Bài thuyết trình: Cảm biến sinh học dựa trên hiện tượng điện tử Spin bao gồm những nội dung về định nghĩa công nghệ spintronics, khái niệm cảm biến, cảm biến sinh học, những kiểu biosensor truyền thống, cảm biến sinh học dựa trên hiện tượng điện tử Spin.
AMBIENT/
Chủ đề:
Nội dung Text: Bài thuyết trình: Cảm biến sinh học dựa trên hiện tượng điện tử Spin
- Cảm biến sinh học dựa trên kỹ
thuật điện tử Spin
Nhóm thực hiện:
Bùi Duy Khánh 1119494
Nguyễn Thị Thu1119526
- Giới thiệu
Ý tưởng tích hợp việc nhận biết có tính chọn lọc và mô
tả định lượng các loại phân tử sinh học thành một thiết bị
cầm tay dễ sử dụng, có thể cho kết quả ngay lập tức tại
vị trí cần phân tích một hệ thống dạng lab-on-chip có
tên “biosensor” được đưa ra - là một thiết bị phát hiện,
nhận dạng, và truyền thông tin về một sự thay đổi sinh-
lý, hay sự có mặt của các chất hóa học khác nhau, hoặc
những vật liệu sinh học trong môi trường
Cùng với sự phát triển của điện tử học spin, thay vì nhận
biết các phân tử sinh học bằng các công cụ đắt tiền như
các hệ quét huỳnh quang quang học hay lazer, chúng ta
có thể sử dụng các loại cảm biến ứng dụng công nghệ
điện tử học spin dựa trên các hiệu ứng GMR, AMR, TMR,
Hall, Planar Hall,...
- NỘI DUNG TỔNG QUÁT:
Các khái niệm:
Khái niệm cảm biến sinh học
Định nghĩa công nghệ spintronics
Cảm biến sinh học dựa trên hiện tượng điện tử spin
Nguyên lý hoạt động
Ưu điểm
Những kiểu cảm biến sinh học dựa trên công nghệ
điện tử học spin
cảm biến từ điện trở dị hướng (AMR)
cảm biến từ điện trở khổng lồ (GMR)
cảm biến spin-valve
cảm biến điện trở Hall mặt phẳng (PHR)
cảm biến từ điện trở xuyên ngầm (TMR)
- 1. Giới thiệu cảm biến sinh học
• Là thiết bị sử dụng các tác nhân sinh học như enzym,
các kháng thể,...để phát hiện, đo đạc hoặc phân tích hoá
chất .
• Theo IUPAC thì: “Cảm biến sinh học (biosensor) là một
thiết bị tích hợp có khả năng cung cấp thông tin phân
tích định lượng hoặc bán định lượng đặc trưng, bao
gồm phần tử nhận biết sinh học (bioreceptor) kết hợp
trực tiếp với một phần tử chuyển đổi”.
- Cấu tạo chung của cảm biến sinh học
- Đầu thu sinh học
• Đầu thu sinh học (Biological Receptor) là những
đầu thu phản ứng trực tiếp với các tác nhân cần
phát hiện và có nguồn gốc từ các thành
phần sinh học.
• Phân loại:
– Đầu thu làm từ enzyme.
– Đầu thu làm từ các kháng thể/kháng nguyên.
– Đầu thu làm từ protein.
– Đầu thu làm từ các axit nucleic.
– Đầu thu kết hợp.
– Đầu thu làm từ tế bào
- Tác nhân cố định
• có nhiệm vụ gắn kết các đầu thu sinh học lên
trên đế
• là bộ phận trung gian có tác dụng liên kết các
thành phần sinh học (có nguồn gốc từ cơ thể
sống) với thành phần vô cơ.
- Bộ phận chuyển đổi
• Chuyển đổi điện hoá: dựa trên điện thế, dòng điện và độ
dẫn điện
• Chuyển đổi quang: dựa trên các hiệu ứng hấp thụ ánh
sáng nhìn thấy và tia UV; phát xạ huỳnh quang và lân
quang; bio-luminiscence; chemi–luminiscence..
• Chuyển đổi nhiệt: dựa trên hiện tượng thay đổi entanpi
khi hình thành hoặc phá vỡ các liên kết hóa học trong
các phản ứng của enzyme
• Chuyển đổi bằng tinh thể áp điện: dựa trên nguyên lý
tinh thể sẽ thay đổi tần số dao động khi lực tác dụng lên
nó thay đổi
• Chuyển đổi bằng các hệ vi cơ.
- Mô hình cấu tạo của 1 cảm biến từ:
- 2. Công nghệ Spintronics
• Thế hệ thứ nhất: các linh kiện dựa trên các hiệu ứng GMR,
TMR, trong các màng mỏng đa lớp, các màng mỏng từ tiếp
xúc dị thể kim loại-kim loại hoặc kim loại-điện môi..., vd: các
cảm biến, đầu đọc từ điện trở trong các đĩa cứng, MRAM,
transitor kim loại, transitor valse spin, công tắc/khoá đóng mở
spin, ...
• Thế hệ thứ hai: các linh kiện dựa trên việc tiêm hoặc bơm
dòng phân cực spin qua tiếp xúc dị thể bán dẫn- sắt từ hay
bán dẫn từ- bán dẫn. Vd: các mạch khoá siêu nhanh, các bộ
vi xử lý spin và mạch logic lập trình được,...
• Thế hệ thứ ba: các linh kiện sử dụng các cấu trúc nano (dạng
chấm lượng tử, dây và sợi nano) và sử dụng các trạng thái
spin điện tử đơn lẻ như cổng logic lượng tử (là cơ sở cho
máy tính lượng tử), các transistor đơn spin (SFET), ...
- II. Cảm biến sinh học theo công nghệ điện
tử spin
Biochip?
• Thông thường biochip
là một miếng nhỏ hình
vuông bằng thuỷ tinh
hay nhựa hoặc
silicon trên đó có gắn
các thụ thể
• biochip có thể chứa từ
hàng triệu đến hàng
chục triệu yếu tố cảm
biến (cảm ứng sinh học)
- biochip sử dụng công nghệ spin
- • Các đối tượng dò tìm được nhỏ lên trên bề mặt
• Các phân tử sinh học có thể được gắn hạt từ tính
trước hoặc sau bước lai hóa
• Các hạt từ thường là siêu thuận từ hoặc sắt từ không
có từ dư, kích thước nano hoặc mircro, có khả năng
gắn kết với các phân tử sinh học.
• từ trường các hạt từ bị từ hóa, từ độ tổng hợp xuất
hiện thay đổi điện trở của cảm biến sử dụng công
nghệ spin điện tử nhận biết được các phân tử sinh
học cần phân tích.
- Ưu điểm của cảm biến sinh học sử dụng công
nghệ điện tử học spin:
- Tiêu tốn ít năng lượng do quá trình biến đổi trong các
thiết bị spintronics dựa trên sự đổi chiều của các spin.
- Do tính chất phi từ của các phân tử sinh học nên giảm
nhiễu tín hiệu.
- Có độ ổn định cao, phép đo có thể thục hiện được
nhiều lần, loại bỏ được tín hiệu nền không mong
muốn.
- Tốc độ nhanh vì không phải mất thời gian để truyền
điện tích. Thời gian đảo các spin từ trạng thái up sang
down ngắn.
- III. Những kiểu cảm biến sinh học dựa trên
công nghệ điện tử học spin
Cảm biến sinh học dựa trên hiệu ứng từ điện trở dị
hướng (AMR Biosensor)
Hiệu ứng từ điện trở dị hướng AMR là hiện tượng tăng
điện trở dưới tác dụng của từ trường (tác dụng của cảm
ứng từ B) do lực Lorentz tác dụng lên các hạt tải điện.
- Nguyên tắc hoạt động AMR Biosensor dựa vào sự tán xạ
của điện tử theo hướng momen từ của vật liệu
• cảm biến AMR có cấu trúc là một vòng kim loại sắt từ
(NiFe)
• khi không có từ trường ngoài tác dụng, vector từ độ là
một đường tròn khép kín (hình 4.b), dòng điện dễ dàng
chạy qua cảm biến hiệu ứng AMR của vòng sẽ là lớn
nhất.
• khi có hạt từ với momen từ vuông góc với bề mặt của cảm
biến tại tâm của cảm biến từ độ của vòng sẽ hướng
tâm (hình 4.c), vuông góc với dòng điện, cản trở sự di
chuyển của các điện tích chạy qua vòng cảm biến hiệu
ứng AMR của vòng là nhỏ nhất.
Thiết bị này thích hợp trong việc dò tìm các hạt đơn lẻ
- Cảm biến sinh học dựa trên hiệu ứng từ điện
trở khổng lồ (GMR Biosensor)
• Hiệu ứng từ điện trở khổng lồ là sự thay đổi
lớn (nhảy vọt) của điện trở ở các vật liệu từ
dưới tác dụng của từ trường ngoài.
- • hình A hai lớp kim loại từ 1&3
có cùng chiều từ hóasố
electron có spin cùng chiều
với chiều từ hóa đi qua các
lớp dễ dàng và điện trở
nhỏ.
• thay đổi chiều từ hóa đối lớp
từ 3 (hình B) các electron
có spin ngược chiều với chiều
từ hóa bị khuếch tán nhiều
hơn, dòng điện giảm đi
điện trở tăng mạnh lên gây
nên hiệu ứng GMR
- 3) Cảm biến sinh học dựa trên hiệu ứng Hall
phẳng (Planar Hall Biosensor):
Dựa vào sự tán xạ của điện từ theo phương từ
độ của lớp sắt từ.