STABILITY ANALYSIS OF SWITCHED MULTIPLE NONLINEAR<br />
DISCRETE SYSTEMS WITH INTERVAL TIME-VARYING DELAYS<br />
<br />
Tran Nguyen Binh∗ , Nguyen Thi Thu Huong, Pham Thi Linh<br />
Thai Nguyen University of Economics and Business Administration - Thai Nguyen University<br />
<br />
ABSTRACT<br />
<br />
This paper deals with the problem of asymptotic stability for a class of switched nonlineardiscrete systems<br />
with time-varying delay. The time-varying delay is assumed to be belong to a given interval in which the<br />
lower bound of delay is not restricted to zero. A linear matrix inequality (LMI) approach to asymptotic<br />
stability of the system is presented. Based on the Lyapunov functional, delay-depenent criteria for the<br />
asymptotic stability of the system are established via linear matrix inequalities.<br />
<br />
Keywords:<br />
<br />
Switching, discrete systems, uncertainty, Lyapunov function, linear<br />
<br />
matrix inequality.<br />
<br />
1<br />
<br />
INTRODUCTION<br />
<br />
A switched system is a particular kind of hybrid<br />
system that consists of several subsystems and<br />
a switching law determining at any time instant<br />
which subsystem is active. There are indeed<br />
many switched systems that occur naturally or<br />
by design in the fields of control, communication, computer and signal processes. A different switching rule would cause different behavior of the system and hence lead to different system performances. Because of the complexity<br />
of the designing switched law for the systems,<br />
the stability analysis and control synthesis of<br />
switched systems becomes more difficulty and<br />
attracts the interest of several scientists during<br />
the last decades [111].<br />
On the other hand, time-delay phenomena are<br />
very common in practical systems. A switched<br />
system with time-delay individual subsystems<br />
is called a switched time-delay system; in particular, when the subsystems are linear, it is<br />
then called a switched time-delay linear system.<br />
During the past decades, the stability analysis of switched linear continuous/discrete timedelay systems has attracted a lot of attention<br />
[48]. The main approach for stability analysis<br />
relies on the use of LyapunovKrasovskii functionals and linear matrix inequality (LMI) ap0 *Tel:<br />
<br />
proach for constructing a common Lyapunov<br />
function [911]. Although many important results have been obtained for switched linear<br />
continuous-time systems, there are few results<br />
concerning the stability of switched linear discrete systems with time-varying delays. It<br />
was shown in [6,8,12] that when all subsystems are asymptotically stable, the switching<br />
system is asymptotically stable under an arbitrary switching rule. The asymptotic stability<br />
for switching linear discrete time-delay systems<br />
has been studied in [13], but the result was limited to constant delays.<br />
Compared to the existing results, our result has<br />
its own advantages. First, the time delay is assumed to be a time-varying function belonging<br />
to a given interval, which means that the lower<br />
and upper bounds for the time-varying delay<br />
are available, the delay function is bounded but<br />
not restricted to zero. Second, the approach<br />
allows us to design the switching rule for stability and stabilization in terms of LMIs, which<br />
can be solvable by utilizing Matlabs LMI Control Toolbox available in the literature to date.<br />
The paper is organized as follows: Section 2<br />
presents definitions and some well-known technical propositions needed for the proof of the<br />
main results. Switching rule for the asymptotic stability and stabilization is presented in<br />
Section 3.<br />
<br />
0984411299, e-mail: nguyenbinh.tueba@gmail.com<br />
<br />
Notations.<br />
The following notations will be used throughout this paper. R+ denotes the set of all<br />
real non-negative numbers; Rn denotes the ndimensional space with the scalar product of<br />
two vectors hx, yi or xT y; Rn×r denotes the<br />
space of all matrices of (n × r)− dimension.<br />
AT denotes the transpose of A; a matrix A<br />
is symmetric if A = AT . Matrix A is semipositive definite (A ≥ 0) if hAx, xi ≥ 0, for<br />
all x ∈ Rn ; A is positive definite (A > 0) if<br />
hAx, xi > 0 for all x 6= 0; A ≥ B means<br />
A − B ≥ 0. λ(A) denotes the set of all eigenvalues of A; λmin (A) = min{Reλ : λ ∈ λ(A)};<br />
λmax (A) = max{Reλ : λ ∈ λ(A)}.<br />
<br />
. The time delay function h(k) satisfies the following condition 0 < h ≤ h(k) ≤ h, ∀k ∈ N+ ,<br />
where h, h are positive integers.<br />
Definition 2.1. The switched system (2.1) is<br />
asymptotically stable if there exists a switching<br />
function σ(.) such that the zero solution of the<br />
system is asymptotically stable.<br />
Definition 2.2.<br />
The system of matrices<br />
{Li }, i = 1, 2, ..., N, is said to be strictly completed if for every x ∈ Rn \{0} there is i ∈<br />
{1, 2, ..., N } such that xT Li x < 0.<br />
It is easy to see that the systems {Li } is strictly<br />
complete if and only if<br />
N<br />
[<br />
<br />
2<br />
<br />
PRELIMINARIES<br />
<br />
Ωi = Rn \{0}<br />
<br />
i=1<br />
<br />
Consider an uncertain nonlinear discrete-time<br />
systems with time-varying delay of the form<br />
x(k + 1) =Aσ x(k) + Bσ x(k − hj (k))<br />
<br />
where<br />
Ωi = {x ∈ Rn : xT Li x < 0}, i = 1, 2, .., N.<br />
<br />
+ fσ (k, x(k), x(k − h(k)), k ∈ Z+<br />
x(k) = φ(k),<br />
<br />
k ∈ [−h, −h + 1, ..., 0],<br />
(2.1)<br />
<br />
where x(k) ∈ Rn is the state; σ(.) : Rn −→<br />
{1, 2, ..., N } is the switching rule, which is a<br />
function depending on the state at each time<br />
and will be designed. A switching function is a<br />
rule which determines a switching sequence for<br />
a given switching system. Moreover, σ(x) = i<br />
implies that the system realization is chosen<br />
as the ith system, i = 1, 2, ..., N. It is seen<br />
that the system (2.1) can be viewed as an autonomous switched system in which the effective subsystem changes when the state x(k) hits<br />
predefined boundaries. Ai , Bi , i = 1, 2, ..., N<br />
are given matrices; φ(k) is the initial function<br />
with the norm<br />
<br />
The following technical lemmas will be used in<br />
the proof of the results.<br />
Lemma 2.1. [3] Let E, H and F be any constant matrices of appropriate dimensions and<br />
F T F ≤ I. For any > 0, we have<br />
EF H + H T F T E T ≤ EE T + −1 H T H.<br />
<br />
Lemma 2.2. [5] The system {Li } is strictly<br />
N<br />
P<br />
complete if there exist ξi ≥ 0,<br />
ξi > 0 such<br />
i=1<br />
<br />
that<br />
<br />
N<br />
P<br />
<br />
ξi Li < 0, i = 1, 2, ..., N.<br />
<br />
i=1<br />
<br />
k φ k=<br />
<br />
max<br />
<br />
k φ(i) k;<br />
<br />
i∈[−h,−h+1,...,0]<br />
<br />
The nonlinear purterbation fi (k, x, x1 ) : Z+ ×<br />
Rn × Rn × 7−→ R+ satisfies the following condition:<br />
∃G, H :fiT (k, x, x1 )fi (k, x, x1 ) ≤<br />
xT GT Gx + xT1 H T Hx1 , i = 1, 2, ..., N.<br />
(2.2)<br />
<br />
Lemma 2.3. [4] For any given vectors vi ∈<br />
RT , i = 1, 2, .., n, the following inequality holds:<br />
<br />
(<br />
<br />
n<br />
X<br />
i=1<br />
<br />
vi )T (<br />
<br />
n<br />
X<br />
i=1<br />
<br />
vi ) ≤ n<br />
<br />
n<br />
X<br />
i=1<br />
<br />
viT vi .<br />
<br />
3<br />
<br />
MAIN RESULTS<br />
<br />
∃ξi ≥ 0,<br />
<br />
N<br />
X<br />
<br />
ξi > 0 :<br />
<br />
i=1<br />
<br />
Let us set<br />
<br />
N<br />
X<br />
<br />
ξi Li (R, Ω, H, W, T, S) < 0,<br />
<br />
i=1<br />
<br />
i = 1, 2, ..., N.<br />
(3.3)<br />
<br />
i<br />
<br />
T =<br />
Ti<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
i<br />
i1<br />
11 T12 T13<br />
i<br />
i1<br />
∗ T22<br />
T23<br />
i1<br />
∗<br />
∗ T33<br />
∗<br />
∗<br />
∗<br />
∗<br />
∗<br />
∗<br />
∗<br />
∗<br />
∗<br />
<br />
i<br />
T14<br />
−P1<br />
i<br />
T34<br />
i<br />
T44<br />
∗<br />
∗<br />
<br />
P1T<br />
P1T<br />
P1T<br />
P1T −ΩT +P1T<br />
0<br />
0<br />
0<br />
0<br />
−ΩT<br />
−P1T −P1T −P1T −P1T<br />
−P1T<br />
−P1T −P1T −P1T −P1T<br />
−P1T<br />
−Q<br />
0<br />
0<br />
0<br />
0<br />
T<br />
∗ − 1+h<br />
0<br />
0<br />
0<br />
<br />
∗<br />
<br />
∗<br />
<br />
∗<br />
<br />
∗<br />
<br />
∗<br />
<br />
∗<br />
<br />
S<br />
− 1+h<br />
<br />
0<br />
<br />
0<br />
<br />
∗<br />
∗<br />
<br />
∗<br />
∗<br />
<br />
∗<br />
∗<br />
<br />
∗<br />
∗<br />
<br />
∗<br />
∗<br />
<br />
∗<br />
∗<br />
<br />
∗<br />
∗<br />
<br />
−R<br />
∗<br />
<br />
−P1T<br />
−λI<br />
<br />
<br />
<br />
The switching rule is chosen as σ(x(k)) = i,<br />
whenever x(k) ∈ Ωi , i = 1, 2, ..., N.<br />
<br />
<br />
<br />
<br />
<br />
,<br />
<br />
<br />
<br />
<br />
<br />
Proof. Consider the<br />
Krasovskii function<br />
<br />
Li (R, Ω, H, W, T, S) = −ΩT Ai − ATi Ω + R + H<br />
+ (h − h)W + (1 + h)T + (1 + h)S + λGTi Gi ;<br />
Ωi = {x ∈ Rn : xT Li (R, Ω, H, W, T, S)x < 0},<br />
<br />
following<br />
<br />
V (x(k)) =V1 (x(k)) + V2 (x(k)) + V3 (x(k))<br />
+ V4 (X(k)) + V5 (x(k)),<br />
where<br />
V1 (x(k)) = xT (k)P x(k);<br />
k−1<br />
X<br />
<br />
V2 (x(k)) =<br />
<br />
i = 1, 2, ..., N ;<br />
Ω1 = Ω1 , Ωi = Ωi \<br />
<br />
V3 (x(k)) =<br />
<br />
Ωj , i = 2, 3, ..., N,<br />
<br />
k−1<br />
X<br />
<br />
xT (i)Qx(i) +<br />
<br />
p<br />
X<br />
<br />
xT (i)Rx(i)<br />
<br />
i=k−h<br />
<br />
i=k−h<br />
i−1<br />
[<br />
<br />
Lyapunov-<br />
<br />
k−1<br />
X<br />
<br />
xT (i)Hx(i);<br />
<br />
j=1 i= k−hj (k)<br />
<br />
j=1<br />
<br />
−h+1<br />
<br />
where<br />
<br />
X<br />
<br />
V4 (x(k)) =<br />
<br />
λ > 0,<br />
<br />
k−1<br />
X<br />
<br />
xT (i)W x(i)<br />
<br />
l= −h+2 i=k+l−1<br />
<br />
i<br />
T11<br />
= Q − P + P1 + P1T ,<br />
<br />
k−1<br />
k<br />
X<br />
X<br />
<br />
V5 (x(k)) =<br />
<br />
i<br />
T12<br />
= ΩT − ATi Ω + P1T ,<br />
<br />
xT (i)Sx(i)<br />
<br />
j=k−h i=j<br />
<br />
i<br />
T13<br />
= −ΩT Bi + P1T − P1 + P2T ,<br />
<br />
+<br />
<br />
i<br />
T14<br />
= P2T − P1 + P1T ,<br />
<br />
k<br />
X<br />
<br />
k−1<br />
X<br />
<br />
xT (i)T x(i)<br />
<br />
j=k−h i=j<br />
<br />
i<br />
T22<br />
= P + ΩT + Ω,<br />
<br />
We have<br />
<br />
i<br />
T23<br />
= −ΩT Bi − P1 ,<br />
i<br />
T33<br />
= −H + λHiT Hij − P2 − P2T − P1 − P1T ,<br />
i<br />
T34<br />
= −P1 − P1T − P2 − P2T ,<br />
<br />
V (x(k)) ≥ λmin (P ).<br />
The difference of V1 (x(k)) gives<br />
∆V1 (x(k)) = V1 (x(k + 1)) − V1 (x(k))<br />
<br />
i<br />
T44<br />
= −P2 − P2T − P1 − P1T ,<br />
<br />
= xT (k + 1)P x(k + 1) − xT (k)P x(k).<br />
<br />
The following result gives what conditions have<br />
to be satisfied to guarantee that the system<br />
(2.1) is stable.<br />
<br />
Let us denote x(k + 1) = y(k), and<br />
<br />
Theorem 3.1. System (2.1) is asymptotically stable if there exist symmetric positive definite matrices P, Q, R, S, T, H, W, and a matrices Ω, P1 such that the following LMIs hold:<br />
<br />
<br />
P<br />
Ω<br />
Γ=<br />
0<br />
0<br />
<br />
H ≤ W,<br />
i<br />
<br />
T < 0, i = 1, 2, ..., N,<br />
<br />
(3.4)<br />
<br />
zi (k) = [x(k), y(k), x(k − h(k)), fi (.)],<br />
0<br />
Ω<br />
0<br />
0<br />
<br />
0<br />
0<br />
I<br />
0<br />
<br />
i = 1, 2, ..., N ;<br />
<br />
0<br />
0<br />
, We have<br />
0<br />
I<br />
<br />
(3.1)<br />
<br />
∆V2 (x(k)) = xT (k)(Q + R)x(k)<br />
<br />
(3.2)<br />
<br />
− xT (k − h)Rx(k − h) − xT (k − h)Qx(k − h).<br />
(3.5)<br />
<br />
≤(1 + h)xT (k)T x(k)<br />
<br />
The difference of ∆V3 (x(k)) gives<br />
∆V3 (x(k)) = V3 (x(k + 1)) − V3 (x(k))<br />
<br />
−<br />
<br />
= [xT (k)Hx(k) − xT (k − h(k))Hx(k − h(k))<br />
<br />
j=k−h<br />
<br />
+ (1 + h)x (k)Sx(k)<br />
<br />
X<br />
<br />
xT (i)Hx(i)<br />
−<br />
<br />
i=k+1−h(k+1)<br />
k−1<br />
X<br />
<br />
+<br />
<br />
j=k−h<br />
<br />
T<br />
<br />
k−h<br />
<br />
+<br />
<br />
k<br />
k<br />
X<br />
X<br />
1<br />
(<br />
x(j))T T (<br />
x(j))<br />
1+h<br />
<br />
k−1<br />
X<br />
<br />
xT (i)Hx(i) −<br />
<br />
i=k+1−h<br />
<br />
k<br />
k<br />
X<br />
X<br />
1<br />
(<br />
x(j))T S(<br />
x(j)).<br />
1+h<br />
j=k−h<br />
<br />
xT (i)Hx(i)].<br />
<br />
i=k+1−h(k)<br />
<br />
(3.6)<br />
<br />
Since 0 ≤ h ≤ h(k) ≤ h, ∀k ∈ Z+ and H ≤ W,<br />
we have:<br />
k−1<br />
X<br />
<br />
The difference of ∆V4 (x(k)) gives<br />
<br />
k−1<br />
X<br />
<br />
xT (i)Hx(i) ≤<br />
<br />
i=k+1−h<br />
<br />
∆V4 (x(k)) =<br />
<br />
j=k−h<br />
<br />
i=k+1−h(k)<br />
<br />
k−h<br />
<br />
X<br />
<br />
T<br />
<br />
= (h − h)x (k)W x(k) −<br />
<br />
k−h<br />
<br />
X<br />
<br />
k−h<br />
T<br />
<br />
x (l)W x(l).<br />
<br />
l=k+1−h<br />
<br />
i=k+1−h(k+1)<br />
<br />
X<br />
<br />
X<br />
<br />
xT (i)Hx(i) ≤<br />
<br />
xT (i)Hx(i);<br />
<br />
i=k+1−h<br />
<br />
k−h<br />
<br />
(3.7)<br />
<br />
xT (i)Hx(i);<br />
<br />
k−h<br />
<br />
X<br />
<br />
xT (i)Hx(i) ≤<br />
<br />
i=k+1−h<br />
<br />
xT (i)W x(i).<br />
<br />
i=k+1−h<br />
<br />
Using Lemma 2.3, we have<br />
<br />
k+1<br />
X<br />
<br />
∆V5 x(k) =<br />
<br />
k<br />
X<br />
<br />
(3.9)<br />
Let ν(k) = x(k + 1) − x(k), we obtain x(k) −<br />
k−1<br />
P<br />
[<br />
ν(i) + x(k − hj (k))] = 0, thus, for<br />
<br />
T<br />
<br />
x (i)T x(i)<br />
<br />
i=k−hj (k)<br />
<br />
j=k+1−h i=j<br />
<br />
−<br />
<br />
k<br />
k−1<br />
X<br />
X<br />
<br />
arbitrary matrices P1 , P2 with appropriate dimensions, we have<br />
<br />
<br />
0 P1<br />
T<br />
X<br />
Y = 0,<br />
(3.10)<br />
0 P2<br />
<br />
xT (i)T x(i)<br />
<br />
j=k−h i=j<br />
k+1<br />
X<br />
<br />
+<br />
<br />
k<br />
X<br />
<br />
xT (i)Sx(i)<br />
<br />
where<br />
<br />
j=k+1−h i=j<br />
<br />
−<br />
<br />
k<br />
k−1<br />
X<br />
X<br />
<br />
X T = (ξ T (k), [<br />
<br />
T<br />
<br />
x (i)Sx(i)<br />
<br />
k−1<br />
P<br />
<br />
ν T (i) + xT (k − h(k))]),<br />
<br />
i=k−h(k)<br />
<br />
j=k−h i=j<br />
<br />
=<br />
<br />
k<br />
X<br />
<br />
(xT (k)T x(k) − xT (j)T x(j))<br />
<br />
+<br />
<br />
(xT (k)Sx(k) − xT (j)Sx(j))<br />
<br />
j=k−h<br />
<br />
=(1 + h)xT (k)T x(k)<br />
−<br />
<br />
k<br />
X<br />
<br />
xT (j)T x(j)<br />
<br />
j=k−h<br />
<br />
+ (1 + h)xT (k)Sx(k)<br />
−<br />
<br />
k−1<br />
P<br />
<br />
ν T (i) + xT (k −<br />
<br />
i=k−h(k)<br />
<br />
h(k))]),<br />
<br />
j=k−h<br />
k<br />
X<br />
<br />
(3.8)<br />
<br />
Y T = (y T (k), xT (k) − [<br />
<br />
k<br />
X<br />
j=k−h<br />
<br />
xT (j)Sx(j)<br />
<br />
ξ(k) = (x(k) + y(k) + x(k − h(k)) + x(k − h) +<br />
k<br />
k<br />
k−1<br />
P<br />
P<br />
P<br />
x(k−h)+<br />
x(i)+<br />
x(i)+<br />
ν(i)+<br />
i=k−h<br />
<br />
i=h+h<br />
<br />
i=k−h(k)<br />
<br />
f (.)).<br />
We note that condition (2.2) equivalent to<br />
<br />
<br />
−GTi Gi 0<br />
0<br />
0<br />
0<br />
0<br />
0<br />
0<br />
z (k) ≤ 0<br />
ziT (k) <br />
T<br />
0<br />
0 −Hi Hi 0 i<br />
0<br />
0<br />
0<br />
I<br />
(3.11)<br />
<br />
− xT (k − h)Rx(k − h) − f T (.)λIf T (.)<br />
<br />
From (3.5)-(3.12) it follows that<br />
∆V (xk ) ≤ xT (k)Li (R, Ω, H, W, T, S)x(k)<br />
+<br />
+<br />
<br />
−2<br />
<br />
T<br />
<br />
i T<br />
i<br />
x (k)(k)T11<br />
x (k) + 2xT (k)T12<br />
y(k)<br />
T<br />
i<br />
2x (k)T13 x(k − h(k))<br />
<br />
+ 2x<br />
<br />
T<br />
<br />
i<br />
(k)T14<br />
<br />
k−1<br />
X<br />
<br />
k<br />
X<br />
<br />
+<br />
<br />
ν(i)<br />
<br />
k<br />
X<br />
<br />
x(i) +<br />
<br />
i=k−h<br />
<br />
x(i)),<br />
<br />
i=k−h<br />
<br />
where<br />
k<br />
X<br />
<br />
+ 2xT (k)P1T x(k − h) + 2xT (k)P1T<br />
<br />
x(i)<br />
<br />
i=k−h<br />
<br />
+ 2xT (k)P1T<br />
<br />
ν(i)P1T (x(k − h)<br />
<br />
i=k−h(k)<br />
<br />
i=k−h(k)<br />
<br />
k<br />
X<br />
<br />
k−1<br />
X<br />
<br />
x(i) + 2xT (k)P1T x(k − h)<br />
<br />
i=k−h<br />
<br />
λ > 0,<br />
i<br />
i<br />
T11<br />
= Q − P + P1 + P1T , T12<br />
= ΩT − ATi Ω + P1T ,<br />
ij<br />
T13<br />
= −ΩT Bij + P1T − P1 + P2T ,<br />
i<br />
T14<br />
= P2T − P1 + P1T ,<br />
<br />
i<br />
+ 2xT (k)(−Ω + P1T )f (.) + 2y T (k)T22<br />
y(k)<br />
<br />
ij<br />
i<br />
T22<br />
= −ΩT Bij − P1 ,<br />
= P + ΩT + Ω, T23<br />
<br />
+ 2y T (k)(−ΩT Bi − P1 )x(k − h(k))<br />
<br />
ij<br />
T<br />
= −H + λHij<br />
Hij − P2 − P2T − P1 − P1T ,<br />
T33<br />
<br />
− 2y T (k)P1<br />
<br />
k−1<br />
X<br />
<br />
ν(i) − 2y T (k)ΩT f (.)<br />
<br />
i=k−h(k)<br />
ij<br />
+ 2xT (k − h(k))T33<br />
x(k − h(k))<br />
<br />
k−1<br />
X<br />
<br />
i<br />
T44<br />
= −P2 − P2T − P1 − P1T ,<br />
<br />
We can verify that<br />
<br />
+ 2x(k − h(k))(−P1 )x(k − h(k))<br />
i<br />
+ 2xT (k − h(k))T34<br />
<br />
i<br />
= −P1 − P1T − P2 − P2T ,<br />
T34<br />
<br />
∆V (xk ) ≤ xT (k)Li (R, Ω, H, W, T, S)x(k)<br />
<br />
ν(i)<br />
<br />
+ ϕi (k)T i ϕi (k)<br />
<br />
i=k−h(k)<br />
<br />
(3.13)<br />
<br />
− 2xT (k − h(k))P1T x(k − h)<br />
k<br />
X<br />
<br />
− 2x(k − h(k))T P1T<br />
<br />
where<br />
<br />
x(i)<br />
<br />
h1 (k)),<br />
<br />
i=k−h<br />
k<br />
X<br />
<br />
− 2xT (k − h(k))P1T<br />
<br />
ϕ(k)<br />
k−1<br />
P<br />
<br />
=<br />
<br />
x(i)<br />
<br />
ν(i),<br />
<br />
i=k−h(k)<br />
k−1<br />
X<br />
<br />
−2<br />
<br />
ν(i)<br />
<br />
i=k−h(k)<br />
<br />
i = 1, 2, ..., N.<br />
We now apply the condition (3.4) and Lemma<br />
(2.2), the system Li (R, Ω, H, W, T, S) is strictly<br />
complete and the sets Ωi and Ωi are well defined<br />
such that<br />
<br />
ν T (i)P1T f (.)<br />
<br />
i=k−h(k)<br />
T<br />
<br />
N<br />
[<br />
<br />
− x (k − h)Qx(k − h)<br />
−<br />
<br />
k<br />
X<br />
i=k−h<br />
<br />
−<br />
<br />
k<br />
X<br />
i=k−h<br />
<br />
1<br />
x (i)<br />
T<br />
1+h<br />
T<br />
<br />
k<br />
X<br />
<br />
x(i), f (.))<br />
<br />
i=h+h<br />
<br />
∆V (xk ) < xT (k)Li (R, Ω, H, W, T, S)x(k),<br />
<br />
k−1<br />
X<br />
<br />
ν T (i)P1 x(k − h)<br />
<br />
k−1<br />
X<br />
<br />
k<br />
P<br />
<br />
Therefore, we finally obtain from (3.15) and<br />
the condition (3.3) that<br />
<br />
i=k−h(k)<br />
<br />
−2<br />
<br />
x(i),<br />
<br />
i=k−h<br />
<br />
− 2xT (k − h(k))P1T f (.)<br />
i<br />
ν T (i)T44<br />
<br />
k<br />
P<br />
<br />
x(k − h), x(k − h),<br />
<br />
− 2x(k − h(k))T P1T x(k − h)<br />
k−1<br />
X<br />
<br />
−<br />
<br />
i=k−h(k)<br />
<br />
i=k−h<br />
<br />
+<br />
<br />
(x(k), y(k), x(k<br />
<br />
i=1<br />
<br />
x(i)<br />
<br />
i=k−h<br />
<br />
Ωi = Rn \{0},<br />
<br />
N<br />
[<br />
<br />
Ωi = Rn \{0}, Ωi<br />
<br />
i=1<br />
<br />
i 6= j.<br />
<br />
k<br />
X<br />
1<br />
T<br />
x (i)<br />
S<br />
x(i)<br />
1+h<br />
i=k−h<br />
<br />
(3.12)<br />
<br />
\<br />
<br />
Ωj = ø,<br />
<br />