PHƯƠNG PHÁP LẬP LUẬN MỜ SỬ DỤNG ĐẠI SỐ GIA TỬ
lượt xem 67
download
PHƯƠNG PHÁP LẬP LUẬN MỜ SỬ DỤNG ĐẠI SỐ GIA TỬ ThS. PHẠM THANH HÀ Bộ môn Mạng và các hệ thống thông tin Khoa Công nghệ thông tin Trường Đại học Giao thông Vận tải Tóm tắt: Trong bài báo này chúng tôi giới thiệu phương pháp lập luận mờ và phương pháp lập luận sử dụng đại số gia tử, đồng thời nêu một số ứng dụng đã được triển khai bằng các phương pháp này. Bài báo cũng đã nêu được một số hạn chế của phương pháp lập luận mờ sử dụng đại số gia tử và đề...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: PHƯƠNG PHÁP LẬP LUẬN MỜ SỬ DỤNG ĐẠI SỐ GIA TỬ
- PHƯƠNG PHÁP LẬP LUẬN MỜ SỬ DỤNG ĐẠI SỐ GIA TỬ ThS. PHẠM THANH HÀ Bộ môn Mạng và các hệ thống thông tin Khoa Công nghệ thông tin Trường Đại học Giao thông Vận tải Tóm tắt: Trong bài báo này chúng tôi giới thiệu phương pháp lập luận mờ và phương pháp lập luận sử dụng đại số gia tử, đồng thời nêu một số ứng dụng đã được triển khai bằng các phương pháp này. Bài báo cũng đã nêu được một số hạn chế của phương pháp lập luận mờ sử dụng đại số gia tử và đề xuất một số hướng cải tiến. Summary: In this paper, we shall present two reasoning method: Fuzzy reasoning and Fuzzy reasoning based hedge algebras. Paper shall present application’s methods too. In this paper, we shall propose some solution to improve the method Fuzzy reasoning based hedge algebras. I. MỞ ĐẦU Ngày nay, cùng với sự phát triển của công nghệ, trào lưu ứng dụng, cài đặt tri thức vào sản phẩm, trong đó có những sản phẩm có hàm lượng trí tuệ cao dựa trên quá trình điều khiển mờ, CNTT- CB trở thành nhu cầu cấp thiết. Những ứng dụng quan trọng như điều khiển tầu điện ngầm, xe lửa, các hoạt động điều khiển để tối ưu hóa hoạt động nội tại của xe cộ (giảm nhiên liệu, bám mặt đường, hạn chế thiệt hại của tai nạn, …). Đặc trưng quan trọng của tri thức con người là khả năng lập luận, đặc biệt là khả năng lập luận với thông tin mờ, không chắc chắn và phương pháp luận nghiên cứu, mô hình hóa quá trình này là phương pháp lập luận xấp xỉ. Lý thuyết tập mờ và hai chục năm gần đây, đại số gia tử (ĐSGT) là cơ sở toán học và lôgic mờ cho việc nghiên cứu, phát triển các phương pháp lập luận khác nhau, được gọi là phương pháp lập luận xấp xỉ (approximate reasoning method), để mô phỏng cách thức con người lập luận. Về nguyên tắc, với thông tin không chắc chắn hay một vấn đề có cấu trúc toán học yếu, chúng ta không bao giờ có được phương pháp lập luận xấp xỉ tốt nhất và do đó việc nghiên cứu phát triển các phương pháp lập luận luôn luôn là vấn đề mở. II. PHƯƠNG PHÁP LẬP LUẬN MỜ Trên cơ sở lý thuyết tập mờ, từ những năm 70 của thế kỷ trước, các phương pháp lập luận xấp xỉ đã được phát triển mạnh mẽ và tìm được những ứng dụng thực tiễn quan trọng. Một số trong những phương pháp lập như vậy là các phương pháp lập luận mờ đa điều kiện viết tắt là
- phương pháp FMCR (Fuzzy Multiple Conditional Reasoning) với một hay nhiều biến đầu vào. Phương pháp lập luận này dựa trên tập các mệnh đề dạng if-then như sau: If X1 = A11 and ... and Xm = A1m then Y = B1 If X1 = A21 and ... and Xm = A2m then Y = B2 ................ (2.1) If X1 = An1 and ... and Xm = Anm then Y = Bn trong đó: Aij và Bi, i = 1,.., n, j = 1,.., m, là những từ ngôn ngữ mô tả các đại lượng của biến B ngôn ngữ Xj và Y. (2.1) được gọi là mô hình mờ hay bộ nhớ mờ liên hợp (Fuzzy Associate Memory (FAM)) vì nó biểu diễn tri thức của chuyên gia trong lĩnh vực ứng dụng nào đó đang được xét. Bài toán lập luận mờ được phát biểu như sau: Cho trước mô hình mờ ở dạng (2.1). Khi đó ứng với các giá trị (hoặc giá trị mờ, hoặc giá trị thực) của các biến đầu vào đã cho, hãy tính giá trị đầu ra của biến Y. Dựa trên cách tiếp cận của lý thuyết tập mờ, các phương pháp lập luận mờ đa điều kiện nói chung dựa trên ý tưởng sau: Ngữ nghĩa của các giá trị ngôn ngữ của các biến ngôn ngữ trong mô hình mờ được biểu thị bằng các tập mờ. Khi đó mỗi mô hình mờ sẽ được mô phỏng bằng một quan hệ mờ hai ngôi R. CNTT-CB Khi đó ứng với vectơ đầu vào A0, giá trị của biến đầu ra được tính theo công thức B0 = A0*R, trong đó * là một phép kết nhập (Aggreegation operator). Tuy ý tưởng chung là giống nhau nhưng những phương pháp lập luận sẽ khác nhau ở cánh thức mô phỏng mô hình mờ và cách xác định phép tính kết nhập [7, 8]. Hiệu quả của phương pháp lập luận mờ nói chung phụ thuộc nhiều yếu tố rất căn bản chẳng hạn như lựa chọn tập mờ (bài toán xây dựng các hàm thuộc), xây dựng quan hệ mờ mô phỏng tốt nhất mô hình mờ (tri thức) và bài toán lựa chọn phép kết nhập, … Đây là một khó khăn không nhỏ khi xây dựng phương pháp giải bài toán lập luận mờ đa điều kiện. Với mục tiêu tìm kiếm các phương pháp lập luận xấp xỉ giải bài toán trên, một số tác giả đã quan tâm nghiên cứu một phương pháp mới, phương pháp nội suy mờ [7, 8]. Ý tưởng của phương pháp này là xem các tiền đề của mệnh đề if-then trong mô hình mờ như là các “điểm lưới”. Mô hình mờ cho ta thông tin của lời giải tại điểm lưới. Dữ liệu đầu vào A0 sẽ rơi vào một “đoạn thẳng” nào đó xác định bởi các điểm lưới. Trên đoạn này chúng ta giải bằng phương pháp nội suy trên cơ sở thông tin được cho tại 2 điểm lưới đầu mút của “đoạn thẳng”. Có thể thấy phương pháp nội suy mờ có trực quan rõ ràng cho phép người ta cảm nhận hay dự đoán mức độ nào đó về ứng xử của hệ thống được cho bời mô hình mờ. Tuy nhiên, phương
- pháp này vẫn chứa đựng các yếu tố phức tạp chẳng hạn vấn đề xây dựng hàm thuộc dạng tam giác của các tập mờ, việc đề tìm lời giải bằng nội suy trên từng tập mức của tập mờ mà dẫn đến một hạn chế là phải giả thiết tập các tập mờ của các giá trị ngôn ngữ trong mô hình phải đủ thưa (sparse). Ngoài ra trong nhiều bài toán, đặc biệt các bài toán điều khiển, người ta cần giải bài toán khử mờ để chuyển giá trị mờ đầu ra thành giái trị thực, một bài toán cũng khá phức tạp vì luôn có thể chỉ ra lời giải chưa tốt [1, 11]. III. PHƯƠNG PHÁP LẬP LUẬN MỜ SỬ DỤNG ĐẠI SỐ GIA TỬ Đại số gia tử cung cấp một cơ sở toán học cho việc biểu diễn ngữ nghĩa các từ của biến ngôn ngữ và hình thức hóa tính mờ ngôn ngữ và xây dựng độ đo tính mờ một cách hợp lý [2-6]. Trên cơ sở đó cho phép người ta phát triển các phương pháp lập luận nội suy đơn giản hơn đề giải bài toán lập luận mờ đa điều kiện. Nó đã được chứng tỏ bước đầu có thể ứng dụng vào giải bài toán điều khiển mờ các hệ phi tuyến và cho kết quả tốt hơn nhiều so với phương pháp lập luận mờ dựa trên tập mờ [9, 10]. 3.1. Đại số gia tử Giả sử X là một biến ngôn ngữ và miền giá trị của X là Dom(X). Một đại số gia tử AX tương ứng của X là một bộ 4 thành phần AX = (Dom(X), C, H, ≤) trong đó C là tập các phần tử sinh, H là tập các gia tử và quan hệ “≤” là quan hệ cảm sinh ngữ nghĩa trên X. Trong đại số gia tử AX = (Dom(X), C, H, ≤) nếu Dom(X) và C là tập sắp thứ tự tuyến tính CNTT- thì AX được gọi là đại số gia tử tuyến tính. CB 3.2. Các hàm đo trong đại số gia tử tuyến tính Trong phần này ta sử dụng đại số gia tử AX = (X, C, H, ≤) là đại số gia tử tuyến tính với C={c-, c+}∪{0, 1, W}. H=H-∪H+, H-={h-1, h-2,..., h-q} thỏa h-1< h-2
- gọi là độ đo tính mờ của gia tử h, ký hiệu là μ(h). Mệnh đề 3.1. Cho fm là hàm độ đo tính mờ trên X. Ta có: i) fm(hx) = μ(h)fm(x), ∀x ∈ X ; ii) fm(c−) + fm(c+) = 1; ∑ fm(h i c) = fm(c) , với c ∈{c− , c+}; iii) − q ≤ i ≤ p ,i ≠ 0 ∑ fm(h i x ) = fm( x ) ; iv) − q ≤ i ≤ p ,i ≠ 0 ∑ ∑ μ(h i ) = α và μ(h i ) = β , trong đó α, β > 0 và α + β = 1. v) − q ≤i ≤ −1 1≤i ≤ p Định nghĩa 3.2. Hàm dấu sign: X → {-1, 0, 1} được định nghĩa đệ quy như sau: i) sign(c-) = -1, sign(c+) = +1; ii) sign(h'hx) = -sign(hx) nếu h' âm đối với h và h'hx ≠ hx; iii) sign(h'hx) = sign(hx) nếu h' dương đối với h và h'hx ≠ hx; iv) sign(h'hx) = 0 nếu h'hx = hx. Mệnh đề 3.2. Với mọi gia tử h và phần tử x ∈ X nếu sign(hx) = +1 thì hx > x và nếu sign(hx) = -1 thì hx < x. CNTT-CB Định nghĩa 3.3. Cho fm là hàm độ đo tính mờ trên X. Một hàm định lượng ngữ nghĩa (Quantitative Semantic Mapping - SQM) v trên X (kết hợp với fm) được định nghĩa như sau: i) v(W) = θ = fm(c−), v(c−) = θ - αfm(c−) , v(c+) = θ +αfm(c+), với 0 < θ < 1; {∑ }[ ] j fm(h i x ) − ω(h jx )fm(h j x ) , j ∈ − q ∧ p , ii) v(hjx) = v(x)+ sign (h j x ) i = Sign ( j) [ ] 1 trong đó: ω( h j x ) = 1 + sign (h j x )sign (h p h j x )(β − α ) ∈ (α, β) , [-q^p]= {j: −q≤j≤p & j≠0}. 2 Mệnh đề 3.3. Với mọi phần tử x∈X ta có 0 ≤ v(x) ≤ 1. 3.3. Phương pháp lập luận mờ sử dụng đại số gia tử Cho mô hình mờ (2.1), rõ ràng mô hình này có thể được xem như một tập hợp các “điểm mờ” và có thể được biểu diễn thông qua một bảng (ma trận) nhiều chiều ứng với các biến ngôn ngữ, gọi là bảng FAM (Fuzzy Associate Memory). Với việc sử dụng đại số gia tử và ánh xạ ngữ nghĩa định lượng (SQM) (xem định nghĩa 1.3) các từ của biến ngôn ngữ được định lượng trong đoạn [0,1] và mỗi điểm của mô hình mờ trên có thể được biểu diễn bằng một “điểm thực” và tập các điểm thực này là một ma trận thực (bảng thực), gọi là bảng ngữ nghĩa định lượng SAM (Simanticization Associate Memory), thông qua việc xây dựng phép toán kết nhập bảng SAM
- được đưa về đường cong Cr ngữ nghĩa định lượng và kết quả lập luận được nội suy dựa trên đường cong này. Cụ thể phương pháp lập luận mờ sử dụng đại số gia tử gồm các bước chính sau: 1) Xây dựng các đại số gia tử AXi cho các biến ngôn ngữ Xi, và AY cho biến ngôn ngữ Y. Đồng thời xác định các ánh xạ ngữ nghĩa định lượng νXi và νY. 2) Sử dụng các ánh xạ ngữ nghĩa định lượng νXi và νY chuyển đổi mô hình mờ FAM về mô hình SAM. 3) Xây dựng đường cong ngữ nghĩa định lượng Cr từ mô hình SAM theo nguyên tắc sau: đưa điểm (νX1(A1j), νXi(A2j), …, νXn(Amj), νY(Bj)) về điểm (aj,bj); j = 1..n trong đó aj = AND(νX1(A1j),νXi(A2j), …, νXn(Amj)) với AND là một phép kết nhập và bj = νY(Bj) 4) Ứng với giá trị đầu vào X1 = A01, X2 = A02,, ..., Xm = A0m, xác định a0 tương ứng và tính toán giá trị đầu ra b0 nhờ phép nội suy tuyến tính trên đường cong Cr, từ đó xác định đầu ra tương ứng. Phương pháp lập luận sử dụng đại số gia tử có nhiều ưu điểm như tính toán đơn giản, nhiều công trình đã chỉ ra rằng phương pháp trên cho sai số tốt hơn phương pháp lập luận mờ truyền. IV. CÁC HẠN CHẾ CỦA PHƯƠNG PHÁP LẬP LUẬN MỜ SỬ DỤNG ĐSGT VÀ HƯỚNG CẢI TIẾN 4.1. Các hạn chế CNTT- CB Mặc dù phương pháp lập luận sử dụng đại số gia tử có nhiều ưu điểm nhưng nó vẫn còn một số hạn chế như: + Chưa có phương pháp định phép kết nhập trong trường m > 1, một trong những cách làm phổ biến hiện nay là chọn AND = PRODUCT hoặc AND = MIN. + Chưa có phương pháp xác định các tham số α, β, θ của các đại số gia tử, thông thường người ta thường xác định các tham số này nhờ trực giác ví dụ như cho α = β = 0.5 và cho θ = 0.5. + Việc sử dụng phép kết nhập AND để đưa mô hình SAM về đường cong là việc làm không được tự nhiên và khiên cưỡng. 4.2. Một số đề xuất cải tiến phương pháp + Xây dựng phép kết nhập AND như một phép kết nhập có trọng số, phương pháp này có ưu điểm là ta có thể dùng một số kỹ thuật tối ưu (như giải thuật di truyền) để xác định được các trọng số của phép kết nhập này để kết quả lập luận tối ưu. + Sử dụng giải thuật di truyền để xác định các tham số của đại số gia tử trong phương pháp lập luận.
- + Sử dụng mạng nơ ron để thực hiện việc học và nội suy kết quả lập luận từ mô hình SAM thay vì thực hiện phép kết nhập và nội suy trên đường cong. V. KẾT LUẬN Bài báo đã giới thiệu mô hình cơ bản của phương pháp lập luận mờ và lập luận mờ sử dụng đại số gia tử, đồng thời đề xuất được một số cải tiến như sử nhúng giải thuật di truyền và mạng nơ ron vào phương pháp lập luận mờ sử dụng đại số gia tử. Việc sử dụng các mô hình mạng nơ ron và giải thuật di truyền khác mang tính mở, điều này hứa hẹn đem lại nhiều kết quả cho những cải tiến của phương pháp lập luận mờ sử dụng đại số gia tử. Tài liệu tham khảo [1]. Hisdal, E., Are grades of membership functions probabilities?, Fuzzy Sets and Systems 25(1988),325-348. [2]. N. Cat Ho, Fuzziness in structure of linguistic truth values: A foundation for development of fuzzy reasoning, Proc. of ISMVL ’87, Boston, USA (IEEE Computer Society Press, New York ),1987, 326 - 335. [3]. N. Cat Ho, Linguistic-valued logic and a deductive method in linguistic reasoning, Proc. of the Fifth IFSA’ 93, Seoul, Korea, July 4-9, 1993. CNTT-CB [4]. N. Cat Ho, H.V.Nam, T.D. Khang, N.H. Chau, Hedge algebras, linguistic-valued logic and their application to fuzzy reasoning, Inter. J. of Uncertainty, Fuzziness and Knowledge-Based Syst., Vol.7, No.4(1999) 347-361. [5]. N. Cat Ho & W. Wechler, Hedge algebras: An algebraic approach to structure of sets of linguistic truth values, Fuzzy Sets and Systems 35 (1990), 281-293. [6]. N. Cat Ho & W. Wechler, Extended hedge algebras and their application to fuzzy logic, Fuzzy Sets and Systems 52 (1992), 259 - 281. [7]. Kiszka, J.B., M.E. Kochanska and .S. Sliwinska, The influence of some fuzzy implication operators on the accuracy of a fuzzy model-Part I, Fuzzy Sets and Systems 15(1983), 111-128. [8]. Kiszka, J.B., M.E. Kochanska and .S. Sliwinska, The influence of some fuzzy implication operators on the accuracy of a fuzzy model-Part II, Fuzzy Sets and Systems 15(1983),223-240. [9]. Vũ Như Lân, Vũ Chấn Hưng, Đặng Thành Phu, Điều khiển sử dụng đại số gia tử. Tạp chí Tin học và Điều khiển học, Tập 21, Số 1, 2005, 23-37. [10]. Vũ Như Lân, Vũ Chấn Hưng, Đặng Thành Phu, Nguyễn Duy Minh, Điều khiển con lắc ngược sử dụng đại số gia tử, Tạp chí Khoa học và Công nghệ. (Đã nhận đăng). [11]. D. B. Rinks, A heuristic approach to aggregate production scheduling using linguistic variables, Proc. of Inter. Congr. on Appl. Systems Research and Cybernetics, Vol. VI (1981) 2877-2883♦
CÓ THỂ BẠN MUỐN DOWNLOAD
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn