
Thuật toán K nearest neighbor
-
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 5, chương này cung cấp cho học viên những nội dung về: phân lớp; bài toán phân lớp; học dựa trên các láng giềng gần nhất (Nearest neighbors learning); ma trận nhầm lẫn (Confusion matrix); giải thuật phân lớp k-NN;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
24p
duonghoanglacnhi
07-11-2022
25
8
Download
-
Luận văn "Sử dụng Data Mining dự báo nhu cầu lao động cho một số ngành nghề trên địa bàn tỉnh Bình Dương" được hoàn thành với mục tiêu nhằm nghiên cứu về ứng dụng khai phá dữ liệu và các thuật toán Linear Regression, K-nearest neighbors, Decision trees và Random forests để khai phá dữ liệu cho Dữ liệu tại Trung tâm dịch vụ việc làm tỉnh Bình Dương với một cơ sở dữ liệu điều tra về cầu lao động của các Doanh nghiệp trên địa bàn tỉnh Bình Dương.
67p
matroinho2510
08-11-2022
19
4
Download
-
Mục tiêu nghiên cứu chính của luận văn là khai phá dữ liệu và phát hiện tri thức trong chương này nghiên cứu tổng quan về khái phá dữ liệu và phát hiện tri thức. Bên cạnh đó, một số kĩ thuật khái phá dữ liệu cơ bản cũng được trình bày trong chương này. Đồng thời ứng dụng phân lớp dữ liệu hoa Iris, chương này phát triển và Demo ứng dụng công cụ Weka xây dựng mô hình, kiểm tra và đánh giá mô hình dự doán hoa Iris. Mời các bạn tham khảo!
73p
generallady
24-07-2021
76
11
Download
-
Mục tiêu của đồ án nhằm: nghiên cứu, tìm hiểu thuật toán K-nearest neighbor, đánh giá hiệu quả của thuật toán, làm quen với bộ dữ liệu Iris và sử dụng bộ dữ liệu vào thử nghiệm và đánh giá. Mời các bạn cùng tham khảo đồ án để nắm rõ các nội dug nghiên cứu.
42p
photokimlien
18-07-2019
364
59
Download
CHỦ ĐỀ BẠN MUỐN TÌM
