intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Ví dụ - Bài tập Kinh tế lượng sử dụng chương trình Eviews4 bổ trợ sách bài giảng Kinh tế lượng

Chia sẻ: NGUYEN BIEN | Ngày: | Loại File: PDF | Số trang:12

603
lượt xem
95
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu Ví dụ - Bài tập Kinh tế lượng sử dụng chương trình Eviews4 bổ trợ sách bài giảng Kinh tế lượng tập hợp các ví dụ và bài tập của 7 chương: mô hình hồi quy đơn, mô hình hồi quy bội, hồi quy với biến giả, hiện tượng đa cộng tuyến, hiện tượng phương sai sai số thay đổi, hiện tượng tự quan, định dạng hàm hồi quy. Đây là tài liệu cho sinh viên ôn tập môn Kinh tế lượng.

Chủ đề:
Lưu

Nội dung Text: Ví dụ - Bài tập Kinh tế lượng sử dụng chương trình Eviews4 bổ trợ sách bài giảng Kinh tế lượng

  1. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS4 BỔ TRỢ SÁCH BÀI GIẢNG KINH TẾ LƯỢNG Bùi Dương Hải Tất cả các bài tập lấy mức α = 5% với mọi kiểm định và khoảng tin cậy. ________________________________________ CHƯƠNG 2 MÔ HÌNH HỒI QUY ĐƠN Ví dụ 2.2 trong sách Bài giảng Năm Phân bón (X) Năng suất (Y) Năm Phân bón (X) Năng suất (Y) 1990 6 40 1995 18 58 1991 10 44 1996 22 60 1992 12 46 1997 24 68 1993 14 48 1998 26 74 1994 16 52 1999 32 80 Bảng kết quả hồi quy bằng phần mềm Eviews4, và một số thống kê đánh giá về mô hình Dependent Variable: Y Method: Least Squares Sample(adjusted): 1 10 Included observations: 10 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 27.12500 1.979265 13.70458 0.0000 X 1.659722 0.101321 16.38082 0.0000 R-squared 0.971049 Mean dependent var 57.00000 Adjusted R-squared 0.967430 S.D. dependent var 13.47426 S.E. of regression 2.431706 Akaike info criterion 4.791920 Sum squared resid 47.30556 Schwarz criterion 4.852437 Log likelihood -21.95960 F-statistic 268.3312 Durbin-Watson stat 1.783613 Prob(F-statistic) 0.000000 Tiếng Anh Ý nghĩa Dependent Variable: Y Biến phụ thuộc: Y Method: Least Squares Phương pháp: Bình phương nhỏ nhất Sample (adjusted): 1 10 Mẫu (sau điều chỉnh): từ 1 đến 10 Included observations: 10 Số quan sát được sử dụng: 10 Variable Biến số (các biến độc lập) C Biến hằng số, C ≡ 1 X Biến độc lập X Coefficient ˆ Ước lượng hệ số: β j Std. Error ˆ Sai số chuẩn của ước lượng hệ số: Se( β j ) t-Statistic ˆ ˆ Thống kê T: Tqs = β j / Se( β j ) Mức xác suất (P-value) của cặp giả thuyết Prob. H0: βj = 0 ; H1: βj ≠ 0 R-squared Hệ số xác định (bội): R2 Adjusted R-squared Hệ số xác định điều chỉnh R 2 S.E. of regression Sai số chuẩn của hồi quy: σˆ Sum squared resid Tổng bình phương phần dư: RSS Durbin-Watson stat Thống kê Durbin-Watson Mean dependent var Trung bình biến phụ thuộc: Y KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 1
  2. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 S.D. dependent var Độ lệch chuẩn biến phụ thuộc: SY = TSS /(n − 1) R 2 /(n − k ) F-statistic Thống kê F: Fqs = (1 − R 2 ) /(n − 1) Mức xác suất (P-value) của cặp giả thuyết: Prob (F-statistic) H0: R2 = 0 ; H1: R2 > 0 (R2 ≠ 0) Ví dụ 3.1 Số liệu trong sách Bài giảng, có kết quả hồi quy Dependent Variable: Y Method: Least Squares Sample(adjusted): 1 12 Included observations: 12 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 32.27726 6.253073 5.161823 0.0006 X2 2.505729 0.328573 7.626105 0.0000 X3 4.758693 0.410384 11.59572 0.0000 R-squared 0.975657 Mean dependent var 141.3333 Adjusted R-squared 0.970247 S.D. dependent var 23.20789 S.E. of regression 4.003151 Akaike info criterion 5.824358 Sum squared resid 144.2269 Schwarz criterion 5.945585 Log likelihood -31.94615 F-statistic 180.3545 Durbin-Watson stat 2.527238 Prob(F-statistic) 0.000000 Ma trận phương sai – hiệp phương sai C X2 X3 C 39.10093 -1.416429 -0.727129 X2 -1.416429 0.107960 -0.064747 X3 -0.727129 -0.064747 0.168415 Bài tập 2.12 Cho QA là lượng bán (đơn vị: nghìn lít), PA là giá bán (đơn vị: nghìn đồng/lít) của hãng nước giải khát A, thời gian từ quý 1 năm 2001 đến quý 4 năm 2006, và kết quả hồi quy mô hình như sau Bảng 2.12 Dependent Variable: QA Method: Least Squares Sample: 2001Q1 2006Q4 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 1814.139 174.1613 10.41643 0.0000 PA -51.75140 9.840903 -5.258806 0.0000 R-squared 0.556943 Mean dependent var 923.5833 Adjusted R-squared 0.536804 S.D. dependent var 292.7673 S.E. of regression 199.2530 F-statistic 27.65504 Sum squared resid 873438.5 Prob(F-statistic) 0.000028 a. Viết hàm hồi quy tổng thể, hồi quy mẫu, và giải thích ý nghĩa kết quả ước lượng. b. Tìm một ước lượng điểm lượng bán trung bình khi giá bán là 20 nghìn đồng/lít. c. Lượng bán có thực sự phụ thuộc vào giá bán không? d. Giảm giá có làm tăng lượng bán không? e. Giá giảm một nghìn thì lượng bán thay đổi trong khoảng nào? f. Giá tăng một nghìn thì lượng bán giảm tối đa bao nhiêu? g. Có thể cho rằng giá tăng một nghìn thì lượng bán giảm nhiều hơn 50 nghìn lít hay không? h. Tính các đại lượng TSS, ESS. i. Hệ số xác định của mô hình bằng bao nhiêu, đại lượng đó có ý nghĩa thế nào? k. Tìm ước lượng điểm và khoảng cho phương sai sai số ngẫu nhiên. l. Dự báo giá trị trung bình và cá biệt của lượng bán khi giá bán là 18 nghìn/lít. KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 2
  3. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 Bài tập 2.13 Cho Y là sản lượng, L là lượng lao động, và kết quả hồi quy mô hình như sau: Bảng 2.13 Dependent Variable: Y Method: Least Squares Sample(adjusted): 1 20 Included observations: 20 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C -255.5380 99.72089 -2.562533 0.0196 L 6.068681 0.745640 8.138894 0.0000 R-squared 0.786329 Mean dependent var 551.9000 Adjusted R-squared 0.774458 S.D. dependent var 95.17900 S.E. of regression 45.20169 F-statistic 66.24160 Sum squared resid 36777.46 Prob(F-statistic) 0.000000 a. Viết hàm hồi quy tổng thể, hồi quy mẫu; dấu các ước lượng hệ số có phù hợp với lý thuyết kinh tế không? b. Hệ số chặn của mô hình có ý nghĩa thống kê không? Nếu mức ý nghĩa còn 1% thì kết luận thế nào? c. Biến Sản lượng có phụ thuộc vào biến Lao động không? Nếu có thì mô hình giải thích được bao nhiêu % sự biến động của biến sản lượng? d. Theo kết quả này, khi thêm một đơn vị lao động thì sản lượng thay đổi tối đa bao nhiêu? e. Có thể cho rằng khi giảm một đơn vị lao động thì sản lượng giảm chưa đến 7 đơn vị không? f. Dự báo sản lượng trung bình khi lượng lao động là 150 đơn vị? ________________________________________ CHƯƠNG 3 MÔ HÌNH HỒI QUY BỘI Bài tập 3.5 Cho QA là lượng bán (đơn vị: nghìn lít), PA là giá bán của hãng nước giải khát A, PB là giá bán của hãng nước giải khát B cạnh tranh với hãng A (đơn vị: nghìn đồng/lít) và kết quả hồi quy mô hình như sau: Bảng 3.5 Dependent Variable: QA Method: Least Squares Sample: 2001Q1 2006Q4 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 1003.407 355.4275 2.823098 0.0102 PA -59.05641 9.269155 -6.371283 0.0000 PB 55.63005 21.91590 2.538342 0.0191 R-squared 0.660965 Mean dependent var 923.5833 Adjusted R-squared 0.628676 S.D. dependent var 292.7673 S.E. of regression 178.4017 Akaike info criterion 13.32242 Sum squared resid 668370.4 Schwarz criterion 13.46968 Log likelihood -156.8691 F-statistic 20.47028 Durbin-Watson stat 2.489845 Prob(F-statistic) 0.000012 Và hiệp phương sai ước lượng hai hệ số góc bằng: – 63.071 a. Giải thích ước lượng các hệ số góc. b. Khi giá hãng A tăng 1 nghìn, giá hãng B không đổi thì lượng bán hãng A thay đổi thế nào? c. Khi giá hãng B tăng 1 nghìn, giá hãng A không đổi thì lượng bán hãng A thay đổi thế nào? d. Khi giá của hai hãng A và B cùng tăng 1 nghìn thì lượng bán của hãng A có thay đổi không? KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 3
  4. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 e. Nếu giá của hãng B tăng 1 nghìn, và hãng A giảm giá 1 nghìn, thì lượng bán của hãng A tăng tối đa bao nhiêu? f. Giả sử chưa có kết quả về hệ số R2, hãy nêu các cách để tính được kết quả đó từ các thông tin khác trong bảng. g. Biết rằng khi hồi quy QA theo PA và hệ số chặn thì hệ số xác định bằng 0,557 và tổng bình phương phần dư bằng 873438,5; hãy nêu các cách để có thể kiểm định xem có nên bỏ biến PB ra khỏi mô hình hay không? Bài tập 3.6 Cho kết quả hồi quy với Y là sản lượng, K là vốn, L là lao động; LOG là logarit tự nhiên của các biến tương ứng. Bảng 3.6 Dependent Variable: LOG(Y) Method: Least Squares Included observations: 20 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 0.764682 0.713780 1.071314 0.2990 LOG(K) 0.510023 0.126959 4.017220 0.0009 LOG(L) 0.599932 0.248400 2.415183 0.0273 R-squared 0.910215 Mean dependent var 6.298380 Adjusted R-squared 0.899652 S.D. dependent var 0.180753 S.E. of regression 0.057258 F-statistic 86.17079 Sum squared resid 0.055735 Prob(F-statistic) 0.000000 Hiệp phương sai ước lượng hai hệ số góc bằng: – 0,027736 a. Viết hàm hồi quy tổng thể, hồi quy mẫu với các biến Y, K, L và giải thích ý nghĩa kết quả ước lượng các hệ số hồi quy b. Phải chăng cả hai biến độc lập đều giải thích cho sự biến động của biến phụ thuộc? c. Khi vốn tăng thêm 1%, lao động không đổi thì sản lượng tăng tối đa bao nhiêu? d. Khi lao động tăng thêm 1%, vốn không đổi thì sản lượng tăng tối thiểu bao nhiêu? e. Khi vốn và lao động cùng tăng 1% thì sản lượng thay đổi như thế nào? f. Tăng vốn 1% đồng thời giảm lao động 1% thì sản lượng có thay đổi không? g. Có thể cho rằng quá trình sản xuất có hiệu quả tăng theo quy mô hay không? h. Khi bỏ biến logarit của lao động khỏi mô hình thì hệ số xác định còn 0,8794 và tổng bình phương phần dư bằng 0,07486. Vậy có nên bỏ biến đó không? ________________________________________ CHƯƠNG 4 HỒI QUY VỚI BIẾN GIẢ Bài tập 4.4 Cho kết quả hồi quy, với QA là lượng bán (nghìn lít), PA là giá bán (nghìn đồng/lít) của hãng nước giải khát A, H nhận giá trị bằng 1 nếu quan sát vào mùa lạnh, và bằng 0 nếu vào mùa nóng. Bảng 4.4 Dependent Variable: QA Method: Least Squares Sample: 2001Q1 2006Q4 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 1972.7741 723.6264 2.726233 0.0130 PA -57.15100 9.466111 -6.037430 0.0000 H -885.5565 221.6018 -3.996161 0.0001 H*PA 27.11565 10.98241 2.469006 0.0227 R-squared 0.676992 F-statistic 13.97265 Sum squared resid 636775.7 Prob(F-statistic) 0.000038 Cho hiệp phương sai ước lượng hai hệ số của PA và H*PA bằng: – 12,89 KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 4
  5. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 a. Viết hàm hồi quy tổng thể, hồi quy mẫu cho hai mùa nóng và lạnh. b. Tìm ước lượng điểm lượng bán của hãng khi giá bán là 20 nghìn vào hai mùa nóng và lạnh. c. Hệ số chặn của mô hình có khác nhau giữa hai mùa không? d. Hệ số góc có khác nhau giữa hai mùa không? Nếu có thì chênh lệch trong khoảng nào? e. Vào mùa nào thì việc giảm giá sẽ có tác động đến lượng bán nhiều hơn? f. Vào mùa lạnh, khi giảm giá một nghìn thì lượng bán tăng trong khoảng nào? g. Đánh giá việc đưa yếu tố mùa nóng - lạnh vào mô hình, biết rằng hồi quy QA theo PA và hệ số chặn thì hệ số xác định bằng 0,557 và tổng bình phương phần dư bằng 873438,5. h. Có ý kiến cho rằng từ đầu năm 2006 về sau, do bị cạnh tranh mạnh, nên yếu tố giá cả có tác động đến lượng bán mạnh hơn so với trước đó. Hãy nêu xây dựng mô hình để có thể kiểm tra và đánh giá về ý kiến đó. ________________________________________ CHƯƠNG 5 HIỆN TƯỢNG ĐA CỘNG TUYẾN Bài tập 5.4 Cho kết quả hồi quy sau, với QA là lượng bán của hãng nước giải khát A, PA là giá của hãng A, PB là giá của hãng B, QB là lượng bán của hãng B Bảng 5.4 Dependent Variable: QA Method: Least Squares Sample: 2001Q1 2006Q4 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 13265.76 28173.04 0.470867 0.6428 PA -58.18860 9.661317 -6.022844 0.0000 PB -434.7366 1126.757 -0.385830 0.7037 QB -6.111723 14.04066 -0.435288 0.6680 R-squared 0.664147 Mean dependent var 923.5833 Adjusted R-squared 0.613769 F-statistic 13.18329 Durbin-Watson stat 2.442813 Prob(F-statistic) 0.000056 a. Viết hàm hồi quy mẫu. So sánh với kết quả bảng 3.5, nhận xét gì về dấu và giá trị của các ước lượng hệ số hồi quy? b. Có nhận xét gì về ý nghĩa thống kê của biến PB, so sánh với bảng 3.5 ở trên. c. Nghi ngờ mô hình có đa cộng tuyến, hãy nêu một cách để kiểm tra điều đó. d. Cho hai kết quả hồi quy phụ sau trên cùng bộ số liệu, hãy cho biết hai kết quả đó dùng để làm gì, và có kết luận gì về hiện tượng đa cộng tuyến qua từng hồi quy phụ đó? Bảng 5.5 Dependent Variable: PA Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C -597.0432 622.8575 -0.958555 0.3487 PB 24.76408 24.86943 0.995764 0.3307 QB 0.299889 0.310308 0.966426 0.3448 R-squared 0.134873 F-statistic 1.636949 Durbin-Watson stat 0.292773 Prob(F-statistic) 0.218443 Bảng 5.6 Dependent Variable: QB Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 2006.367 5.633796 356.1306 0.0000 PA 0.141990 0.146923 0.966426 0.3448 PB -80.23378 0.347384 -230.9659 0.0000 R-squared 0.999643 F-statistic 29441.88 Durbin-Watson stat 2.548328 Prob(F-statistic) 0.000000 KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 5
  6. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 e. Mô hình QA phụ thuộc PA, PB, QB và hệ số chặn có hiện tượng đa cộng tuyến không? Đa cộng tuyến này là hoàn hảo hay không hoàn hảo? f. Hãy nêu một cách khắc phục đơn giản hiện tượng đa cộng tuyến trong câu trên g. Khi bỏ biến QB khỏi mô hình, hồi quy QA theo PA, PB và hệ số chặn (bảng 3.5) thì mô hình này có chắc chắn khắc phục được hiện tượng đa cộng tuyến không? Nếu không, hãy nêu một cách kiểm định có thể sử dụng. h. Khi hồi quy PB theo PA và hệ số chặn, thì thu được ước lượng hệ số góc bằng 0,131 và sai số chuẩn tương ứng là 0,086. Qua hồi quy phụ này, có thể kết luận gì về mô hình QB phụ thuộc PA, PB? ________________________________________ CHƯƠNG 6 HIỆN TƯỢNG PHƯƠNG SAI SAI SỐ THAY ĐỔI Bài tập 6.5 Cho kết quả hồi quy với Y là sản lượng, L là lượng lao động, K là lượng vốn Bảng 6.5 Dependent Variable: Y Method: Least Squares Included observations: 20 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C -41.51425 82.67264 -0.502152 0.6220 L 2.208128 0.981281 2.250251 0.0380 K 1.780819 0.386295 4.609999 0.0002 R-squared 0.905040 Prob(F-statistic) 0.000000 a. Với phần dư thu được của mô hình ban đầu ký hiệu là RESID, hãy viết mô hình hồi quy phụ trong bảng 6.6 và cho biết kết quả đó dùng để làm gì? Kết luận gì thu được? Bảng 6.6 White Heteroskedasticity Test – Cross terms F-statistic 3.972746 Probability 0.018776 Obs*R-squared 11.73157 Probability 0.038657 Test Equation: Dependent Variable: RESID^2 Included observations: 20 Variable Coefficient Std. Error t-Statistic Prob. C -27854.36 293672.6 -0.094848 0.9258 L 2857.590 8260.616 0.345929 0.7345 L^2 -35.55875 60.76231 -0.585211 0.5677 L*K 38.06234 50.11640 0.759479 0.4602 K -2063.946 3473.158 -0.594256 0.5618 K^2 -7.627837 10.22040 -0.746335 0.4678 R-squared 0.586578 Prob(F-statistic) 0.018776 b. Với kết quả tại bảng 6.7, hãy viết mô hình và thực hiện kiểm định để có kết luận? Bảng 6.7 White Heteroskedasticity Test – No Cross terms F-statistic 4.961715 Probability 0.009471 Obs*R-squared 11.39090 Probability 0.022505 c. Cho biết kết quả hồi quy dưới đây dùng để làm gì, có kết luận gì về mô hình gốc ban đầu, biết RESID là phần dư, và ABS là hàm lấy giá trị tuyệt đối Bảng 6.8 Dependent Variable: ABS(RESID) 20 observations Variable Coefficient Std. Error t-Statistic Prob. C -433.5278 146.6376 -2.956457 0.0084 L 3.893503 1.096448 3.551013 0.0023 R-squared 0.411951 Prob(F-statistic) 0.002283 KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 6
  7. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 d. Khi hồi quy ln của bình phương E theo ln của biến K, có hệ số chặn, thì hệ số xác định của mô hình này bằng 0,105. Hãy cho biết kết quả đó dùng để làm gì, có kết luận gì thu được? e. Hồi quy bình phương phần dư E theo bình phương giá trị ước lượng biến phụ thuộc trong mô hình gốc, có hệ số chặn; thì thu được ước lượng điểm hệ số góc bằng 0,852 và sai số chuẩn tương ứng bằng 0,126. Hãy cho biết kết quả đó dùng để làm gì, dựa trên giả thiết nào, có kết luận gì thu được về mô hình gốc? f. Dựa trên kết luận ở câu trên, hãy nêu một cách khắc phục hiện tượng phát hiện được? g. Hồi quy bình phương của E theo bình phương của L, có hệ số chặn, thì hệ số xác định bằng 0,722. Kết quả đó dùng để làm gì, có kết luận gì? Qua đó hãy nêu một cách để khắc phục hiện tượng phát hiện được? h. Cho kết quả sau đây, hãy cho biết kết quả đó dùng để làm gì, và đã đạt mục đích chưa? Bảng 6.9 Dependent Variable: Y/L Sample(adjusted): 1 20 Variable Coefficient Std. Error t-Statistic Prob. 1/L -56.81014 72.62494 -0.782240 0.4448 C 2.430546 0.931296 2.609852 0.0183 K/L 1.696025 0.393030 4.315255 0.0005 R-squared 0.672855 Prob(F-statistic) 0.000075 White Heteroskedasticity Test – Cross terms F-statistic 1.069752 Probability 0.417838 Obs*R-squared 5.528789 Probability 0.354799 i. Với bảng kết quả trên, viết lại mô hình với các biến Y, L, K. Khi đó nếu lao động tăng một đơn vị thì sản lượng tăng tối đa bao nhiêu? k. Với bảng kết quả dưới đây, viết hồi quy phụ của kiểm định, thực hiện kiểm định và kết luận về ước lượng thu được. Bảng 6.10 Dependent Variable: LOG(Y) Sample(adjusted): 1 20 Variable Coefficient Std. Error t-Statistic Prob. C 0.764682 0.713780 1.071314 0.2990 LOG(L) 0.599932 0.248400 2.415183 0.0273 LOG(K) 0.510023 0.126959 4.017220 0.0009 R-squared 0.910215 Prob(F-statistic) 0.000000 White Heteroskedasticity Test – Cross terms F-statistic 1.779605 Probability 0.181710 Obs*R-squared 7.771870 Probability 0.169265 l. Với RESID và FITTED là giá trị ước lượng biến phụ thuộc thu được từ bảng 6.10, được kết quả hồi quy trong bảng 6.11. Hãy cho biết kết quả đó dùng để làm gì, kết luận gì về mô hình bảng 6.10 ? Bảng 6.11 Dependent Variable: RESID^2 Sample: 1 20 Included observations: 20 Variable Coefficient Std. Error t-Statistic Prob. C 57497.17 31461.63 1.827533 0.0842 FITTED^2 -0.020171 0.029780 -0.677318 0.5068 R-squared 0.024853 Mean dependent var 37163.64 Durbin-Watson stat 2.202629 Prob(F-statistic) 0.506817 KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 7
  8. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 CHƯƠNG 7 HIỆN TƯỢNG TỰ TƯƠNG QUAN Bài tập 7.5 Cho kết quả hồi quy sau, với QA là lượng bán của hãng nước giải khát A, PA là giá của hãng A, PB là giá của hãng B, QB là lượng bán của hãng B Bảng 7.5 Dependent Variable: QA Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 1814.139 174.1613 10.41643 0.0000 PA -51.75140 9.840903 -5.258806 0.0000 R-squared 0.556943 Mean dependent var 923.5833 Adjusted R-squared 0.536804 S.D. dependent var 292.7673 Log likelihood -160.0802 F-statistic 27.65504 Durbin-Watson stat 0.480522 Prob(F-statistic) 0.000028 a. Dùng kiểm định Durbin-Watson để kiểm định về hiện tượng tự tương quan bậc 1 của mô hình? b. Cho kết quả kiểm định tự tương quan bậc nhất - AR(1) - dưới đây. Hãy viết mô hình hồi quy phụ để kiểm định, cho biết số quan sát trên lý thuyết là bao nhiêu, và số quan sát thực tế là bao nhiêu? Thực hiện kiểm định và kết luận. Bảng 7.6 Breusch-Godfrey Serial Correlation LM Test – AR(1) F-statistic 10.64234 Probability 0.003724 Obs*R-squared 8.071973 Probability 0.004496 Test Equation: Dependent Variable: RESID Presample missing value lagged residuals set to zero. Variable Coefficient Std. Error t-Statistic Prob. C 43.95483 89.61990 0.490458 0.6289 PA -2.595093 5.069180 -0.511935 0.6140 RESID(-1) 0.587992 0.180241 3.262259 0.0037 R-squared 0.336332 Prob(F-statistic) 0.013505 c. Cho kết quả sau, hãy cho biết mô hình có tự tương quan ở bậc hai không? Bảng 7.7 Test Equation: Dependent Variable: RESID Presample missing value lagged residuals set to zero. Variable Coefficient Std. Error t-Statistic Prob. C 30.29069 92.52208 0.327389 0.7468 PA -1.804521 5.238252 -0.344489 0.7341 RESID(-1) 0.678521 0.220174 3.081753 0.0059 RESID(-2) -0.165000 0.225132 -0.732902 0.4721 R-squared 0.353690 Prob(F-statistic) 0.030162 d. Với các kết quả kiểm định trên, hãy nêu một cách khắc phục khuyết tật của mô hình gốc dựa trên thống kê Durbin-Watson? e. Cho kết quả ước lượng sau, cho biết kết quả này dùng để làm gì, đã đạt mục đích chưa? Bảng 7.8 Dependent Variable: QA-0.76*QA(-1) Sample(adjusted): 2 24 Included observations: 23 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 367.4280 46.56235 7.891097 0.0000 PA-0.76*PA(-1) -48.2352 11.88927 -4.057035 0.0006 R-squared 0.439395 Mean dependent var 186.7652 Durbin-Watson stat 2.207469 Prob(F-statistic) 0.000567 KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 8
  9. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 Breusch-Godfrey Serial Correlation LM Test – AR(1) F-statistic 0.447593 Probability 0.511130 Obs*R-squared 0.503464 Probability 0.477982 f. Với kết quả ước lượng trên, cho biết ước lượng điểm hệ số chặn, hệ số góc trong mô hình hồi quy QA theo PA, viết hàm hồi quy mẫu? Từ đó ước lượng mức thay đổi của lượng bán khi giá tăng 1 đơn vị? g. Với kết quả ước lượng bằng phương pháp Cochrane-Orcutt trong bảng 7.9, cho biết phương pháp hội tụ sau bao nhiêu bước lặp? Ước lượng điểm hệ số tự tương quan bậc 1 được ước lượng bằng bao nhiêu? Bảng 7.9 Dependent Variable: QA Sample(adjusted): 2 24 Included observations: 23 after adjusting endpoints Convergence achieved after 4 iterations Variable Coefficient Std. Error t-Statistic Prob. C 1792.880 200.4069 8.946201 0.0000 PA -50.66567 11.17339 -4.534492 0.0002 AR(1) 0.682252 0.445339 1.531981 0.1398 R-squared 0.512028 Mean dependent var 905.1304 Durbin-Watson stat 1.954003 Prob(F-statistic) 0.000766 h. Khi thêm trễ bậc 1 của biến QA vào mô hình gốc, có kết quả sau; hãy kiểm định hiện tượng tự tương quan bậc 1 của mô hình này? Cho biết kiểm định B-G được thực hiện như thế nào? Bảng 7.10 Dependent Variable: QA Sample(adjusted): 2 24 Included observations: 23 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 990.5671 402.1343 2.463274 0.0230 PA -56.55842 10.25072 -5.517509 0.0000 QA(-1) 54.23958 24.38371 2.224419 0.0378 R-squared 0.608809 Mean dependent var 905.1304 Durbin-Watson stat 2.464703 Prob(F-statistic) 0.000084 Breusch-Godfrey Serial Correlation LM Test: AR(1) F-statistic 1.579754 Probability 0.224029 Obs*R-squared 1.765539 Probability 0.183935 ________________________________________ CHƯƠNG 8 ĐỊNH DẠNG HÀM HỒI QUY Bài tập 8.1 Cho kết quả hồi quy sau, với QA là lượng bán của hãng nước giải khát A, PA là giá của hãng A, PB là giá của hãng B, QB là lượng bán của hãng B Bảng 8.1 Dependent Variable: QA Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 1814.139 174.1613 10.41643 0.0000 PA -51.75140 9.840903 -5.258806 0.0000 R-squared 0.556943 Mean dependent var 923.5833 Durbin-Watson stat 0.480522 Prob(F-statistic) 0.000028 a. Hãy nêu cách để kiểm định dạng hàm hồi quy, sự thiếu biến của mô hình? KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 9
  10. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 b. Cho kết quả kiểm định Ramsey RESET dưới đây, viết lại hồi quy phụ, thực hiện kiểm định để cho kết luận về định dạng của mô hình? Bảng 8.2 Ramsey RESET Test: number of fitted term: 1 F-statistic 7.240588 Probability 0.013685 Log likelihood ratio 7.109707 Probability 0.007667 Test Equation: Dependent Variable: QA Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 2921.071 439.1535 6.651594 0.0000 PA -58.87232 9.079991 -6.483743 0.0000 FITTED^2 -16395.22 6092.986 -2.690834 0.0137 R-squared 0.670538 Mean dependent var 923.5833 Durbin-Watson stat 2.522139 Prob(F-statistic) 0.000009 c. Cho kết quả dưới đây, với RESID là phần dư từ mô hình gốc. Hãy cho biết kết quả đó dùng để làm gì, có kết luận gì về mô hình gốc? Bảng 8.3 Dependent Variable: RESID Sample: 1 24 Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 1106.932 439.1535 2.520604 0.0199 PA -7.120926 9.079991 -0.784244 0.4417 FITTED^2 -16395.22 6092.986 -2.690834 0.0137 R-squared 0.256389 Mean dependent var -4.87E-13 Durbin-Watson stat 2.522139 Prob(F-statistic) 0.044579 d. Khi thêm biến PB vào mô hình, được kết quả dưới đây, hãy viết các hồi quy phụ ứng với các kiểm định Ramsey, và thực hiện kiểm định để cho kết luận? Bảng 8.4 Dependent Variable: QA Included observations: 24 Variable Coefficient Std. Error t-Statistic Prob. C 1003.407 355.4275 2.823098 0.0102 PA -59.05641 9.269155 -6.371283 0.0000 PB 55.63005 21.91590 2.538342 0.0191 R-squared 0.660965 Mean dependent var 923.5833 Durbin-Watson stat 2.489845 Prob(F-statistic) 0.000012 Ramsey RESET Test: number of fitted terms: 1 F-statistic 3.025354 Probability 0.097342 Log likelihood ratio 3.380728 Probability 0.065963 Ramsey RESET Test: number of fitted terms: 2 F-statistic 1.748459 Probability 0.200905 Log likelihood ratio 4.054543 Probability 0.131694 e. Sau khi hồi quy mô hình trong bảng 8.4 thu được phần dư và giá trị ước lượng. Hồi quy phần dư theo PA, PB và bình phương giá trị ước lượng thì thu được kết quả có hệ số xác định bằng 0,088. Hãy cho biết kết quả đó dùng để làm gì, và có kết luận gì thu được? KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 10
  11. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 Bài tập 8.2 a. Cho kết quả sau đây, cho biết mô hình có khuyết tật nào trong số các hiện tượng: phương sai sai số thay đổi, tự tương quan, định dạng hàm sai, đa cộng tuyến? Nếu mức α = 10% thì có kết luận nào thay đổi không? Bảng 8.5 Dependent Variable: QA Sample(adjusted): 2 24 Included observations: 23 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 2065.538 461.0943 4.479644 0.0003 PA -2.665663 36.10606 -0.073829 0.9419 PA(-1) -58.63268 43.50711 -1.347658 0.1936 QA(-1) -0.134511 0.240824 -0.558546 0.5830 R-squared 0.557347 Mean dependent var 905.1304 Durbin-Watson stat 2.067579 Prob(F-statistic) 0.001214 White Heteroskedasticity Test: Cross terms F-statistic 19.20202 Probability 0.009471 Obs*R-squared 21.39090 Probability 0.022505 Breusch-Godfrey Serial Correlation LM Test: AR(1) F-statistic 0.614485 Probability 0.443298 Obs*R-squared 0.759256 Probability 0.383562 Ramsey RESET Test: number of fitted terms: 1 F-statistic 2.487672 Probability 0.132154 Log likelihood ratio 2.977387 Probability 0.084436 b. Với các bảng kết quả 8.6, 8.7, 8.8 sau đây, thực hiện các kiểm định về các khuyết tật có thể có, và nhận xét về tính chất của các ước lượng? Bảng 8.6 Dependent Variable: LOG(Y) Method: Least Squares Included observations: 20 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 2.319090 0.347622 6.671290 0.0000 LOG(K) 0.779698 0.068054 11.45703 0.0000 R-squared 0.879408 Mean dependent var 6.298380 Adjusted R-squared 0.872708 S.D. dependent var 0.180753 S.E. of regression 0.064489 Akaike info criterion -2.550009 Sum squared resid 0.074859 Schwarz criterion -2.450436 Log likelihood 27.50009 F-statistic 131.2634 Durbin-Watson stat 3.126475 Prob(F-statistic) 0.000000 White Heteroskedasticity Test: F-statistic 10.84391 Probability 0.000921 Obs*R-squared 11.21171 Probability 0.003676 Breusch-Godfrey Serial Correlation LM Test: F-statistic 2.116909 Probability 0.165019 Obs*R-squared 2.336943 Probability 0.126337 Ramsey RESET Test: F-statistic 4.705379 Probability 0.044538 Log likelihood ratio 4.886936 Probability 0.027061 KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 11
  12. VÍ DỤ - BÀI TẬP KINH TẾ LƯỢNG SỬ DỤNG CHƯƠNG TRÌNH EVIEWS – T1.2010 Bảng 8.7 Dependent Variable: LOG(Y) Method: Least Squares Included observations: 20 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 0.764682 0.713780 1.071314 0.2990 LOG(K) 0.510023 0.126959 4.017220 0.0009 LOG(L) 0.599932 0.248400 2.415183 0.0273 R-squared 0.910215 Mean dependent var 6.298380 Durbin-Watson stat 2.688685 Prob(F-statistic) 0.000000 White Heteroskedasticity Test: Cross terms F-statistic 3.344932 Probability 0.044312 Obs*R-squared 10.89331 Probability 0.053386 Breusch-Godfrey Serial Correlation LM Test: AR(1) F-statistic 2.224810 Probability 0.155262 Obs*R-squared 2.441518 Probability 0.118162 Ramsey RESET Test: number of fitted terms: 2 F-statistic 0.072964 Probability 0.790522 Log likelihood ratio 0.090998 Probability 0.762912 Bảng 8.8 Dependent Variable: LOG(Y/L) Method: Least Squares Included observations: 20 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C 1.289333 0.025077 51.41567 0.0000 LOG(K/L) 0.567178 0.099110 5.722710 0.0000 R-squared 0.645316 Mean dependent var 1.413279 Durbin-Watson stat 2.885013 Prob(F-statistic) 0.000020 White Heteroskedasticity Test: Cross terms F-statistic 0.919440 Probability 0.417684 Obs*R-squared 1.952218 Probability 0.376774 Breusch-Godfrey Serial Correlation LM Test: AR(1) F-statistic 2.330110 Probability 0.129384 Obs*R-squared 4.511298 Probability 0.104806 Ramsey RESET Test: number of fitted terms: 2 F-statistic 0.501382 Probability 0.488489 Log likelihood ratio 0.581330 Probability 0.445791 c. Với các kiểm định, hãy viết phương trình hồi quy phụ của các kiểm định đó? d. Hãy so sánh 3 bảng kết quả hồi quy sau và nêu ra nhận xét về mối quan hệ giữa các biến Sản lượng, Vốn, Lao động? KHOA TOÁN KINH TẾ - ĐẠI HỌC KINH TẾ QUỐC DÂN 12
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2