intTypePromotion=4

Sáng kiến kinh nghiệm môn Toán lớp 7: Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số bằng nhau để giải các dạng toán tìm các số x, y z

Chia sẻ: Phạm Thanh Thuận | Ngày: | Loại File: DOC | Số trang:29

0
46
lượt xem
2
download

Sáng kiến kinh nghiệm môn Toán lớp 7: Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số bằng nhau để giải các dạng toán tìm các số x, y z

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Sáng kiến kinh nghiệm môn Toán lớp 7: Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số bằng nhau để giải các dạng toán tìm các số x, y z nhằm khắc phục cho học sinh những sai lầm khi giải bài toán về dãy tỉ số bằng nhau; giúp các em có những phương pháp học tập hiệu quả hơn.

Chủ đề:
Lưu

Nội dung Text: Sáng kiến kinh nghiệm môn Toán lớp 7: Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số bằng nhau để giải các dạng toán tìm các số x, y z

  1. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z Phần thứ nhất:  ĐẶT VẤN ĐỀ: 1. Ly do chon đê tai ́ ̣ ̀ ̀: ̣ ̀ ̣ Toan hoc la môt trong nh ́ ưng môn khoa hoc c ̃ ̣ ơ  ban mang tinh tr ̉ ́ ưù   tượng, nhưng mô hinh  ̀ ưng dung cua no rât rông rai va gân gui trong moi ́ ̣ ̉ ́ ́ ̣ ̃ ̀ ̀ ̃ ̣  ̃ ực cua đ linh v ̉ ơi sông xa hôi, trong khoa hoc li thuyêt va khoa hoc  ̀ ́ ̃ ̣ ̣ ́ ́ ̀ ̣ ứng dung. ̣   Toán học là một môn học giữ  một vai trò quan trọng trong suốt bậc học  phổ  thông. Tuy nhiên, nó là một môn học khó, khô khan và đòi hỏi  ở  mỗi  học sinh phải có một sự  nỗ  lực rất lớn để  chiếm lĩnh những tri thức cho   mình. Chính vì vậy, đối với mỗi giáo viên dạy toán việc tìm hiểu cấu trúc   của chương trình, nội dung của sách giáo khoa, nắm vững phương pháp  dạy học. Để từ đó tìm ra những biện pháp dạy học có hiệu quả trong việc   truyền thụ các kiến thức Toán học cho học sinh là công việc cần phải làm  thường xuyên. ̣ ̣ ̣ ́ nói chung, tính chất của dãy tỉ  số  bằng nhau  Day hoc sinh hoc Toan  ̉ ̀ nói riêng không chi la cung câp nh ́ ưng kiên th ̃ ́ ức cơ  ban, day hoc sinh giai ̉ ̣ ̣ ̉  ̀ ̣ ́ ́ ́ ̉ ̀ ̀ ̣ bai tâp sach giao khoa, sach tham khao ma điêu quan trong la hinh thanh cho ̀ ̀ ̀   ̣ hoc sinh ph ương phap chung đê giai cac dang toan, t ́ ̉ ̉ ́ ̣ ́ ừ đo giup cac em tich ́ ́ ́ ́   cực hoat đông, đôc lâp sang tao đê dân hoan thiên ki năng, ki xao, hoan thiên ̣ ̣ ̣ ̣ ́ ̣ ̉ ̀ ̀ ̣ ̃ ̃ ̉ ̀ ̣   ́  của mình. nhân cach ̉ ́ ̀ ̣ Giai toan la môt trong nh ưng vân đê trung tâm  ̃ ́ ̀ của phương phap giang ́ ̉   ̣ day, b ởi le viêc giai toan la môt viêc ma ng ̃ ̣ ̉ ́ ̀ ̣ ̣ ̀ ươi hoc lân ng ̀ ̣ ̃ ười day th ̣ ương ̀   ̉ ̀ ̣ ̣ ̀ ́ ơi nh xuyên phai lam, đăc biêt la đôi v ́ ưng hoc sinh bâc THCS thi viêc giai ̃ ̣ ̣ ̀ ̣ ̉  toan la hinh th ́ ̀ ̀ ức chu yêu cua viêc hoc toan ̉ ́ ̉ ̣ ̣ ́. Chính vì những lý do trên, để  đào tạo nên những học sinh giải thành  thạo các dạng toán về  dãy tỉ  số  bằng nhau thì người giáo viên không chỉ  đổi mới phương pháp dạy học  ở trên lớp học sao cho học sinh lĩnh hội tri  thức một cách chủ động thông qua các hình thức tổ chức dạy học như dạy   S¸ng kiÕn kinh nghiÖm To¸n 7 1
  2. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z học theo nhóm, dạy học theo lớp để  các em có điều kiện trao đổi kiến  thức, học hỏi lẫn nhau và có tinh thần đoàn kết trong tập thể. Khi  ở  trên  lớp giáo viên chỉ  là người cố  vấn, hướng dẫn, suy nghĩ đặt câu hỏi một   cách có hệ  thống, phù hợp với từng loại bài, từng đối tượng, kích thích   học sinh phát huy hết khả năng tư duy, khao khát tiến tới thắc mắc để tìm   ra vấn đề mới. Từ đó học sinh hình thành và khắc sâu kiến thức mới một  cách chủ động dễ nhớ và khó có thể phai mờ. Không những vậy, giáo viên  cần phải có phương pháp để hướng dẫn học sinh tự học ở nhà để tái hiện   lại những tri thức đã rút ra trên lớp bằng cách giải bài tập và tìm lời giải,   phát triển và mở rộng cho bài toán. Buộc học sinh không những hoạt động  tích cực ở trên lớp mà còn tích cực, ham mê giải toán ở nhà. Từ đó giúp các   em sẽ đạt kết quả cao trong học tập. Trong   những   năm   qua,   được   sự   phân   công   của   chuyên   môn   nhà  trường, tôi giảng dạy môn toán 7. Trong những năm qua,  qua quá trình  giảng dạy bộ  môn Toán tôi thấy phần kiến thức về  dãy tỉ  số  bằng nhau  hết sức cơ bản trong chương trình Đại số lớp 7. Trong chương II, khi học   về đại lượng tỉ lệ thuận, tỉ lệ nghịch ta thấy tính chất của dãy tỉ  số  bằng   nhau là một phương tiện quan trọng giúp ta giải toán những loại toán trên.   Trong phân môn Hình học, để  học sinh giải được một số  bài trong phần   định lý Talet, tam giác đồng dạng ( Hình học lớp 8) thì không thể  thiếu  kiến thức về dãy tỉ số bằng nhau. Mặt khác, khi học tính chất của dãy tỉ số  bằng nhau còn rèn tư duy cho học sinh rất tốt giúp các em có khả năng khai  thác bài toán, lập ra bài toán mới. Bên cạnh đó, tôi nhận thấy học sinh còn  nhiều vướng mắc khi giải bài các dạng toán vè tính chất của dãy tỉ  số  bằng nhau. Đa số học sinh khi giải còn thiếu logic, chặt chẽ, thiếu trường   hợp. Lý do cơ  bản là các em vận dụng tính chất của dãy tỉ  số  bằng nhau,  tính chất cơ bản của phân số chưa chắc. Các em chưa phân biệt được các   S¸ng kiÕn kinh nghiÖm To¸n 7 2
  3. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z dạng toán và áp dụng tương tự vào bài toán khác. Mặt khác nội dung kiến  thức ở lớp 7 những dạng này để  áp dụng còn hạn chế nên không thể đưa   ra đầy đủ các phương pháp giải một cách có hệ thống và phong phú được.  Mặc dù chương trình sách giáo khoa sắp xếp rất hệ thống và logic, có lợi  thế  về  dạy học đặt vấn đề  trong dạng toán này. Chính vì vậy, để  khắc  phục cho học sinh những sai lầm khi giải bài toán về dãy tỉ số bằng nhau.   Bản thân đã nhiều năm suy nghĩ, tìm tòi và áp dụng vào trong giảng dạy   thấy   có   hiệu   quả   cao.   Do   đó,   tôi   mạnh   dạn   nghiên   cứu   chuyên   đề  “Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số   bằng nhau để  giải các dạng toán tìm các số  x, y z”   với mục đích giúp  cho học sinh tự tin hơn trong làm toán. 2. Mục đích, nhiệm vụ và đối tượng nghiên cứu: a. Mục đích nghiên cứu: Thực hiện  mục tiêu giáo dục: “Nâng cao dân trí – Đào tạo nhân lực –   Bồi dưỡng nhân tài” góp phần đáp ứng yêu cầu đổi mới giáo dục, yêu cầu  của công cuộc CNH ­ HĐH đất nước phù hợp với nội dung của Hội nghị   lần thứ  6 ban chấp hành trung  ương Đảng khóa IX   “Phát triển quy mô   giáo dục cả đại trà và mũi nhọn” Sau khi nhận thấy những tồn tại về phương pháp học, cách tiếp thu   bài của học sinh lớp 7A và 7E, tôi đã đi sâu nghiên cứu, khảo sát thực trạng   học tập  ở các em. Thông qua đó tôi đã tìm ra biện pháp khắc phục những  tồn tại để hướng tới cho học sinh cách học tập có hiệu quả hơn. b. Nhiệm vụ nghiên cứu: Trong quá trình công tác, bản thân tôi không ngừng học tập, nghiên  cứu và vận dụng lý luận đổi mới vào thực tế giảng dạy của mình. Trong  thời gian qua, được sự  cộng tác của đồng nghiệp và sự  chỉ  đạo kịp thời   của Ban giám hiệu nhà trường, tôi đã tiến hành nghiên cứu và vận dụng   S¸ng kiÕn kinh nghiÖm To¸n 7 3
  4. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z quan điểm trên vào công tác giảng dạy của mình và thấy đạt hiệu quả khá  cao. ­ Nghiên cứu nội dung, chương trình và sách giáo khoa, sách tham  khảo Toán 7, trong đó những phần liên quan đến cách áp dụng tính chất   của dãy tỉ số bằng nhau. ­ Tìm hiểu cơ  sở  thực tế  về  thực trạng giảng dạy sao cho phù hợp   với đối tượng học sinh. ­ Nghiên cứu cơ sở lý luận về việc học toán và dạy toán 7. c. Đối tượng và phạm vi nghiên cứu: Về khách quan cho thấy hiện nay năng lực học toán của học sinh còn  rất nhiều thiếu sót đặc biệt là quá trình vận dụng các kiến thức đã học vào  bài tập, tỷ lệ học sinh yếu kém còn cao. Tình trạng phổ biến hiện nay của   học sinh là khi làm toán không chịu nghiên cứu kỹ bài toán, không chịu khai  thác và huy động kiến thức để  làm toán. Trong quá trình giải thì suy luận  thiếu căn cứ, trình bày cẩu thả, tùy tiện... Trên cơ sở  nghiên cứu lý luận, chương trình số  học lớp 7, xây dựng  cách giải bài toán vận dụng tính chất của dãy tỉ số bằng nhau. 2. Phương pháp nghiên cứu: Thông   qua   bài   kiểm   tra   những   năm   học   trước,   kiểm   tra   vấn   đáp   những kiến thức cơ  bản, trọng tâm mà các em đã được học. Qua đó giúp  tôi nắm được những ''lỗ  hổng” kiến thức của các em rồi tìm hiểu nguyên  nhân và lập kế  hoạch khắc phục. Trong quá trình dạy học giải toán, giáo viên phải biết hướng dẫn, tổ  chức cho học sinh tìm hiểu vấn đề, phát hiện và phân tích mối quan hệ  giữa các kiến thức đã học trong một bài toán để  từ  đó tìm được cho mình  phương pháp giải quyết vấn đề  tốt hơn. Chỉ  trong quá trình giải toán thì  tiềm năng sáng tạo của học sinh mới được bộc lộ và phát huy hết. Các em   S¸ng kiÕn kinh nghiÖm To¸n 7 4
  5. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z có được thói quen nhìn nhận một sự  kiện dưới những góc độ  khác nhau,  biết đặt ra nhiều giả thiết khi lý giải một vấn đề, biết đề xuất những giải   pháp khác nhau khi xử lý một tình huống. Phương pháp thống kê, khảo sát thực tế. Phương pháp giao tiếp: Tìm hiểu  ở  học sinh về  việc nắm bắt kiến   thức ở các em theo từng lớp. Phương pháp so sánh đối chiếu, soạn giáo án dạy thực nghiệm vài  tiết để so sánh chất lượng đạt hiệu quả như thế nào? Phần thứ hai: NỘI DUNG CỦA ĐỀ TÀI Chương I:  CƠ SỞ LÝ LUẬN  Ở  nước ta việc dạy học Toán nói chung và bồi dưỡng nhân tài nói  riêng được chú trọng ngay từ  khi dựng nước vì như  Thân Nhân Trung đã   nói  “ Hiền tài là nguyên khí quốc gia, nguyên khí thịnh thế  nước lên   nguyên khí suy thế nước xuống ”. Trong bài phát biểu bế mạc Hội nghị  lần thứ  VI Ban Chấp hành Trung  ương Đảng khoá XI, ngày 15 tháng 10  năm 2012, Tổng Bí thư  Nguyễn Phú Trọng cho biết:  “Ban Chấp hành   Trung  ương tiếp tục khẳng định, phát triển khoa học và công nghệ  là   quốc sách hàng đầu, là một động lực quan trọng trong sự nghiệp công   nghiệp hoá, hiện đại hoá”. Nghị  quyết TW VIII  "Phương pháp giáo dục phải phát huy tính   tích cực, tự giác, chủ động, tư duy sáng tạo của người học. Bồi dưỡng   năng lực tự học, lòng say mê học tập và ý chí vươn lên". Ở nước ta cũng như hầu hết các nước trên Thế giới, vấn đề dạy học   và chất lượng dạy học nói chung, dạy học Toán nói riêng ngày càng trở  thành mối quan tâm hàng đầu của toàn xã hội. S¸ng kiÕn kinh nghiÖm To¸n 7 5
  6. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z Như  vậy với kết luận “Phát triển quy mô giáo dục cả  đại trà và   mũi nhọn” (Trích kết luận của Hội nghị  lần thứ 6 Ban chấp hành Trung   ương Đảng khóa 9) thì giáo dục và đào tạo là quốc sách hàng đầu là một   trong   những   động   lực   quan   trọng   thúc   đẩy   sự   nghiệp   CNH–HĐH   đất  nước, là điều kiện phát huy nguồn lực con người. Đây là trách nhiệm của   toàn Đảng, toàn dân trong đó nhà giáo và cán bộ giáo dục là lực lượng nòng  cốt có vai trò quan trọng.  Hiện nay cùng với các nhà trường thuộc các cấp học bên cạnh việc  chú trọng nâng cao chất lượng giáo dục đại trà còn quan tâm đúng mức   đến chất lượng giáo dục mũi nhọn. Đó là công tác phát hiện và bồi dưỡng  học sinh giỏi các bộ môn, trong đó có bộ môn Toán. Và còn có khả  năng to lớn trong việc bồi dưỡng học sinh thế  giới   quan khoa học và những quan điểm nhận thức đúng đắn, khả  năng hình   thành cho học sinh nhân cách con người mới trong xã hội. Trong hoạt động dạy học theo phương pháp đổi mới như  hiện nay,  mỗi giáo viên cần giúp học sinh chuyển từ thói quen hiện có ở các em đó là  “Thầy đọc, trò chép”,“Thầy nói, trò ngồi nghe” sang thói quen chủ động.  Để đạt được mục tiêu của bài dạy theo hướng tích cực giáo viên cần chỉ ra  cho học sinh cách học, biết cách suy luận, biết cách xâu chuỗi kiến thức,  biết tìm tòi để phát hiện kiến thức mới. Học sinh cần được rèn luyện thao  tác tư  duy cao như  phân tích, tổng hợp, khái quát hóa, quy những điều lạ  thành điều quen. Việc nắm vững các phương pháp nói trên tạo điều kiện  cho học sinh có thể đọc hiểu được nội dung của bài toán, tự làm được bài   tập, nắm vững và hiểu sâu các kiến thức cơ bản. Đồng thời phát huy được  tiềm năng sáng tạo của bản thân và từ  đó học sinh thấy được niềm vui  trong học tập, giúp các em tìm hiểu nhiều, càng khám phá nhiều thì việc  học tập ở các em sẽ đạt kết quả khả quan hơn. S¸ng kiÕn kinh nghiÖm To¸n 7 6
  7. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z   Chương II: THỰC TRẠNG KHI SỬ DỤNG PHƯƠNG PHÁP 1. Đặc  điểm tình hình: Trường tôi tuy mới được thành lập vào ngày 23 tháng 08 năm 2005,  mặc dầu là một ngôi trường có thời gian thành lập chưa lâu so với các  trường bạn trong huyện. Song dưới sự chỉ đạo, quan tâm của Phòng Giáo   dục và Đào tạo, sự  lãnh đạo sát sao, sáng tạo của Ban giám hiệu nhà  trường đã tạo ra được thương hiệu cho ngôi trường của mình trong việc   đào tạo, bồi dưỡng học sinh giỏi trường có những thuận lợi và khó khăn   sau : 2. Thuận lợi: S¸ng kiÕn kinh nghiÖm To¸n 7 7
  8. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z ­ Nhà trường có lực lượng giáo viên giảng dạy bộ  môn Toán tương  đối đầy đủ, đạt trình độ trên chuẩn, giáo viên trẻ khỏe, nhiệt tình có trách  nhiệm cao trong công tác. ­   Hầu   hết   giáo   viên   có   có   nhiều   kinh   nghiệm   trong   công   tác   bồi  dưỡng học sinh giỏi, có bề  dày thành tích trong công tác bồi dưỡng học  sinh giỏi nhiều năm liền có học sinh giỏi cấp huyện, cấp tỉnh. ­ Có năng lực chuyên môn, phương pháp dạy tốt. ­ Được sự quan tâm tạo điều kiện giúp đỡ của các cấp lãnh đạo: Ban  giám hiệu nhà trường  tổ chuyên môn, ủng hộ của bạn bè đồng nghiệp. ­ Học sinh ngoan có ý thức phấn đấu, quyết tâm. 3. Khó khăn: a. Đối với nhà trường: Một số  phụ  huynh chưa có sự  quan tâm đến việc học hành của con  cái, để các em tự do ngoài giờ lên lớp dẫn đến tình trạng mê trò chơi điện   tử. Điều đó có  ảnh hưởng lớn đến thái độ  học tập của các em và chất  lượng giảng dạy của giáo viên.  Ia Grai là huyện biên giới nằm trên địa bàn Tây Nguyên được thiên   nhiên ưu đãi về nhiều mặt. Song trình độ dân trí chưa đồng đều, tình hình  kinh tế xã hội của tỉnh chưa tương xứng với tiềm năng mà thiên nhiên ban  tặng.  b. Đối với học sinh: Nhà trường đã chọn lọc những học sinh khá, giỏi lập thành một lớp,  các lớp còn lại là đối tượng học sinh đại trà. Bởi vậy, việc học tập của   các em gặp không ít khó khăn. ­ Một số học sinh chưa có sự ham mê học toán, vẫn còn lười học, coi  việc giải toán là một gắng lặng do đó chưa biết cách giải toán nhưng bên  cạnh đó cũng có một số  học sinh mặc dù chăm học, nắm được kiến thức   S¸ng kiÕn kinh nghiÖm To¸n 7 8
  9. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z bài học nhưng nắm kiến thức một cách mờ  nhạt nên không biết cách làm  bài tập hoặc có làm được thì lại làm sai. ­ Chưa đọc kỹ đề bài, chưa hiểu rõ bài toán đã lao ngay vào giải. Bởi   vậy, khi làm thì không biết bắt đầu từ đâu, khi gặp khó khăn thì không biết  làm cách nào để tháo gỡ. ­ Không chịu đề  cập bài toán theo nhiều cách khác nhau, không chịu  nghiên cứu, khảo sát kỹ  từng chi tiết và kết hợp các chi tiết của bài toán  theo nhiều cách, không sử dụng hết các dữ kiện bài toán . ­ Không biết vận dụng hoặc vận dụng chưa thành thạo các phương  pháp suy luận trong giải Toán, vận dụng một cách máy móc thiếu linh  hoạt. ­ Không chịu kiểm tra lại lời giải tìm được, bởi vậy có thể  tính toán  nhầm hay vận dụng kiến thức một cách nhầm lẫn, không biết cách sửa  lại. ­ Không chịu suy nghĩ tìm các cách giải khác nhau cho một bài toán   hay mở rộng bài Toán. Do đó học sinh luôn bị hạn chế trong việc rèn luyện   năng lực giải Toán. Vì vậy, sau một thời gian giảng dạy tại trường tôi trăn trở, suy nghĩ  là làm thế  nào để  các em nắm bắt kiến thức Toán một cách có hệ  thống   nhằm giúp các em phần nào yêu thích học môn Toán nhiều hơn để làm nền   tảng mai này các em có điều kiện học cao hơn. Chương III: NỘI DUNG CƠ BẢN CỦA ĐỀ TÀI  1 . Lý thuy   ết :  * Tính chất của dãy tỉ số thức bằng nhau: S¸ng kiÕn kinh nghiÖm To¸n 7 9
  10. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z a c a a+c Tính chất 1: Từ tỉ lệ thức  =  suy ra các tỉ lệ thức sau:  = =  b d b b+d a −c , (b ≠ ± d). b−d a c e a a +c+e a −c+e Tính chất 2:  Từ   = =   suy ra   = =   (giả  thiết  b d f b b+d+f b−d+f các tỉ số đều có nghĩa). a b c Tính chất 3: Khi có dãy tỉ số   = = , ta nói các số  a; b; c tỉ lệ với  2 3 5 các số 2; 3; 5 ta cũng viết a:b:c = 2:3:5 và ngược lại. 2.Chú ý: Vì tỉ lệ thức là một đẳng thức nên nó có tính chất của đẳng thức. Do  2 2 a c �a � �c � a c a c đó,     từ   tỉ   lệ   thức   =   suy   ra   � �= � �= . ;   k. = k.   ( k 0) ;   b d �b � �d � b d b d 3 3 3 k1a k 2c a c e a � �c � �e � a c e = (k ,k 0) ; từ   = =   suy ra   � � �= � �= � �= �� ;   k1b k 2d 1 2 b d f �b � �d � �f � b d f 2 �a � c e � �= . �b � d f Qua việc giải các bài tập đa dạng và phong phú các em đã nắm chắc  chắn và giải các bài toán áp dụng tính chất của dãy tỉ số bằng nhau. Biến  đổi từ một tỉ lệ thức ra một tỉ lệ thức rất linh hoạt. Thông qua việc giảng dạy học sinh tôi xin đưa ra một số dạng bài tập  sau: 3. Các dạng bài tập: S¸ng kiÕn kinh nghiÖm To¸n 7 10
  11. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z x y Dạng 1. Tìm x, y, biết  =  và x + y = m. Trong đó a + b 0 và a; b  a b và m là các số cho trước. Phương pháp: Áp dụng tính chất của dãy tỉ số bằng nhau ta dễ dàng  tính được x; y. x y Bài tập 1: Tìm x; y biết  =  và x  + y = – 70  5 9 Giải: Đặt vấn đề: Làm như thế nào để giải được bài toán trên? ? Em hãy nhắc lại tính chất của dãy tỉ số bằng nhau? Áp dụng tích chất của dãy tỉ số bằng nhau, ta có:  x y x + y −70 = = = = −5 5 9 5 + 9 14 x Do đó:  = −5 . Suy ra: x = –25  5 y = −5 . Suy ra: y = – 45 9  Vậy: x = –25 và y = – 45. x −3 Bài tập 2: Tìm x; y biết  =  và x  – y = – 2  y 7 Bài này đã thuộc dạng trên chưa? Làm thế  nào đưa được về  dạng  trên? x −3 x y Từ  =  suy ra  = . Từ đó ta sẽ tính được x = –0,6 và y = 1,4. y 7 −3 7 Bài tập 3: Tìm x; y biết 5x = 9y và x  – y = 20 Làm thế nào đưa đẳng thức trên về dãy tỉ số bằng nhau? Hướng dẫn học sinh đưa bài toán trên về dạng bài toán 1 rồi giải. Từ đó ta sẽ tính được x = 45 và y = 25 S¸ng kiÕn kinh nghiÖm To¸n 7 11
  12. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z Dạng 2: Tìm nhiều số chưa biết. a) Xét bài toán cơ bản thường gặp sau: x y z Tìm các số x; y; z thoả mãn  = =  (1) và x + y + z = d (2). Trong  a b c đó a + b + c 0 và a; b; c; d là các số cho trước. Phương pháp: Cách 1:  Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: x y z x+y+z d = = = = a b c a+b+c a+b+c a.d b.d c.d �x = ;  y = ; z = a+b+c a+b+c a+b+c x y z Cách 2: Đặt  = = = k � x = k.a; y = k.b; z = k.c a b c Thay vào (2) ta được: k.a + k.b + k.c = d d � k ( a + b + c) = d � k = a+b+c a.d bd cd Từ đó tìm được  x = ; y = ; z = a+b+c a+b+c a+b+c b) Hướng khai thác từ bài trên như sau. ­ Giữ nguyên điều kiện (1) thay đổi điều kiện (2) như sau: *  k1x + k 2 y + k 3z = e * k 1x 2 + k 2 y 2 + k 3 z 2 = f *x.y.z = g ­Giữ nguyên điều kiện (2) thay đổi điều kiện (1) như sau: x y y z = ;  = a1 a 2 a 3 a 4 a 2 x = a1y; a 4 y = a 3z ;  b1x = b 2 y = b3z b1x − b3z b 2 y − b1x b3z − b 2 y = = a b c S¸ng kiÕn kinh nghiÖm To¸n 7 12
  13. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z x − b1 y 2 − b 2 z3 − b3 = = a1 a2 a3 Thay đổi cả hai điều kiện. x y z  Bài tập 1 :   Tìm ba số x; y; z biết  = =  và x + y + z = 27 2 3 4 Giải:  Cách 1. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: x y z x + y + z 27   = = = = =3 2 3 4 2+3+ 4 9 � x = 2.3 = 6;  y = 3.3 = 9; z = 4.3 = 12 Cách 2:  x y z Đặt  = = = k  � x = 2k,  y = 3k,  z = 4k 2 3 4 Từ x + y + z = 27 ta suy ra  2k + 3k + 4k = 27 � 9k = 27 � k = 3 Khi đó x = 2.3 = 6; y = 3.3 = 9; z = 4.3 = 12 Vậy: x = 6; y = 9; z = 12. Từ bài tập trên ta có thể thành lập các bài toán sau: x y z Bài tập 2: Tìm các số x; y; z biết  = =  và 2x + 3y – 5z = –21 2 3 4 Giải:  x y z Cách 1: Đặt   = = = k. Sau đó áp dụng cách 2 của bài tập 1. 2 3 4 x y z 2x 3y 5z Cách 2: Từ   = =  suy ra  = = 2 3 4 4 9 20 Áp dụng tính chất của dãy tỉ số bằng nhau ta có:  2x 3y 5z 2x + 3y − 5z −21 = = = = =3 4 9 20 4 + 9 − 20 −7 � x = 6;  y = 9;  z = 12 S¸ng kiÕn kinh nghiÖm To¸n 7 13
  14. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z x y z Bài tập 3. Tìm x; y; z biết:  = = và  x − 2y + 3z = 35 3 4 5 Giải: Giả thiết cho  x − 2y + 3z = 35 Đặt vấn đề: Làm như thế nào để sử dụng hiệu quả giả thiết trên? ? Em hãy nhắc lại tính chất cơ bản của phân số. x y z x y z 2y 3z x − 2y + 3z 35 Từ  = =  ta suy ra   = = = = = = = 3,5 3 4 5 3 4 5 8 15 3 − 8 + 15 10 x Do đó:  = 3,5   x = 3.3,5 = 10,5 3 y = 3,5   y= 4.3,5 = 14 4 z = 3,5   z = 5.3,5 = 17,5 5 x y y z Dạng 3. Tìm x; y; z biết  = ;  =  và x + y  + z = m. Điều kiện a;  a b c d b; c; d  0 Phương pháp:  ­ Tìm BCNN(b; c). BCNN ( b; c ) ­   Chia   BCNN(b;   c)   lần   lượt   cho   b;   c.   Giả   sử   = k ;  b BCNN ( b;  c ) = k1 . b x y y z 1 1 ­ Nhân 2 vế  của   =   và   =   lần lượt với     và   . Ta được:  a b c d k k1 x y y z x y z = ;  = . (Với bk = ck1). Từ đó ta suy ra được:  = = . ak bk ck1 dk1 ak bk dk1 ­ Áp dụng tính chất của dãy tỉ  số  bằng nhau ta tìm được các giá trị  cần tìm. S¸ng kiÕn kinh nghiÖm To¸n 7 14
  15. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z x y y z Bài tập 1: Tìm x; y; z cho:  = và  = và  x + y − z = 69 5 6 8 7 Giải:  Đưa bài này về dạng bài trên bằng cách nào?  Hãy nêu phương pháp giải (BCNN (6; 8)=?). x y x y Ta có:  = � = 5 6 20 24 y z y z = � = 8 7 24 21 x y z � = = 20 24 21 Sau đó áp dụng tính chất của dãy tỉ số bằng nhau ta tính được: x = 60;   y = 72; z = 63. Bài tập 2: Tìm x; y; z biết 2x = 3y = 5z  (1) và x + y – z = 95 (*) Làm thế nào đưa bài toán trên về dạng 2? Cách 1:  x y Từ 2x = 3y  � = ; 3 2 y z 3y = 5z  � = 5 3 Đưa về cách giải giống bài tập 1 và cách này dài dòng. Cách 2:  + Nếu có tỷ lệ của x; y; z tương ứng ta sẽ giải được (*) + Làm thế nào để (1) cho ta (*) + Hướng dẫn học sinh cách giải dạng toán này là ta đi tìm BCNN của  các mẫu. Sau đó chia các tích cho BCNN ta được dãy tỉ số bằng nhau. + Cụ thể, chia cả hai vế của (1) cho BCNN (2; 3; 5) = 30 2x 3y 5z x y z x + y − z 95 2x = 3y = 5z   � = = = = = = = =5 30 30 30 15 10 6 15 + 10 − 6 19 Từ đó ta giải ra được:  x = 75; y = 50; z = 30. S¸ng kiÕn kinh nghiÖm To¸n 7 15
  16. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z 1 2 3 Bài tập 3: Tìm x; y; z biết: x = y = z  ( 1)  và x – y = 15 2 3 4 Giải:  Theo em, làm thế nào giải được bài toán này? BCNN(1; 2; 3) = 6 x y z x − y 15 Chia các vế của (1) cho 6 ta được:  = = = = =5 12 9 8 12 − 9 3 Từ đó ta giải ra được:  x = 2.15 = 60; y = 5.9 = 45; z = 8.5 = 40 Bài tập 4: Tìm x; y; z biết 3x = 2y; 4x = 2z và x + y+ z = 27 * Hướng dẫn: Bài toán trên thuộc cả 2 dạng toán 1 và 3. Do đó, việc   đầu tiên từ 2 đẳng thức em đưa về 2 tỉ lệ thức. Từ 2 tỉ lệ thức em đưa về  dãy tỉ số bằng nhau rồi giải. Giải:  x y Từ  3x = 2y � = 2 3 x z Từ   4x = 2z � = 2 4 x y z  Suy ra  = =  sau đó giải như dạng 1. 2 3 4 Bài tập 5: Tìm x; y; z biết 6x = 4y = 3z và 2x + 3y – 5z = –21 * Hướng dẫn: Bài toán này việc đầu tiên em tìm BCNN(6; 4; 3). Sau  đó em chia các vế cho BCNN đó rồi đưa về dãy tỉ số băng nhau rồi giải. 6x 4y 3z x y z Giải: Từ 6x = 4y = 3z   � = = � = = 12 12 12 2 3 4 Sau đó giải tiếp như bài tập 4. 6x − 3z 4y − 6x 3z − 4y Bài tập 6: Tìm các số  x; y; z biết  = =  và 2x  5 7 9 +3y – 5z = –21 Giải: Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 6x − 3z 4y − 6x 3z − 4y 6x − 3z + 4y − 6x + 3z − 4y = = = =0 5 7 9 5+7+9 S¸ng kiÕn kinh nghiÖm To¸n 7 16
  17. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z � 6x = 3z;  4y = 6z;  3z = 4y Hay 6x = 4y = 3z sau đó giải tiếp như bài tập 5 Bài tập 4: Tìm x; y; z biết: x −1 y − 2 z − 3 a)  = = ( 1) và x + y +z = 24 1 2 3 2x y z b)  = = ( 2 ) và 2x – y + 3z = 95  3 2 6 Giải: a) Với giả thiết phần a) ta có cách giải tương tự bài nào? x − 1 y − 2 z − 3 ( x − 1) + ( y − 2 ) + ( z − 3) Từ (1) ta có:  = = = 1 2 3 1+ 2 + 3 x + y + z − 6 18                                             = = =3 6 6 x −1 Do đó:  = 3� x = 4 1 y−2 = 3� y =8 2 z −3 = 3 � z = 12 3 2x y z b)  = = ( 2 ) 2x – y + 3z = 95 3 2 6 Đối với câu b) tử số các tỉ số khác 1. Liệu ta có đi tìm BCNN của các  mẫu như các bài trước không? Hướng dẫn học sinh đi từ (2) để đến kết quả: 2x y z 2x − y + 3z 95 = = = = =5 3 2 6 3 − 2 + 18 5 15 Do đó, 2x = 5.3=15.  x =  ; y = 5.2=10; z = 5.6=30. 2 Ngoài cách đó ra, ta cũng có thể đi tìm BCNN nhưng không tìm BCNN   của các mẫu mà ta đi tìm BCNN của các tử rồi chia các vế cho BCNN đó. S¸ng kiÕn kinh nghiÖm To¸n 7 17
  18. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z Tóm lại, với dạng toán trên. Nếu tử  các tỉ  số  bằng 1 thì ta đi tìm   BCNN của các mẫu rồi chia các vế  cho BCNN đó. Tiếp theo ta áp dụng  tính chất của dãy tỉ số bằng nhau sẽ tìm được kết quả bài toán. Nếu tử các   tỉ số khác 1 thì ta có thể tìm BCNN của các tử hoặc các mẫu rồi thực hiện   tương tự như trên. x y  Dạng 4.   Tìm x; y biết  =  và x.y = m. Điều kiện a và b  0. a b Phương pháp:  x y ­ Đặt  = = k. Suy ra: x = a.k; y = b.k a b ­ Do đó:  x.y = (a.k).(b.k)=a.b.k2=m m ­ Suy ra: k =  ab ­ Xét hai trường hợp của k ta tìm được x và y. Bài tập 1: Tìm x; y biết rằng: x y a)  =  và xy = 240 (2) 3 5 x y b)  = và  x 2 + y 2 = 4  (x, y > 0) 5 3 Giải:  ? Làm như thế nào xuất hiện xy để sử dụng giả thiết. x y a) Đặt  = = k. Ta có: x = 3k; y = 5k.  3 5 Theo giả thiết, ta có: xy=240. Hay (3k).(5k) = 240 Suy ra: k2 = 16  k =  4 Với k = 4 thì x = 3k = 12 và y = 5k = 20 Với k = – 4 thì x = 3k = –12 và y = 5k = –20 Vậy: x = 12 và y = 20 hoặc x = –12 và y = –20 S¸ng kiÕn kinh nghiÖm To¸n 7 18
  19. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z *Chú ý: Ở đây, học sinh thường mắc sai lầm suy ra k = 4 mà phải suy   ra k= 4. Ngoài cách giải trên ta có thể  giải bài toán trên bằng cách khác như  sau: x y x x y x x 2 xy 240 = . = . = = = 16 3 5 3 3 5 3 9 15 15 Hay:  x 2 = 9.16 = ( 3.4 ) = 122 = ( −12 ) � x = �12 2 2 Thay vào (2) ta được:  240 x = 12 � y = = 20 12 240 x = −12 � y = = −20 −12 Vậy: x = 12 và y = 20 hoặc x = –12 và y = –20 x y x 2 y2 x 2 − y2 4 1 b)  =   � = = = = 5 3 25 9 25 − 9 16 4 25 5 � x2 = �x=� 4 2 9 3 � y2 = �x=� 4 2 Đối với câu b) giải theo cách khác cũng tương tự như câu a). x y z Bài tập 2: Tìm x, y, z biết rằng:  = = và xyz = 810 2 3 5 Giải:  Cách 1:  x y z Đặt  = = = k 2 3 5 Suy ra: x = 2k; y = 3k; z = 5k Do đó: xyz = 2k.3k.5k = 30k3 Hay: 30k3 = 810 S¸ng kiÕn kinh nghiÖm To¸n 7 19
  20. Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số  bằng nhau để giải các dạng toán tìm các số x, y z k3 = 27  k = 3 x = 2k = 2.3 = 6 y = 3k = 3.3 = 9 z = 5k = 3.5 = 15 Cách 2: x y z x x x x y z xyz = =   ��� = �� = 2 3 5 2 2 2 2 3 5 30 3 �x � 810 x3 � � �= = 27 � = 27 �2 � 30 8 � x 3 = 8.27 = 23.33 = ( 2.3) 3 �x =6 x y x.3 3.6 Mà  =  �y= = =9 2 3 2 2 y z y.5 9.5 và  =  � z = = = 15 3 5 3 3 x y z Bài tập 3. Tìm x; y; z biết  = =  và  2x 2 + 3y 2 − 5z 2 = −405 2 3 4 Giải: x y z Cách 1: Đặt  = = =k 2 3 4 x y z Cách 2: Từ  = =   2 3 4 x 2 y2 z2 Suy ra:  = = 4 9 16 2x 2 3y 2 5z 2 � = = 8 27 90 Áp dụng tính chất của dãy tỉ số bằng nhau ta có:  2x 2 3y 2 5z 2 2x 2 + 3y 2 − 5z 2 −405 = = = = =9 8 27 90 8 + 27 − 90 −45 S¸ng kiÕn kinh nghiÖm To¸n 7 20
ADSENSE
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2