intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài tập ôn toán 10 HKI

Chia sẻ: Vo Anh Hoang | Ngày: | Loại File: DOC | Số trang:2

2.290
lượt xem
653
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'bài tập ôn toán 10 hki', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Bài tập ôn toán 10 HKI

  1. BÀI TẬP ÔN HỌC KÌ I 1. Xét tính chẵn, lẻ của các hàm số sau: 1 b) y = x4 − 3x2 − 1 c) y = − a) y = 4x3 + 3x 2 x +3 x2 e) y = | x | + 2x2 + 2 f) y = | 2x – 1 | + | 2x + 1 | g) y = | 2x − 1| − | 2x + 1| 3 2. Xét sự biến thiên của hàm số : y = trên ( 2 ; +∞ ) 2−x 3. Viết phương trình đường thẳng trong các trường hợp sau: a) Đi qua 2 điểm A(-1;3) và B(2; 7) b) Đi qua A(-2;4) và song song song với đường thẳng y = 3x – 4. c) Đi qua B(3;-5) và vuông góc với đường thẳng x + 3y -1 = 0. d) Đi qua giao điểm của 2 đường thẳng y = 2x + 1 và y = - x + 6 và có hệ số góc =10. 4. Lập bảng biến thiên và vẽ đồ thị hàm số 1 b) y = ( 1 − x ) 2 c) y = (x + 1)(3 − x) d) y = − x2 + 4x − 1 a) y = - x2 + 2x – 2 2 5. Tìm tọa độ giao điểm của đồ thị các hàm số. Vẽ (c) và đường thẳng (∆ ) trên cùng hệ trục (∆ ): y = 0 b) y = − 2 + 2x + 3 và (∆ ) : y = 2x + 2 a) y = x2 + 4x + 4 và x 6. Cho hàm số y = ax + bx + c (P). Hãy xác định các hệ số a, b, c trong các trường hợp sau: 2 a. Đồ thị (P) đi qua 3 điểm : A( –1 ; 8), B(1 ; 0), C(4 ; 3). b. (P) có đỉnh S(–2 ; –2) và qua điểm M(–4 ; 6). c. (P) đi qua A(4 ; –6), cắt trục Ox tại 2 điểm có hoành độ là 1 và 3 7. Tìm parabol y = ax2 + bx + 1, biết parabol đó: a) Đi qua 2 điểm M(1 ; 5) và N(-2 ; -1) 5 b) Đi qua A(1 ; -3) và có trục đối xứng x = 2 c) Đi qua B(-1 ; 6), đỉnh có tung độ là -3. 8. Giải phương trình x2 −1 x −1 =x =1 a) 2x - 3= x - 5 b) c)4x + 1= x2 + 2x - 4 d) 2x + 5= 3x - 2 e) 2 x−2 x − x−6 (2m − 1) x + 2 = m +1 9. Giải và biện luận phương trình: a) m 2 ( x − 1) = mx − 1 b) x−2 10 Cho phương trình: mx 2 − 2(m − 2) x + m − 3 = 0 a) Giải và biện luận phương trình trên. b) Với giá trị nào của m thì phương trình trên có hai nghiệm trái dấu. c) Với giá trị nào của m thì phương trình trên có hai nghiệm thỏa x1 + x2 + 3x1x2 = 2. 9 11. Tìm giá trị của tham số m để phương trình : 2x4 - 2mx2 + 3m - = 0 có 4 nghiệm phân biệt . 2 12.Giải phương trình a) 5 x + 9 = 3x − 7 b) x - 2 x + 16 = 4 c) x 2 − 3 x − 10 = x − 2 e) 3x + 7 − x + 1 = 2 f) 3x − 4 = 7 x + 2 d) x 2 + x + 9 + 2 x − 3 = 0 13. Một gia đình có bốn người lớn và ba trẻ em mua vé xem xiếc hết 370 000 đồng. Một gia đình khác có hai người lớn và hai trẻ em cũng mua vé xem xiếc tại rạp đó hết 200 000 đồng. Hỏi giá vé người lớn và giá vé trẻ em là bao nhiêu ? 14. Tìm một số có hai chữ số, biết hiệu của hai chữ số đó bằng 3. Nếu viết các chữ số theo thứ tự ngược lại 4 thì được một số bằng số ban đầu trừ đi 10 5 15. Chứng minh các BĐT sau đây với a, b, c > 0 và khi nào đẳng thức xảy ra:
  2. 11 b a) (a + b)(1 +a ) 4ab b) (a + b)( +( ) 4 c) (ac +c ) ab 2 ab ab c a b c e) (1 + )(1 + )(1 +( ) 8 g) (a 2 + 2)(b 2 + 2)(c 2 +a 16 2.abc d) a 2 + b 2 +c 2 ab + bc + ca 2) c b c a 16 a) Tìm GTLN của hàm số: y = ( x − 3)(7 − x ) với 3 x x 7 7 4 b) Tìm GTNN của hàm số: y = x − 2 + với x > 3 x−3 3 2 17 4 x + 3 y = 3 +x + y + xy = 5  2x + y = 1 17. Giải các hệ phương trình sau:a)  b)  5 c) + 2 3 +x y + xy = 6 − 2 x + ( 2 − 1) y = 2 2  x − y = 11 2 5 18. Trong mặt phẳng toạ độ Oxy cho các điểm A(-2; 1), B(1; 3), C(3; 2). a) Tính độ dài các cạnh và đường trung tuyến AM của tam giác ABC. b) Chứng minh tứ giác ABCO là hình bình hành. uur uuu uuu r r 19. Cho tứ giác ABCD, E là trung điểm AB, F là trung điểm CD. Chứng minh: 2EF = AC + BD 20. Cho tam giác ABC có AB=3, AC=7, BC=8 a) Tính số đo góc B b) M là chân đường trung tuyến và H là chân đường cao kẻ từ B của tg ABC. Tính độ dài đoạn thẳng MH 21. Trong mp Oxy cho A(-1, 2); B(4, 3), C(5, -2). → → a) Tính BA . BC . Hỏi tam giác ABC là tam giác gì? Tính diện tích tam giác này. b) Tìm tọa độ điểm D để ABCD là hình vuông. → → → → → → a =5; b =3; a + b =7. Tính a− b . 21. Cho a 22. Cho tam giác ABC có độ dài 3 cạnh a, b, c thỏa: b -c = . 2 1 1 1 = − Chứng minh: (với ha, hb, hc là 3 đường cao của tam giác ABC vẽ từ các đỉnh A, B, C) 2ha hb hc 23. Cho 4 uuu m uuu B uuu , D bấrkỳuuu ọi E u Fuuun lượt làuuu uuuểm AB , CD. Chứng minh uuu điể A r , C t . r uur lầ uuu trung đi , G , r r r uuu r r r r AB + CD = AD − BC ; AD + BC = 2EF; AB − CD = AC − BD uu uu r r uu uuu r r 24. Cho tam giác ABC , hãy dựng điểm I thỏa : IA − IB + 2IC = AB uur uur uur uu r r 25. Cho tam giác ABC. Gọi I , J là hai điểm thỏa: IA = 2IB vaø 3JA + 2JC = 0 Chứng minh IJ qua trọng tâm G của ∆ABC ' 26. Cho ABC có a =4 ; b =4 3 và góc C =300 . a) Tính diên tích ABC b) Gọi D là điểm trên cạnh AB sao cho BD =1. Tính độ dài CD 27. Trong mp (Oxy )cho điểm A (1 ; 1 )và I ( 0 ; 2 ) . a) Tìm toạ độ của điểm B là điểm đối xứng của A qua I b) Tim toạ độ điểm C có hoành độ bằng 2 sao cho ABC vuông tại B 28. Cho ABC có AB = 2, AC = 4 , BC = 2 3 . a) Tính cosA, bán kính đường tròn nội tiếp r của tamgiác ABC. b) Tính độ dài bán kính đường tròn ngoại tiếp tam giác ABC .. c) Tính độ dài đường cao hc của tam giác ABC. uuuu r uuu r 29. Cho tam giác ABC có AB = 3, AC = 4, góc  = 120o. Cho điểm M thỏa : BM = 2BC . Tính độ dài các đoạn thẳng BC và AM. 30.Cho ABC biết a = 6 cm, b = 2cm, c =(1 + 3 )cm . ˆ b) Tính chiều cao ha . c) Tính độ dài đường phân giác trong BD . a) Tính góc B 31. Cho ABC có: BC = 2 , AC = 2, trung tuyến AM = 7 . a) Tính độ dài AB. b) Tính số đo góc A. c) Tính S ABC, R,r.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2