-furanosyl]-24-methyl-5alpha- cholestane-3beta, 4beta, 6alpha, 8, 15beta, 16beta, 28-heptol] 6-O-sulfat và

phương pháp phân lập hai hợp chất này từ loài sao biển Acanthaster planci. Đoàn Lan Phương, Trần Thị Thu Thủy, Đinh Thị Hà, A.A. Kicha, N.V.

Ivanchina, T.V. Malyarenko, A.I. Kalinovsky, R.S. Popov, S.P. Ermakova, Phạm Minh Quân, Số 1637, Quyết định số 4539/QĐ-SHTT, 31/01/2018. 5. Đoàn Lan Phương, Phạm Quốc Long, Đinh Thị Hà, Đoàn Thị Hương, Nguyễn Tiến Dũng, Nguyễn Văn Tuyến Anh, Trần Thị Thu Thủy. Thành

phần hóa học của loài sao biển gai Acanthaster planci từ biển Việt Nam, Tạp chí hóa học, 2013, T.51, số 6ABC, 131-134. 6. Dinh Thi Ha, D. L. Phuong, P. Q. Long, N. D. Quang, T. T. T. Thuy. Synthesis and cytotoxicity of polyhydroxylated cholesterol derivatives.

Vietnam Journal of Science and Technology, 2018, 56 (4), 467-473. 7. Dinh Thi Ha, Baskar Salvaraja, Pham Quoc Long, Ngo Dai Quang, Do Huu Nghi, Lee Jae Wook, Tran Thi Thu Thuy. Synthesis of two new hydroximinosteroids from cholesterol and their biological evaluation.

Vietnam Journal of Science and Technology, 2019, 57 (5), 527-538. 8. Phạm Quốc Long, Nguyễn Anh Hưng, A.A. Kicha, N.V. Ivanchina, Đinh

Thị Hà, A.I. Kalinovsky, T.V. Malyarenko, Trần Thị Thu Thủy, Đoàn Lan Phương, Trịnh Thị Thu Hương, V.A. Stonik. Các hợp chất steroid glycoside

mới từ hai loài sao biển Việt Nam Acanthaster planci và Echinaster luzonicus, Kỷ yếu Hội thảo khoa học về Đa dạng sinh học và các hợp chất có

hoạt tính sinh học, 2015, 265-269.

24