intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

BÀI TẬP NHÓM :MÔ PHỎNG MÔ HÌNH ISING 2D

Chia sẻ: Lam Minh | Ngày: | Loại File: PDF | Số trang:8

115
lượt xem
14
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tính sắt từ biểu hiện khi một tập hợp các spin nguyên tử sắp xếp sao cho các mô-men từ của chúng đều có cùng hướng, do đó tạo nên mô-men tổng hợp có độ lớn đáng kể. Cách biểu diễn lí thuyết đơn giản nhất cho hiện tượng sắt từ được gọi là mô hình Ising. Mô hình được Wilhelm Lenz phát minh năm 1920: nó được đặt theo Ernst Ising, học trò của Lenz, người đã chọn mô hình này làm chủ đề luận án tiến sĩ năm 1925...

Chủ đề:
Lưu

Nội dung Text: BÀI TẬP NHÓM :MÔ PHỎNG MÔ HÌNH ISING 2D

  1. TRƯỜNG ĐẠI HỌC CÔNG NGHỆ- ĐHQGHN KHOA VLKT VÀ CNNN ---------- BÀI TẬP NHÓM :MÔ PHỎNG MÔ HÌNH ISING 2D Môn: Mô phỏng và mô hình hóa Nhóm sinh viên(nhóm6): Lê Xuân Hùng Nguyễn Văn Hải Nguyễn Văn Ngãi Lưu Anh Thao Nguyễn Văn Tân Nguyễn Ngọc Trung Giảng viên hướng dẫn: TS. Đặng Đình Long Hà Nội, ngày 4 tháng 6 năm 2013
  2. I.Mô hình Ising Tính sắt từ biểu hiện khi một tập hợp các spin nguyên tử sắp xếp sao cho các mô- men từ của chúng đều có cùng hướng, do đó tạo nên mô-men tổng hợp có độ lớn đáng kể. Cách biểu diễn lí thuyết đơn giản nhất cho hiện tượng sắt từ được gọi là mô hình Ising. Mô hình được Wilhelm Lenz phát minh năm 1920: nó được đặt theo Ernst Ising, học trò của Lenz, người đã chọn mô hình này làm chủ đề luận án tiến sĩ năm 1925 Xét N nguyên tử tồn tại trong từ trường định hướng z có cường độ H. Giả sử rằng mọi nguyên tử đều là hệ spin –½ như nhau. Điều này dẫn đến hoặc si = +1 (spin hướng lên), hoặc si = −1 (spin hướng xuống), trong đó si là (hai lần) thành phần theo phương z của spin nguyên tử thứ i. Tổng năng lượng của hệ được viết là: E =  − J ∑  si sj − μ H ∑i=1N si.  (1) Trong đó,  được dùng để chỉ tổng theo các cặp nguyên tử lân cận. Ngoài ra, J được gọi là năng lượng trao đổi, còn μ là mô-men từ nguyên tử. Phương trình ([1]) là cốt lõi của mô hình Ising. Về đặc điểm vật lý của mô hình: J ∑  si sj : cho thấy rằng tổng năng lượng bị giảm xuống khi các spin nguyên tử lân cận được sắp xếp. HIệu ứng này chủ yếu là do nguyên lý ngoại trừ Pauli. Các electron không thể chiếm giữ cùng một trạng thái lượng tử, vì vậy hai electron của hai nguyên tử cạnh nhau, có cùng spin song song (nghĩa là chiếm cùng trạng thái orbital), thì không thể tiến sát nhau. Sẽ không có sự ngăn cản như vậy nếu các electron có spin phản-song song. Những ngăn cách không gian khác nhau ngụ ý rằng tồn tại những năng lượng tương tác tĩnh điện khác nhau.  Sử dụng phương pháp Monte-Carlo để giải mô hình Ising 2D. Ta hãy xét một mảng vuông hai chiều chứa các nguyên tử. Đặt L là kích thước mảng. N = L2 Dựa trên thuật toán :  Lần lượt đi qua từng nguyên tử trong mảng:  Với mỗi nguyên tử, hãy tính độ thay đổi năng lượng của hệ, Δ E, khi spin nguyên tử bị đảo ngược.  Nếu Δ E  0 thì đảo ngược spin với xác suất P = exp( − β Δ E).  Lặp lại quá trình nhiều lần cho đến khi đạt được cân bằng nhiệt. Mục đích của thuật toán này là xáo trộn tất cả các trạng thái có thể của hệ thống, và đảm bảo rằng hệ thống chiếm giữ một trạng thái cho trước với xác suất Boltzmann: nghĩa là một xác suất tỉ lệ thuận với exp( − β E), trong đó E là năng lượng của trạng 2
  3. thái.Để biểu diễn tính đúng đắn của thuật toán trên, ta hãy xét việc đảo spin của nguyên tử thứ i. Giả sử rằng hành động này khiến cho hệ thống chuyển từ trạng thái a (năng lượng Ea) sang trạng thái b (năng lượng Eb). Hơn nữa, giả sử rằng Ea 
  4. while (temp
  5. return 2.0 * s[i][j] * (leftS + rightS + topS + bottomS); } public static double NangluongE(int i, int j) { int leftS, rightS, topS, bottomS; //values of neighboring spins if (i == 0) leftS = s[size-1][j]; else leftS = s[i-1][j]; if (i == size-1) rightS = s[0][j]; else rightS = s[i+1][j]; if (j == 0) topS = s[i][size-1]; else topS = s[i][j-1]; if (j == size-1) bottomS = s[i][0]; else bottomS = s[i][j+1]; return -0.5*s[i][j] * (leftS + rightS + topS + bottomS); } } III.Kết quả-Nhận xét. A.Kết quả Ta xét mẫu từ hóa mảng có kích thước 60X60 nguyên tử sắt từ,và sử dụng các spin up và down. Với T 0=J/K. Có thể thấy rằng ở dưới nhiệt độ phân giới (hay nhiệt độ “Curie”), Tc, có sự từ hóa nhất thời: nghĩa là hiệu ứng trao đổi đủ lớn để khiến cho spin của các nguyên tử lân cận xếp hàng một cách nhất thời. Với T=3T 0 từ hình ảnh ta thấy mẫu hình thành những cụm nhỏ,các ô đen và hồng biểu hiện cho các nguyên tử nhiễm từ. 5
  6. Với T=2.8T 0,các mẫu hình thành các cụm lớn hơn. Với T=2.4T 0 ta thấy sự thay đổi khá lớn ở đây:các cụm được hình thành lớn hơn,đây là nhiệt độ rất gần so với nhiệt độ chuyển pha của giải số.Nhiệt độ chuyển pha trong giải số là T c=2.27T 0. 6
  7. Tại T=2.3T 0,ta thấy có sự khác biệt nhau nhiều,đây là điểm lân cận của chuyển pha.Nhưng sự lân cận của chuyển pha này có khác hơn 1 chút so với giải tích.Mà nhiệt độ chuyển pha trong chương trình mô phỏng này sẽ nằm trong khoảng (T c~2.3-2.4).Có thể do lấy mẫu chưa lớn dẫn đến kết quả chưa chuẩn xác so với giải tích. Tại T=2T 0,tại nhiệt độ thấp hơn nhiệt độ chuyển pha,thì gần như đã có sự sắp xếp hoàn toàn của các spin nguyên tử.Điều này ta thấy rõ hơn khi nhiệt độ giảm xuống T=1.5T 0. 7
  8. B.Nhận xét: Chương trình mô phỏng mô hình Ising ,cho ta thấy +Khi ở nhiệt độ cao hơn nhiều so với nhiệt độ chuyển pha thì các spin sắp xếp 1 cách ngẫu nhiên. +Khi gần đến nhiệt độ chuyển pha thì có sự thay đổi rất lớn ,các spin sắp xếp và lan rộng ra toàn bộ mảng. +Khi nhiệt độ dưới nhiệt độ chuyển pha thì các spin gần như có sự sắp xếp hoàn toàn với nhau để theo 1 chiều . Việc nghiêng cứu mô hình Ising 2D là mô hình chuẩn để thử xem một thuật toán trong khuôn khổ áp dụng của mô hình có hiệu quả không.Ngày nay,bài toán về mô hình Ising được áp dụng rất nhiều trong thực tế và trong nhiều lĩnh vực như:các vấn để xã hội(2 lựa chọn),trong vật lý,sinh học. 8
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2