Bài giảng Xác suất thống kê ứng dụng trong kinh tế xã hội: Chương 5.3 - Ngô Thị Thanh Nga
lượt xem 9
download
Bài giảng "Xác suất thống kê ứng dụng trong kinh tế xã hội - Chương 5.3: Một số phân phối xác suất thường gặp" cung cấp cho người học các kiến thức: Phân phối nhị thức, phân phối Poisson, phân phối đều, phân phối chuẩn, phân phối mũ. Mời các bạn cùng tham khảo nội dung chi tiết.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Xác suất thống kê ứng dụng trong kinh tế xã hội: Chương 5.3 - Ngô Thị Thanh Nga
- Ch÷ìng V V.3 Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 1 / 41
- V.3 Mët sè ph¥n phèi x¡c su§t th÷íng g°p 1 Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc Ph¥n phèi Poisson Ph¥n phèi ·u Ph¥n phèi chu©n Ph¥n phèi mô Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 2 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc Nëi dung tr¼nh b y 1 Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc Ph¥n phèi Poisson Ph¥n phèi ·u Ph¥n phèi chu©n Ph¥n phèi mô Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 3 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc Quy luªt khæng - mët A(p) Khi ti¸n h nh mët ph²p thû, ta quan t¥m ¸n vi»c x£y ra hay khæng cõa mët bi¸n cè A n o â. Gi£ sû x¡c su§t º bi¸n cè A x£y ra trong mët l¦n thû l P(A)=p. Gåi X l bi¸n ng¨u nhi¶n ch¿ sè l¦n xu§t hi»n bi¸n cè A trong mët l¦n thû, ta d¹ d ng th§y X l bi¸n ng¨u nhi¶n ríi r¤c vîi tªp gi¡ trà l t0, 1u, v P pX 0q P pA¯ q 1 P pAq 1 p, P pX 1q P pAq p. ành ngh¾a Bi¸n ng¨u nhi¶n X ÷ñc gåi l tu¥n theo quy luªt khæng-mët vîi tham sè p (0
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc Quy luªt khæng - mët A(p) Tø b£ng ph¥n phèi x¡c su§t ta câ E pX q 0.p1 pq 1.p p, E pX 2 q 02 .p1 pq 12 .p p, V pX q E pX 2 q rE pX qs2 p p2 pp1 pq. °t q 1 p ta câ E pX q p, V pX q p.q, σx ?p.q. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 5 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc D¢y ph²p thû Bernoulli ành ngh¾a Mët d¢y n ph²p thû ëc lªp (k¸t qu£ cõa ph²p thû n y khæng £nh h÷ðng g¼ ¸n k¸t qu£ cõa ph²p thû kia) ÷ñc gåi l n ph²p thû Bernoulli (ho°c mët l÷ñc ç Bernoulli) n¸u thäa m¢n hai i·u ki»n sau: 1 Méi ph²p thû câ hai k¸t qu£ A v A, ¯ 2 P(A)=p; P(A) nh÷ nhau èi vîi måi ph²p thû. V½ dö: Tung mët çng ti·n 10 l¦n, ta câ 10 ph²p thû Bernoulli. Tung mët con xóc xc 150 l¦n ta quan t¥m ¸n bi¸n cè A l "Tung ÷ñc m°t 4 ch§m", ta câ 150 ph²p thû Bernoulli. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 6 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc Ph¥n phèi nhà thùc X²t n ph²p thû Bernoulli vîi x¡c su§t th nh cæng P(A)=p. Gåi X l sè l¦n xu§t hi»n bi¸n cè A (sè l¦n th nh cæng) trong n ph²p thû tr¶n. Ph¥n phèi x¡c su§t cõa X ÷ñc gåi l ph¥n phèi nhà thùc, kþ hi»u X B pn, pq. ành ngh¾a Bi¸n ng¨u nhi¶n X ÷ñc gåi l tu¥n theo ph¥n phèi nhà thùc, kþ hi»u X B pn, pq, n¸u X ch¿ nhªn ÷ñc mët trong c¡c gi¡ trà 0, 1, ..., n vîi x¡c su§t ÷ñc x¡c ành bði cæng thùc: P pX k q Cnk .pk .p1 pqnk , k 0, 1, ..., n. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 7 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc Ph¥n phèi nhà thùc M»nh · N¸u X B pn, pq th¼: E(X)= np, V(X)=npq, vîi q=1-p. Chùng minh: Ta câ thº coi bi¸n ng¨u nhi¶n ph¥n phèi nhà thùc X l têng cõa n bi¸n ng¨u nhi¶n ëc lªp còng ph¥n phèi X1 , X2 , ..., Xn trong â Xi l sè l¦n bi¸n cè A xu§t hi»n ð ph²p thû thù i. Nh÷ ta ¢ bi¸t Xi Appq do â E pXi q p, V pXi q p.q. Theo t½nh ch§t cõa ký vång v ph÷ìng sai cõa têng c¡c bi¸n ng¨u nhi¶n ëc lªp ta câ: E pX q E pX1 X2 Xn q E pX1 q E pX2 q E p Xn q p p p np, V pX q V pX1 X2 Xn q V pX1 q V p X2 q V pXn q pq pq pq npq. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 8 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc Minh håa ph¥n phèi nhà thùc Phân ph...i nh... th...c n=5, p=0.3 Phân ph...i nh... th...c n=10, p=0.3 Phân ph...i nh... th...c n=40, p=0.3 ● ● ● 0.25 ● ● 0.12 ● 0.30 ● ● 0.20 ● ● dbinom(0:10, 10, 0.3) dbinom(0:40, 40, 0.3) dbinom(0:5, 5, 0.3) 0.08 ● 0.15 0.20 ● ● ● 0.10 ● ● ● ● 0.04 0.10 ● ● 0.05 ● ● ● ● ● ● ● 0.00 0.00 ● 0.00 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0 1 2 3 4 5 0 2 4 6 8 10 0 10 20 30 40 x x x Phân ph...i nh... th...c n=5, p=0.5 Phân ph...i nh... th...c n=10, p=0.5 Phân ph...i nh... th...c n=40, p=0.5 0.25 ● ● ● ● 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.30 ● ● 0.20 ● ● ● ● 0.25 dbinom(0:10, 10, 0.5) dbinom(0:40, 40, 0.5) dbinom(0:5, 5, 0.5) 0.15 ● ● 0.20 ● ● 0.15 ● ● ● ● 0.10 ● ● 0.10 0.05 ● ● ● ● 0.05 ● ● ● ● ● ● 0.00 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0 1 2 3 4 5 0 2 4 6 8 10 0 10 20 30 40 x x x Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 9 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc V½ dö ph¥n phèi nhà thùc B i to¡n Mët ng÷íi mæi giîi b¡n chùng kho¡n ÷îc t½nh x¡c su§t b¡n ÷ñc trong mët l¦n ti¸p xóc vîi kh¡ch h ng l p=0.4. Trong mët ng y anh ta ti¸p xóc 6 l¦n vîi 6 kh¡ch h ng mët c¡ch ëc lªp vîi nhau ho n to n. T½nh x¡c su§t º trong ng y hæm â: Anh ta khæng b¡n ÷ñc chùng kho¡n. Anh ta b¡n ÷ñc cho ½t nh§t mët ng÷íi. Anh ta b¡n ÷ñc cho khæng qu¡ hai ng÷íi. Tr£ líi: Gåi X l sè l¦n ng÷íi mæi giîi chùng kho¡n b¡n ÷ñc chùng kho¡n trong ng y hæm â. Ta câ X B pn 6, p 0.4q. X¡c su§t º anh ta khæng b¡n ÷ñc chùng kho¡n l : P pX 0q C60 0.40 0.66 0.046656. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 10 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc V½ dö ph¥n phèi nhà thùc X¡c su§t º anh ta b¡n ÷ñc cho ½t nh§t mët ng÷íi l : P pX ¥ 1q 1P pX 1q 1P pX 0q 10.046656 0.953344. X¡c su§t º anh ta b¡n ÷ñc cho khæng qu¡ hai ng÷íi l : P pX ¤ 2q P p X 0q P p X 1q P p X 2q C60 0.40 0.66 C61 0.41 0.65 C62 0.42 0.64 0.54432. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 11 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc C¡c h m trong R Thüc h nh R Cho bi¸n ng¨u nhi¶n X B pn, pq, trong thüc h nh ta câ thº dòng c¡c h m sau: dbinom(k,n,p): Cho ta P(X=k) (k=0, 1,.., n). pbinom(k,n,p): Cho ta P pX ¤ k q (k=0, 1,.., n). rbinom(N,n,p): L§y m¨u ng¨u nhi¶n N ph¦n tû. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 12 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi Poisson Nëi dung tr¼nh b y 1 Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi nhà thùc Ph¥n phèi Poisson Ph¥n phèi ·u Ph¥n phèi chu©n Ph¥n phèi mô Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 13 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi Poisson Ph¥n phèi Poisson Ng÷íi ¦u ti¶n mæ t£ ph¥n phèi Poisson l Simeon Denis Poisson (1781-1840) v o n«m 1837. Ng÷íi ta xem x²t bi¸n ng¨u nhi¶n X ch¿ sè l¦n xu§t hi»n cõa mët bi¸n cè trong kho£ng thíi gian [0,t]. º h¼nh th nh n¶n ÷ñc ph¥n phèi Poisson ta c¦n câ c¡c gi£ ành sau: 1 Trà trung b¼nh cõa sè l¦n x£y ra trong mët ìn và thíi gian câ thº ÷îc l÷ñng ÷ñc tø dú li»u qu¡ khù. 2 N¸u ta chia kho£ng thíi gian [0,t] th nh c¡c kho£ng væ còng b² 4t th¼ ta câ c¡c t½nh ch§t sau: X¡c su§t º câ óng mët l¦n x£y ra cõa bi¸n cè trong kho£ng thíi gian 4t l r§t b² v l mët sè khæng êi cho c¡c kho£ng 4t . X¡c su§t º hai hay nhi·u l¦n x£y ra cõa bi¸n cè trong kho£ng thíi gian 4t l qu¡ b² º xem nh÷ khæng ¡ng kº hay b¬ng 0 èi vîi x¡c su§t câ óng mët l¦n x£y ra. Sè l¦n x£y ra cõa bi¸n cè trong kho£ng thíi gian 4t cho tr÷îc l ëc lªp vîi thíi iºm chån cho 4t . Sè l¦n x£y ra cõa bi¸n cè trong b§t ký kho£ng 4t n o công ëc lªp vîi sè l¦n x£y ra cõa c¡c bi¸n cè trong b§t ký kho£ng 4t n o kh¡c. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 14 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi Poisson Ph¥n phèi Poisson Vîi c¡c gi£ thi¸t â ng÷íi ta chùng minh ÷ñc x¡c su§t º câ óng k l¦n x£y ra cõa bi¸n cè trong kho£ng thíi gian [0,t] l : k P pCâ k l¦n x£y ra bi¸n cèq e λ λk ! , trong â λ l trung b¼nh cõa sè l¦n x£y ra bi¸n cè trong kho£ng thíi gian [0,t]. ành ngh¾a Bi¸n ng¨u nhi¶n X ÷ñc gåi l tu¥n theo ph¥n phèi Poisson vîi tham sè λ ¡ 0, kþ hi»u X P pλq, n¸u X câ ph¥n phèi x¡c su§t cho bði: k P pX k q e λ λk ! , k 0, 1, 2, ..., n, ... Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 15 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi Poisson Ph¥n phèi Poisson Ph¥n phèi Poisson câ nhi·u ùng döng èi vîi nhi·u qu¡ tr¼nh câ li¶n quan ¸n sè quan s¡t èi vîi mët ìn và thíi gian ho°c khæng gian. Ch¯ng h¤n sè cuëc i»n tho¤i nhªn ÷ñc ð mët tr¤m i»n tho¤i trong mët phót, sè kh¡ch ¸n mët ng¥n h ng giao dàch trong méi kho£ng thíi gian 30 phót... Nâi chung l dáng v o cõa mët h» phöc vö (c¡c cûa h ng, hi»u ct tâc, hi»u sûa xe, tr¤m i»n tho¤i,...) th÷íng l c¡c bi¸n ng¨u nhi¶n tu¥n theo luªt Poisson. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 16 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi Poisson Minh håa cho ph¥n phèi Poisson λ = 0.3 λ=1 λ=3 ● ● ● ● ● 0.20 0.3 0.6 ● 0.15 dpois(0:15, 0.3) ● dpois(0:15, 1) dpois(0:15, 3) 0.2 0.4 ● 0.10 ● ● 0.1 0.2 0.05 ● ● ● ● ● ● 0.00 ● 0.0 0.0 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0 5 10 15 0 5 10 15 0 5 10 15 x x x λ=4 λ=6 λ=8 0.20 ● ● ● ● ● ● 0.15 0.12 ● ● ● ● 0.15 ● ● ● 0.10 ● dpois(0:15, 4) dpois(0:15, 6) dpois(0:15, 8) ● 0.08 ● 0.10 ● ● ● ● ● 0.05 ● 0.04 ● 0.05 ● ● ● ● ● ● ● ● ● ● ● ● ● 0.00 0.00 0.00 ● ● ● ● ● ● ● ● ● ● ● ● 0 5 10 15 0 5 10 15 0 5 10 15 x x x Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 17 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi Poisson Ký vång, ph÷ìng sai M»nh · N¸u X P pλq th¼: E(X)= V(X)=λ. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 18 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi Poisson V½ dö v· ph¥n phèi Poisson B i to¡n Sè ng÷íi ¸n ñi xe buþt t¤i mët tr¤m ân xe trong méi 15 phót l mët bi¸n ng¨u nhi¶n tu¥n theo ph¥n phèi Poisson vîi trung b¼nh l 4. T½nh x¡c su§t º trong kho£ng thíi gian 15 phót câ ½t nh§t 3 ng÷íi ¸n ñi xe. Tr£ líi: Gåi X l sè ng÷íi ¸n ñi xe t¤i tr¤m trong méi 15 phót. Ta câ X P pλ 4q. X¡c su§t º trong kho£ng thíi gian 15 phót câ ½t nh§t 3 ng÷íi ¸n ñi xe l : P pX ¥ 3q 1 P pX 3q 1 P pX 0q P pX 1q P pX 2q 1 e 4 40! e 4 41! e 4 42! 0 1 2 0.7618967 Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 19 / 41
- Mët sè ph¥n phèi x¡c su§t th÷íng g°p Ph¥n phèi Poisson C¡c h m trong R Thüc h nh R Cho bi¸n ng¨u nhi¶n X P pλq, trong thüc h nh ta câ thº dòng c¡c h m sau: dpois(k,λ): Cho ta P(X=k) (k=0, 1,.., n,...). ppois(k,λ): Cho ta P pX ¤ k q (k=0, 1,.., n,...). rpois(N,λ): L§y m¨u ng¨u nhi¶n N ph¦n tû. Ngæ Thà Thanh Nga (HTL) X¡c Su§t Thèng K¶ Ùng Döng Ng y 12 th¡ng 9 n«m 2011 20 / 41
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng: Xác suất thống kê - Biến cố và Xác suất của biến cố
42 p | 964 | 228
-
Bài giảng Xác suất thống kê - Chương 1: Đại cương về xác suất
26 p | 336 | 45
-
Bài giảng Xác suất thống kê - Nguyễn Ngọc Phụng (ĐH Ngân hàng TP.HCM)
17 p | 264 | 35
-
Bài giảng Xác suất thống kê - Chương 1: Biến cố và xác suất - GV. Lê Văn Minh
8 p | 260 | 30
-
Bài giảng Xác suất thống kê: Chương 1 - Nguyễn Ngọc Phụng (ĐH Ngân hàng TP.HCM)
10 p | 315 | 22
-
Bài giảng Xác suất thống kê: Chương 2 - GV. Trần Ngọc Hội
13 p | 130 | 15
-
Bài giảng Xác suất thống kê ứng dụng trong kinh tế xã hội: Chương 5.1 - Ngô Thị Thanh Nga
108 p | 120 | 9
-
Bài giảng Xác suất thống kê: Xác suất của một biến cố - Nguyễn Ngọc Phụng
10 p | 106 | 6
-
Bài giảng Xác suất thống kê và quy hoạch thực nghiệm: Chương 1.3 - Nguyễn Thị Thanh Hiền
35 p | 17 | 4
-
Bài giảng Xác suất thống kê: Chương 7 - Nguyễn Kiều Dung
20 p | 8 | 2
-
Bài giảng Xác suất thống kê: Chương 6 - Nguyễn Kiều Dung
29 p | 12 | 2
-
Bài giảng Xác suất thống kê: Chương 5 - Nguyễn Kiều Dung
62 p | 7 | 2
-
Bài giảng Xác suất thống kê: Chương 4 - Nguyễn Kiều Dung
71 p | 6 | 2
-
Bài giảng Xác suất thống kê: Chương 3 - Nguyễn Kiều Dung
26 p | 7 | 2
-
Bài giảng Xác suất thống kê: Chương 2 - Nguyễn Kiều Dung
43 p | 5 | 2
-
Bài giảng Xác suất thống kê: Chương 1 - Nguyễn Kiều Dung
106 p | 5 | 2
-
Bài giảng Xác suất thống kê: Chương 1.3 - Xác suất của một sự kiện
24 p | 7 | 2
-
Bài giảng Xác suất thống kê: Chương 8 - Nguyễn Kiều Dung
27 p | 13 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn