Deligne’s conjecture
-
We prove that the existence of an automorphism of finite order on a Q-variety X implies the existence of algebraic linear relations between the logarithm of certain periods of X and the logarithm of special values of the Γ-function. This implies that a slight variation of results by Anderson, Colmez and Gross on the periods of CM abelian varieties is valid for a larger class of CM motives. In particular, we prove a weak form of the period conjecture of Gross-Deligne [11, p. 205]1 .
29p tuanloccuoi 04-01-2013 61 9 Download
-
We reformulate a conjecture of Deligne on 1-motives by using the integral weight filtration of Gillet and Soul´ on cohomology, and prove it. This implies e the original conjecture up to isogeny. If the degree of cohomology is at most two, we can prove the conjecture for the Hodge realization without isogeny, and even for 1-motives with torsion. j Let X be a complex algebraic variety. We denote by H(1) (X, Z) the maximal mixed Hodge structure of type {(0, 0), (0, 1), (1, 0), (1, 1)} contained in j j H j (X, Z). Let H(1) (X, Z)fr...
42p tuanloccuoi 04-01-2013 41 6 Download