T¹p chÝ Khoa häc & C«ng nghÖ – Sè 1(41)/N¨m 2007<br />
<br />
X©y dùng to¸n tö biªn - miÒn cho mét bµi to¸n biªn<br />
®èi víi ph−¬ng tr×nh d¹ng song ®iÒu hoµ<br />
Lª Tïng S¬n (Tr−êng §H S− ph¹m- §H Th¸i Nguyªn)<br />
<br />
1. §Æt vÊn ®Ò<br />
Mét trong nh÷ng ph−¬ng ph¸p gi¶i sè mang tÝnh hiÖu qu¶ cao ®èi víi c¸c bµi to¸n biªn<br />
cña ph−¬ng tr×nh ®¹o hµm riªng cÊp bèn lµ ®−a chóng vÒ mét d#y c¸c bµi to¸n cÊp hai vµ sö<br />
dông c¸c kÕt qu¶ ®# cã. §Ó lµm ®−îc viÖc nµy, gÇn ®©y, mét sè nhµ nghiªn cøu nh− Abramov,<br />
Ulijanova [1], §.Q.¸ [2,3,5],… ®# ¸p dông ph−¬ng ph¸p to¸n tö biªn hoÆc to¸n tö biªn – miÒn<br />
cho c¸c bµi to¸n ®ã. C¸c tÝnh chÊt cña to¸n tö còng ®−îc xem xÐt, ®¸nh gi¸, th«ng qua ®ã cã thÓ<br />
kÕt luËn ®−îc sù héi tô cña s¬ ®å lÆp cña nghiÖm xÊp xØ vÒ nghiÖm ®óng cña bµi to¸n gèc.<br />
TiÕp tôc h−íng nghiªn cøu trªn, chóng t«i xÐt bµi to¸n<br />
<br />
∆2u + bu = f ,<br />
<br />
x ∈ Ω,<br />
<br />
b > 0,<br />
<br />
(1)<br />
<br />
u Γ = g1 ,<br />
<br />
(2)<br />
<br />
∆u Γ = g 2 ,<br />
<br />
(3)<br />
<br />
∂u<br />
∂γ<br />
<br />
(4)<br />
<br />
1<br />
<br />
2<br />
<br />
= g3 ,<br />
Γ<br />
<br />
trong ®ã Ω lµ mét miÒn giíi néi trong Rn, n≥2, Γ lµ biªn ®ñ tr¬n cña Ω, Γ= Γ1∪Γ2, γ lµ<br />
<br />
ph¸p tuyÕn ngoµi cña Γ, ∆ lµ to¸n tö Laplace. Tr−íc hÕt, chóng t«i ®−a bµi to¸n (1) – (4) vÒ mét<br />
ph−¬ng tr×nh to¸n tö, trªn c¬ së ®ã, x©y dùng mét s¬ ®å lÆp cho bµi to¸n gèc.<br />
2. §−a bµi to¸n(1)-(4) vÒ ph−¬ng tr×nh to¸n tö biªn- miÒn<br />
NÕu ®Æt:<br />
<br />
∆u = v ,<br />
ϕ = −bu ,<br />
<br />
(5)<br />
(6)<br />
<br />
∆u Γ = v 0 ,<br />
<br />
vµ ký hiÖu:<br />
<br />
1<br />
<br />
(7)<br />
<br />
th× bµi to¸n (1)-(4) ®−îc ®−a vÒ c¸c bµi to¸n:<br />
<br />
∆v = f + ϕ ,<br />
x∈Ω ,<br />
v Γ = v0 , v Γ = g 2<br />
1<br />
<br />
2<br />
<br />
∆u = v ,<br />
u Γ = g1 ,<br />
1<br />
<br />
(8)<br />
vµ<br />
(9)<br />
<br />
∂u<br />
∂γ<br />
<br />
= g3 .<br />
Γ2<br />
<br />
ë ®©y: v, v0, ϕ lµ ch−a biÕt. NÕu t×m ®−îc v0, ϕ , th× tõ (8) ta t×m ®−îc v, tiÕp tôc gi¶i<br />
(9), ta t×m ®−îc nghiÖm u cña bµi to¸n (1)- (4).<br />
13<br />
<br />
T¹p chÝ Khoa häc & C«ng nghÖ – Sè 1(41)/N¨m 2007<br />
<br />
§Ó t×m v0, ϕ , ta x©y dùng to¸n tö B ®−îc x¸c ®Þnh nh− sau:<br />
<br />
B :ω →<br />
<br />
Bω<br />
<br />
b∂u <br />
<br />
<br />
Bω = ∂γ Γ ,<br />
1<br />
ϕ + bu <br />
<br />
<br />
<br />
v <br />
ω = 0 ,<br />
ϕ <br />
<br />
(10)<br />
<br />
trong ®ã u lµ nghiÖm cña c¸c bµi to¸n:<br />
<br />
∆v = ϕ ,<br />
<br />
x ∈Ω,<br />
<br />
v Γ = v0 ,<br />
<br />
vΓ =0<br />
<br />
1<br />
<br />
2<br />
<br />
(11)<br />
vµ:<br />
<br />
∆u = v ,<br />
u Γ =0,<br />
1<br />
<br />
(12)<br />
<br />
∂u<br />
∂γ<br />
<br />
= 0.<br />
Γ2<br />
<br />
NÕu ®Æt u = u1+u2, v = v1+v2 th× ta ®−a ®−îc (8), (9) tíi d#y c¸c bµi to¸n d−íi ®©y:<br />
<br />
∆v2 = f ,<br />
<br />
v2<br />
<br />
Γ1<br />
<br />
= 0,<br />
<br />
v2<br />
<br />
x∈Ω,<br />
<br />
Γ2<br />
<br />
(13)<br />
<br />
= g2 ,<br />
<br />
∆u2 = v2 ,<br />
u2<br />
<br />
Γ1<br />
<br />
v1 Γ<br />
<br />
1<br />
<br />
= g1 ,<br />
<br />
(14)<br />
<br />
∂u 2<br />
∂γ<br />
<br />
= g3 ,<br />
Γ2<br />
<br />
∆v1 = ϕ ,<br />
x∈Ω,<br />
= v0 , v1 Γ = 0 ,<br />
2<br />
<br />
∆u1 = v1 ,<br />
u1 Γ = 0 ,<br />
1<br />
<br />
(15)<br />
<br />
(16)<br />
<br />
∂u1<br />
∂γ<br />
<br />
= 0.<br />
Γ2<br />
<br />
Tõ c¸c bµi to¸n (13),(14) ta t×m ®−îc u2, v2 , tõ (15), (16) vµ tõ ®Þnh nghÜa cña B, ta cã:<br />
<br />
∂u1 <br />
b<br />
<br />
Bω = ∂γ Γ1 .<br />
ϕ + bu <br />
<br />
1 <br />
<br />
(17)<br />
<br />
NÕu u lµ nghiÖm cña bµi to¸n (1)-(4), th× u ph¶i tho¶ m#n c¸c ®iÒu kiÖn:<br />
<br />
∂u<br />
Γ = g3<br />
∂γ 1<br />
ϕ + bu = 0.<br />
<br />
Tõ ®ã ta cã<br />
14<br />
<br />
T¹p chÝ Khoa häc & C«ng nghÖ – Sè 1(41)/N¨m 2007<br />
<br />
∂(u1 + u 2 )<br />
∂u1<br />
∂u 2<br />
Γ1 = g 3 ⇔<br />
Γ1 = g 3 −<br />
∂γ<br />
∂γ<br />
∂γ<br />
ϕ + b(u1 + u 2 ) = 0 ⇔ ϕ + bu1 = −bu2 .<br />
<br />
Γ1<br />
<br />
V× vËy:<br />
<br />
<br />
∂u<br />
b g 3 − 2<br />
Bω = <br />
∂γ<br />
<br />
− bu 2<br />
<br />
<br />
Γ1<br />
<br />
<br />
<br />
.<br />
<br />
<br />
<br />
(18)<br />
<br />
§Æt<br />
<br />
<br />
∂u<br />
b g 3 − 2<br />
F = <br />
∂γ<br />
<br />
− bu 2<br />
<br />
<br />
<br />
Γ1 <br />
<br />
,<br />
<br />
<br />
<br />
(19)<br />
<br />
ta cã ph−¬ng tr×nh cña to¸n tö B:<br />
(20)<br />
Bω =F .<br />
3. X©y dùng s¬ ®å lÆp cho bµi to¸n (1) – (4)<br />
Nhê ph−¬ng tr×nh (20), ta cã thÓ x©y dùng mét s¬ ®å lÆp cho bµi to¸n (1)- (4) nh− sau:<br />
<br />
(<br />
<br />
)<br />
<br />
1.<br />
<br />
( 0)<br />
( 0)<br />
(0)<br />
Cho gi¸ trÞ ban ®Çu cña cÆp ω = v 0 , ϕ ,<br />
<br />
2.<br />
<br />
(k )<br />
(k )<br />
(k )<br />
BiÕt ω = v 0 , ϕ ,<br />
<br />
(<br />
<br />
)<br />
<br />
∆v ( k ) = f + ϕ ( k ) ,<br />
v (k )<br />
<br />
Γ1<br />
<br />
= v0( k ) ,<br />
<br />
k = 0,1,... gi¶i liªn tiÕp hai bµi to¸n<br />
<br />
x∈Ω,<br />
<br />
v (k )<br />
<br />
Γ2<br />
<br />
(21)<br />
<br />
(22)<br />
<br />
= g2 ,<br />
<br />
vµ<br />
<br />
∆u ( k ) = v ( k ) ,<br />
u<br />
<br />
(k )<br />
Γ1<br />
<br />
(23)<br />
<br />
∂u ( k )<br />
= g1 ,<br />
∂γ<br />
<br />
= g3 .<br />
Γ2<br />
<br />
4. TÝnh xÊp xØ míi cña v0 vµ ϕ<br />
<br />
v0( k +1) = v0( k ) − τ k +1b<br />
<br />
∂u ( k )<br />
,<br />
∂γ<br />
<br />
x ∈ Γ1 ,<br />
<br />
ϕ ( k +1) = ϕ ( k ) − τ k +1 (ϕ ( k ) + bu ( k ) ,<br />
<br />
x ∈Ω,<br />
<br />
(24)<br />
(25)<br />
<br />
CÇn chó ý r»ng qu¸ tr×nh lÆp (21)- (25) lµ thÓ hiÖn cña s¬ ®å lÆp hai líp d−íi ®©y :<br />
<br />
ω ( k +1) − ω ( k )<br />
+ Bω ( k ) = F<br />
τ k +1<br />
15<br />
<br />
(26)<br />
<br />
T¹p chÝ Khoa häc & C«ng nghÖ – Sè 1(41)/N¨m 2007<br />
<br />
®èi víi ph−¬ng tr×nh to¸n tö (20), trong ®ã<br />
<br />
τ k +1<br />
<br />
lµ tham sè lÆp ®ñ nhá. (xem [4]).<br />
<br />
5. KÕt luËn<br />
- §# x©y dùng ®−îc mét to¸n tö biªn – miÒn vµ ®−a bµi to¸n gèc (1) – (4) vÒ ph−¬ng<br />
tr×nh to¸n tö cña nã.<br />
- §# x©y dùng ®−îc mét s¬ ®å lÆp cña nghiÖm xÊp xØ cña bµi to¸n gèc th«ng qua ph−¬ng<br />
tr×nh to¸n tö.<br />
- Nhê c¸c kÕt qu¶ trªn, trong thêi gian tiÕp theo, chóng t«i sÏ xem xÐt c¸c tÝnh chÊt cña<br />
to¸n tö B vµ sö dông kÜ thuËt ngo¹i suy theo tham sè cho bµi to¸n(1) – (4), qua ®ã cã thÓ lùa<br />
chän gi¸ trÞ cña tham sè ngo¹i suy sao cho s¬ ®å lÆp (21)-(25) héi tô vÒ nghiÖm ®óng cña bµi<br />
to¸n gèc (1) – (4)<br />
Summary<br />
Construction of mixed boundary- domain operator<br />
for a boundary value problem of the biharmonic type equation<br />
By Le Tung Son<br />
In this paper, we propose a method for constructing of mixed boundary- domain operator for<br />
a boundary value problem of the biharmonic type equation and constructing an iterative process for<br />
it. It is based on the reduction the BVP for differential equations of degree four to BVP for<br />
equations of degree two.<br />
Tµi liÖu tham kh¶o<br />
[1]. A.A. Abramov and V.I. Unijanova (1992), On a method for solving biharmonic type equation<br />
with singularly small parameter, J. Comput. Math. and Math. Phys. 32 (4) 567- 575 (Russian).<br />
[2]. Dang Quang A (1994), Boundary operator method for approximate solution of biharmonic<br />
type equation, Vietnam Journal cña Math.22 (1-2) 114- 120.<br />
[3]. Dang Quang A (1994), Approximate method for solving an elliptic problem with<br />
discontinuous coefficients, J. Comput. Appl. Math. 51(2) (1994) 193- 203.<br />
[4]. Dang Quang A (1993), Accelerated methods for solving grid equations, J. Comput. Sci.<br />
Cyber. 9 (2) (1993) 22- 32.<br />
[5]. Dang Quang A (1998), Mixed Boundary- domain Operator in Approximate Solution of Biharmonic<br />
Type Equation, Vietnam Journal of Mathematics.26:3 (1998) 243- 252.<br />
[6]. J. L. Lions and E. Magenes (1968), Problemes aux Limites Non Homogenes et Application,<br />
Vol. 1, Dunod, Paris.<br />
[7]. A. Samarskij and E. Nikolaev (1989). Numberical Methods for Grid Equations, Vol. 2,<br />
Birkhauser, Basel.<br />
<br />
16<br />
<br />