intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Cơ chế làm sạch môi trường nước bằng thực vật

Chia sẻ: Năm Tháng Tĩnh Lặng | Ngày: | Loại File: PDF | Số trang:30

93
lượt xem
10
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng trình bày các nội dung: Giới thiệu cơ chế làm sạch môi trường bằng thực vật (phytoremediation), ưu điểm và giới hạn của phytoremediation, ứng dụng của phytoremediation, một số nghiên cứu sử dụng thực vật làm sạch môi trường nước ở đồng bằng sông Cửu Long. Mời các bạn cùng tham khảo nội dung chi tiết.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Cơ chế làm sạch môi trường nước bằng thực vật

  1. Cơ chế làm sạch môi trường nước bằng thực vật TS. Ngô Thụy Diễm Trang Email: ntdtrang@ctu.edu.vn Seminar Khoa MT & TNTN, ĐHCT, 26/5/2014
  2. Nội dung báo cáo 1. Giới thiệu cơ chế làm sạch môi trường bằng thực vật (phytoremediation) 2. Ưu điểm và giới hạn của phytoremediation 3. Ứng dụng của phytoremediation 4. Một số nghiên cứu sử dụng thực vật làm sạch môi trường nước ở ĐBSCL
  3. 1. Làm sạch môi trường bằng thực vật (phytoremediation) Phytoremediation? Phyto Remediation Thlaspi rotundifolium (Thực vật) (Phục hồi/làm sạch) (L.) GAUDIN, 1829  Brooks (New Zealand) (1977): “godfather” của phytoremediation.  Reeves & Brooks (1983): thực vật siêu tích lũy/hấp thu (hyperaccumulation) vùng hệ sinh thái ô nhiễm quặng mỏ chì – kẽm (Bắc nước Ý).  Năm 1995, Nicks & Chambers trình diễn mô hình mang tính khả thi kinh tế ở California (phytomining). Alyssum wulfenianum BENTH. EX WILLD., 1814
  4. Các chất ô nhiễm đã được nghiên cứu bằng phương pháp phytoremediation • Metals (Pb, Zn, Cd, Cu, Ni, Hg), metalloids (As, Sb) • Inorganic compounds (NO3- NH4+, PO43-) • Radioactive chemical elements (U, Cs, Sr) • Petroleum hydrocarbons (BTEX) • Pesticides and herbicides (atrazine, bentazone, chlorinated and nitroaromatic compounds) • Explosives (TNT, DNT) • Chlorinated solvents (TCE, PCE) • Industrial organic wastes (PCPs, PAHs), and others
  5. Các cơ chế của phytoremediation
  6. Các hình thức/cơ chế của phytoremediation Công nghệ phytoremediation bao gồm các hình thức khác nhau, tùy theo tính chất hóa học và tính chất của các chất gây ô nhiễm (nếu là trơ, dễ bay hơi hoặc chất có khả năng bị phân hủy bỡi thực vật hoặc phân hủy trong đất) và tùy theo các đặc tính thực vật: 1. Phytodegradation (Phytotransformation) 2. Phytostabilization (Phytoimmobilization) 3. Phytovolatilization 4. Phytoextraction (Phytoaccumulation, Phytoabsorption hoặc Phytosequestration) 5. Phytofiltration 6. Rhizodegradation (Phytostimulation)
  7. Các hình thức/cơ chế của phytoremediation (tt) 1) Phytodegradation (phân hủy): Các chất ô nhiễm hữu cơ bị phân hủy (chuyển hóa) hoặc bị khoáng hóa bởi các enzymes chuyên biệt trong tế bào thực vật: nitroreductases, dehalogenases (phân giải dung môi và thuốc trừ sâu gốc Cl) và laccases (phân giải anilines). Loài họ liễu (Populus sp.) và họ rong xương cá (Myriophyllium spicatum) là những cây có hệ thống enzymes này. 2) Phytostabilization (cố định): Các chất ô nhiễm hữu cơ hoặc vô cơ, được kết hợp vào lignin của thành tế bào rễ hoặc vào mùn. Kim loại bị kết tủa do rễ cây tiết dịch và sau đó chúng bị giữ lại trong đất. Mục tiêu chính của cơ chế này là hạn chế sự di chuyển và khuếch tán của chất gây ô nhiễm. Loài chi Haumaniastrum (họ húng), Eragrostis (họ Hòa thảo), Ascolepis (họ Cói), Lay ơn và Alyssum (họ Cải có hoa) là ví dụ về cây trồng cho mục đích này. 3) Phytovolatilization (bay hơi): Một số loài cây có khả năng hấp thu và bay hơi một số kim loại /á kim. Một số nguyên tố của nhóm IIB, VA và VIA của bảng tuần hoàn (đặc biệt là Hg, Se và As) được hấp thu bởi rễ, được chuyển đổi thành các dạng không độc hại, và sau đó thải vào khí quyển. Ví dụ: Astragalus bisulcatus (loài có hoa Họ Đậu) và Stanleya pinnata (họ Cải có hoa) xử lý Se. Loài Nicotiana tabacum (thuốc lá), Liriodendron tulipifera hoặc Brassica napus (cải dầu) xử lý Hg. Kỹ thuật này cũng có thể được sử dụng cho các hợp chất hữu cơ.
  8. Các hình thức/cơ chế của phytoremediation (tt) 4) Phytoextraction (tách chiết): Rễ hấp thu chất ô nhiễm sau đó chuyển vị và tích lũy trong các bộ phận bên trên (thân, lá). Cơ chế này chủ yếu được áp dụng cho việc loại bỏ kim loại (Cd, Ni, Cu, Zn, Pb) hay yếu tố khác (Se, As) và các hợp chất hữu cơ. Elsholtzia splendens, Alyssum bertolonii, Thlaspi caerulescens và Pteris vittata được biết đến như là Cu, Ni, Zn/Cd và As hyperaccumulators. 5) Phytofiltration (lọc): Thực vật hấp thu, tổng hợp và/hoặc kết tủa các chất ô nhiễm, đặc biệt là kim loại nặng/các yếu tố phóng xạ, từ môi trường nước thông qua hệ thống rễ hoặc cơ quan ngập nước khác của cây. Các thực vật được trồng trong hệ thống thủy canh, theo đó nước thải đi qua và được "lọc" bởi rễ (Rhizofiltration). Những loài thực vật có diện tích tiếp xúc lớn, loài thủy sinh có khả năng siêu tích lũy/hấp thu và chịu đựng được điều kiện chất ô nhiễm sẽ cho kết quả xử lý tốt nhất. Loài tiềm năng: Helianthus annus (hướng dương), Brassica juncea (Cải bẹ xanh), Phragmites australis, Fontinalis antipyretica và một số loài Salix (liễu), Populus, Lemna và phân nhánh Callitriche. 6) Rhizodegradation (phân giải vùng rễ): Rễ phát triển thúc đẩy sự gia tăng vi sinh vật vùng rễ (chúng sử dụng dịch tiết và các chất chuyển hóa của cây là nguồn C và năng lượng). Ngoài ra, cây có thể tiết ra các enzymes phân giải sinh học. Việc áp dụng phytostimulation bị giới hạn đối với chất ô nhiễm hữu cơ.
  9. Các hình thức/cơ chế của phytoremediation (tt) Có những kỹ thuật/hình thức khác của phytoremediation (kết hợp hay biến thể của các hình thức trên). Bao gồm: a) Rào cản thủy lực: Một số loài cây lớn, đặc biệt là những cây có gốc rễ sâu (Populus sp.), hút nhiều nước ngầm qua quá trình bốc thoát hơi nước. Chất ô nhiễm trong nước này được chuyển hóa bởi các enzymes và bốc hơi cùng với nước hoặc đơn giản là cô lập trong mô thực vật. b) Thảm thực vật: Các loại thảo mộc, cây bụi hoặc cây lớn, trồng trên các bãi chôn lấp chất thải, được sử dụng để hạn chế sự xâm nhập của nước mưa, và sự lan truyền chất ô nhiễm. Rễ tăng thông khí, thúc đẩy phân hủy sinh học, bốc thoát hơi nước. Những khó khăn của kỹ thuật này là chất thải hạn chế sự phát triển của rễ cây. c) Đất ngập nước kiến tạo (constructed wetlands): d) Phytodesalination: Kỹ thuật mới xuất hiện sử dụng halophytes để loại bỏ muối thừa ra khỏi đất mặn. Tiềm năng của Suaeda maritima (Muối biển) và Sesuvium portulacastrum (Hải châu) trong việc loại bỏ và tích lũy NaCl từ đất mặn (500kgNaCl/4 tháng) (Ravindran et al. 2007).
  10. Làm sạch nước bằng đất ngập nước kiến tạo có trồng thực vật Quá trình lý-hóa-sinh học bao gồm lắng tụ, kết tủa, hấp phụ trên hạt đất, hấp thu bởi thực vật và chuyển hóa bởi vi khuẩn,… (Watson et al., 1989; Brix et al., 1993) Xử lý thành công nước thải nông nghiệp (dinh dưỡng, kim loại, As, Se, Bo, thuốc BVTV,…), công nghiệp (kim loại, Se), sinh hoạt (dinh dưỡng, kim loại), bãi rác, quặng mỏ (kim loại), nước ngầm (CHC, kim loại) …vùng ôn & nhiệt đới, quốc gia phát triển và đang phát triển
  11. 2. Ưu điểm và giới hạn của phytoremedation Ưu điểm Giới hạn Kỹ thuật tại chỗ, thụ động Bộ rễ cạn (giới hạn độ sâu,
  12. 3. Ứng dụng của phytoremedation
  13. Lựa chọn thực vật cho phytoextraction
  14. Tăng hiệu quả Phytoextraction
  15. Tóm lại: Chiến lược để tăng cường khả năng phytomining 1. Sử dụng loại thực vật siêu tích lũy có sinh khối cao (cân nhắc giá trị kinh tế đối với kim loại nặng cho phytomining) 2. Thay đổi công thức phân bón làm tăng sinh khối và năng suất kim loại 3. Sử dụng các chelate trong đất để tăng sự hấp thu nguyên tố của thực vật 4. Lựa chọn các giống cây cụ thể và chủng hoang dã có khả năng hyperaccumulation 5. Sử dụng công nghệ sinh học để đưa các gen hyperaccumulation vào thực vật sinh khối cao
  16. 4. Một số kết quả nghiên cứu ở ĐBSCL
  17. A. Vai trò Bồn bồn trong xử lý nước thải cá Tra nuôi thâm canh Lâm Thị Mỹ Nhiên & Ngô Thụy Diễm Trang (2013)
  18. Vai trò Bồn bồn trong xử lý nước thải cá Tra nuôi thâm canh Tích lũy trong nước N: 267 g N: 9% P: 31% P: 68 g TP lúc kết thúc Cho ăn N: 42 g P: 10 g Tuần hoàn FCR= 1.27 – 1.62 trở lại Cây hấp thu N: 17 % Thức ăn thừa và P: 33 % phân cá N: 173 g Hệ thống ĐNN P: 43 g TP lúc bắt đầu Lượng P bị loại bỏ không tính được do các quá N: 38 g trình hấp phụ, cây hấp thu, kết tủa,.... P: 3,5 g N: 82 % P: 70 % >> Bồn bồn đóng vai trò quan trọng trong việc loại bỏ chất dinh dưỡng và cải thiện điều kiện hệ thống xử lý theo thời gian Lâm Thị Mỹ Nhiên & Ngô Thụy Diễm Trang (2013)
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2