intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Báo cáo hóa học: " Research Article On the Strong Laws for Weighted Sums "

Chia sẻ: Nguyen Minh Thang | Ngày: | Loại File: PDF | Số trang:8

60
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article On the Strong Laws for Weighted Sums

Chủ đề:
Lưu

Nội dung Text: Báo cáo hóa học: " Research Article On the Strong Laws for Weighted Sums "

  1. Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2011, Article ID 157816, 8 pages doi:10.1155/2011/157816 Research Article On the Strong Laws for Weighted Sums of ρ∗ -Mixing Random Variables Xing-Cai Zhou,1, 2 Chang-Chun Tan,3 and Jin-Guan Lin1 1 Department of Mathematics, Southeast University, Nanjing 210096, China 2 Department of Mathematics and Computer Science, Tongling University, Tongling, Anhui 244000, China 3 School of Mathematics, Heifei University of Technology, Hefei, Anhui 230009, China Correspondence should be addressed to Chang-Chun Tan, cctan@ustc.edu.cn Received 26 October 2010; Revised 5 January 2011; Accepted 27 January 2011 Academic Editor: Matti K. Vuorinen Copyright q 2011 Xing-Cai Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Complete convergence is studied for linear statistics that are weighted sums of identically distributed ρ∗ -mixing random variables under a suitable moment condition. The results obtained generalize and complement some earlier results. A Marcinkiewicz-Zygmund-type strong law is also obtained. 1. Introduction Suppose that {Xn ; n ≥ 1} is a sequence of random variables and S is a subset of the natural number set N . Let FS σ Xi ; i ∈ S , ∗ ρn sup corr f, g : ∀S × T ⊂ N × N, dist S, T ≥ n, ∀f ∈ L2 FS , g ∈ L2 FT , 1.1 where Cov f Xi ; i ∈ S , g Xj ; j ∈ T corr f, g . 1.2 1/2 Var f Xi ; i ∈ S Var g Xj ; j ∈ T Definition 1.1. A random variable sequence {Xn ; n ≥ 1} is said to be a ρ∗ -mixing random ∗ variable sequence if there exists k ∈ N such that ρk < 1.
  2. 2 Journal of Inequalities and Applications The notion of ρ∗ -mixing seems to be similar to the notion of ρ-mixing, but they are quite different from each other. Many useful results have been obtained for ρ∗ -mixing random variables. For example, Bradley 1 has established the central limit theorem, Byrc and Smolenski 2 and Yang 3 have obtained moment inequalities and the strong law ´ of large numbers, Wu 4, 5 , Peligrad and Gut 6 , and Gan 7 have studied almost sure convergence, Utev and Peligrad 8 have established maximal inequalities and the invariance principle, An and Yuan 9 have considered the complete convergence and Marcinkiewicz- Zygmund-type strong law of large numbers, and Budsaba et al. 10 have proved the rate of convergence and strong law of large numbers for partial sums of moving average processes based on ρ− -mixing random variables under some moment conditions. For a sequence {Xn ; n ≥ 1} of i.i.d. random variables, Baum and Katz 11 proved the following well-known complete convergence theorem: suppose that {Xn ; n ≥ 1} is a sequence of i.i.d. random variables. Then EX1 0 and E|X1 |rp < ∞ 1 ≤ p < 2, r ≥ 1 if and only if ∞ 1 nr −2 P | n 1 Xi | > n1/p ε < ∞ for all ε > 0. n i Hsu and Robbins 12 and Erdos 13 proved the case r 2 and p 1 of the above ¨ theorem. The case r 1 and p 1 of the above theorem was proved by Spitzer 14 . An and Yuan 9 studied the weighted sums of identically distributed ρ∗ -mixing sequence and have the following results. Theorem B. Let {Xn ; n ≥ 1} be a ρ∗ -mixing sequence of identically distributed random variables, αp > 1, α > 1/2, and suppose that EX1 0 for α ≤ 1. Assume that {ani ; 1 ≤ i ≤ n} is an array of real numbers satisfying n |ani |p Oδ, 0 < δ < 1, 1.3 i1 1 ≤ i ≤ n : |ani |p > k −1 ≥ ne−1/k . Ank 1 1.4 If E|X1 |p < ∞, then j ∞ nαp−2 P ani Xi > εnα < ∞. 1.5 max 1≤j ≤n n1 i1 Theorem C. Let {Xn ; n ≥ 1} be a ρ∗ -mixing sequence of identically distributed random variables, αp > 1, α > 1/2, and EX1 0 for α ≤ 1. Assume that {ani ; 1 ≤ i ≤ n} is array of real numbers satisfying 1.3 . Then n n−1/p ani Xi −→ 0 a.s. n −→ ∞ . 1.6 i1 Recently, Sung 15 obtained the following complete convergence results for weighted sums of identically distributed NA random variables.
  3. Journal of Inequalities and Applications 3 Theorem D. Let {X, Xn ; n ≥ 1} be a sequence of identically distributed NA random variables, and let {ani ; 1 ≤ i ≤ n, n ≥ 1} be an array of constants satisfying |ani |α n Aα lim supAα,n < ∞, Aα,n 1.7 n n→∞ i 1 1/γ n1/α log n for some 0 < α ≤ 2. Let bn for some γ > 0. Furthermore, suppose that EX 0 where 1 < α ≤ 2. If E|X |α < ∞, for α > γ, E|X |α log|X | < ∞, for α γ, 1.8 E|X |γ < ∞, for α < γ, then j ∞ 1 P ani Xi > bn ε 0. 1.9 max n 1≤j ≤n n i1 1 We find that the proof of Theorem C is mistakenly based on the fact that 1.5 holds for αp 1. Hence, the Marcinkiewicz-Zygmund-type strong laws for ρ∗ -mixing sequence have not been established. In this paper, we shall not only partially generalize Theorem D to ρ∗ -mixing case, but also extend Theorem B to the case αp 1. The main purpose is to establish the Marcinkiewicz- Zygmund strong laws for linear statistics of ρ∗ -mixing random variables under some suitable conditions. We have the following results. Theorem 1.2. Let {X, Xn ; n ≥ 1} be a sequence of identically distributed ρ∗ -mixing random variables, and let {ani ; 1 ≤ i ≤ n, n ≥ 1} be an array of constants satisfying |ani |β n Aβ lim supAβ,n < ∞, Aβ,n , 1.10 n n→∞ i 1 1/γ n1/α log n where β max α, γ for some 0 < α ≤ 2 and γ > 0. Let bn . If EX 0 for 1 < α ≤ 2 and 1.8 for α / γ , then 1.9 holds. Remark 1.3. The proof of Theorem D was based on Theorem 1 of Chen et al. 16 , which gave sufficient conditions about complete convergence for NA random variables. So far, it is not known whether the result of Chen et al. 16 holds for ρ∗ -mixing sequence. Hence, we use different methods from those of Sung 15 . We only extend the case α / γ of Theorem D to ρ∗ -mixing random variables. It is still open question whether the result of Theorem D about the case α γ holds for ρ∗ -mixing sequence.
  4. 4 Journal of Inequalities and Applications Theorem 1.4. Under the conditions of Theorem 1.2, the assumptions EX 0 for 1 < α ≤ 2 and 1.8 for α / γ imply the following Marcinkiewicz-Zygmund strong law: n − bn 1 ani Xi −→ 0 a.s. n −→ ∞ . 1.11 i1 2. Proof of the Main Result Throughout this paper, the symbol C represents a positive constant though its value may change from one appearance to next. It proves convenient to define log x max 1, ln x , where ln x denotes the natural logarithm. To obtain our results, the following lemmas are needed. Lemma 2.1 Utev and Peligrad 8 . Suppose N is a positive integer, 0 ≤ r < 1, and q ≥ 2. Then there exists a positive constant D D N, r, q such that the following statement holds. ∗ If {Xi ; i ≥ 1} is a sequence of random variables such that ρN ≤ r with EXi 0 and E|Xi |q < ∞ for every i ≥ 1, then for all n ≥ 1, ⎛ ⎞ q /2 n n ≤ D⎝ ⎠, q q E max|Si | E|Xi | EXi2 2.1 1≤i≤n i1 i1 i where Si Xj . j1 Lemma 2.2. Let X be a random variable and {ani ; 1 ≤ i ≤ n, n ≥ 1} be an array of constants satisfying 1.10 , bn n1/α log n 1/γ . Then ⎧ ⎪CE|X |α for α > γ, ⎨ ∞ n −1 n P |ani X | > bn ≤ 2.2 ⎪ ⎩CE|X |γ for α < γ. n1 i1 n |ani |γ Proof. If γ > α, by O n and Lyapounov’s inequality, then i1 α/γ 1n 1n |ani |α ≤ |ani |γ O1. 2.3 ni 1 ni 1 Hence, 1.7 is satisfied. From the proof of 2.1 of Sung 15 , we obtain easily that the result holds.
  5. Journal of Inequalities and Applications 5 Proof of Theorem 1.2. Let Xni ani Xi I |ani Xi | ≤ bn . For all ε > 0, we have j j ∞ ∞ ∞ 1 1 1 P ani Xi > εbn ≤ P max anj Xj > bn P Xni > εbn max max n n n 1≤j ≤n 1≤j ≤n 1≤j ≤n n i1 n n i1 1 1 1 : I1 I2 . 2.4 To obtain 1.9 , we need only to prove that I1 < ∞ and I2 < ∞. By Lemma 2.2, one gets ∞ 1n ∞ 1n I1 ≤ P anj Xj > bn P anj X > bn < ∞. 2.5 n n n 1 j1 n 1 j1 Before the proof of I2 < ∞, we prove firstly j − bn1 max Eani Xi I |ani Xi | ≤ bn −→ 0, as n −→ ∞. 2.6 1≤j ≤n i1 For 0 < α ≤ 1, j n n |ani |α E|X |α − − E|ani Xi |I |ani Xi | ≤ bn ≤ bnα − bn1 max Eani Xi I |ani Xi | ≤ bn ≤ bn1 1≤j ≤n 2.7 i1 i1 i1 −α/γ E|X |α −→ 0, ≤ C log n as n −→ ∞. For 1 < α ≤ 2, j j − − bn1 max Eani Xi I |ani Xi | ≤ bn bn1 max Eani Xi I |ani Xi | > bn E Xi 0 1≤j ≤n 1≤j ≤n i1 i1 n n 2.8 |ani |α E|X |α − E|ani Xi |I |ani Xi | > bn ≤ bnα − ≤ bn1 i1 i1 −α/γ E|X |α −→ 0, ≤ C log n as n −→ ∞. Thus 2.6 holds. So, to prove I2 < ∞, it is enough to show that j ∞ 1 I3 P Xni − EXni > εbn < ∞, ∀ε > 0. 2.9 max n 1≤j ≤n n i1 1
  6. 6 Journal of Inequalities and Applications By the Chebyshev inequality and Lemma 2.1, for q ≥ max{2, γ }, we have ⎛ ⎞ q j ∞ −q n−1 bn E⎝max Xni − EXni ⎠ I3 ≤ C 1≤j ≤n n1 i1 ∞ n −q E|ani Xi |q I |ani Xi | ≤ bn n−1 bn ≤C n1 i1 2.10 q /2 ∞ n −q n−1 bn E ani Xi 2 I |ani Xi | ≤ bn C n1 i1 : I31 I32 . For I31 , we consider the following two cases. If α < γ , note that E|X |γ < ∞. We have γ ∞ n ∞ − −γ −1 γ γ n α log n n−1 bn I31 ≤ C |ani | E|X | ≤ C < ∞. 2.11 n1 i1 n1 If α > γ , note that E|X |α < ∞. we have ∞ n ∞ −α/γ |ani |α E|X |α ≤ C n−1 bnα − n−1 log n I31 ≤ C < ∞. 2.12 n1 i1 n1 Next, we prove I32 < ∞ in the following two cases. If α < γ ≤ 2 or γ < α ≤ 2, take q > max 2, 2γ/α . Noting that E|X |α < ∞, we have q /2 ∞ n −αq/2 α α n−1 bn I32 ≤ C |ani | E|X | n1 i1 2.13 ∞ −αq/ 2γ n−1 log n ≤C < ∞. n1 n |ani |α If γ > 2 ≥ α or γ ≥ 2 > α, one gets E|X |2 < ∞. Since O n , it implies i1 max1≤i≤n |ani |α ≤ Cn. Therefore, we have n n |ani |k |ani |α |ani |k−α ≤ Cnn k−α /α Cnk/α 2.14 i1 i1
  7. Journal of Inequalities and Applications 7 n O n2/α . Taking q > γ , we have for all k ≥ α. Hence, |ani |2 i1 q /2 ∞ n −q n−1 bn |ani |2 I32 ≤ C n1 i1 2.15 ∞ ∞ −q −q/γ n−1 bn nq/α n−1 log n ≤C C < ∞. n1 n1 Proof of Theorem 1.4. By 1.9 , a standard computation see page 120 of Baum and Katz 11 or page 1472 of An and Yuan 9 , and the Borel-Cantelli Lemma, we have j ani Xi max1≤j ≤2i i1 −→ 0 a.s. i −→ ∞ . 2.16 1 1/γ 2i 1 /α log 2i For any n ≥ 1, there exists an integer i such that 2i−1 ≤ n < 2i . So j n n anj Xj anj Xj anj Xj max1≤j ≤2i max1≤j ≤2i 1/γ i1 j1 j1 i1 22/α ≤ . max bn i−1 i−1 /α log 2i−1 1/γ i 1 /α log 2i 1 1/γ 2i−1 ≤n
  8. 8 Journal of Inequalities and Applications 5 Q. Wu and Y. Jiang, “Some strong limit theorems for ρ-mixing sequences of random variables,” Statistics & Probability Letters, vol. 78, no. 8, pp. 1017–1023, 2008. 6 M. Peligrad and A. Gut, “Almost-sure results for a class of dependent random variables,” Journal of Theoretical Probability, vol. 12, no. 1, pp. 87–104, 1999. 7 S. X. Gan, “Almost sure convergence for ρ-mixing random variable sequences,” Statistics & Probability Letters, vol. 67, no. 4, pp. 289–298, 2004. 8 S. Utev and M. Peligrad, “Maximal inequalities and an invariance principle for a class of weakly dependent random variables,” Journal of Theoretical Probability, vol. 16, no. 1, pp. 101–115, 2003. 9 J. An and D. M. Yuan, “Complete convergence of weighted sums for ρ∗ -mixing sequence of random variables,” Statistics & Probability Letters, vol. 78, no. 12, pp. 1466–1472, 2008. 10 K. Budsaba, P. Chen, and A. Volodin, “Limiting behaviour of moving average processes based on a sequence of ρ− mixing and negatively associated random variables,” Lobachevskii Journal of Mathematics, vol. 26, pp. 17–25, 2007. 11 L E. Baum and M. Katz, “Convergence rates in the law of large numbers,” Transactions of the American Mathematical Society, vol. 120, pp. 108–123, 1965. 12 P. L. Hsu and H. Robbins, “Complete convergence and the law of large numbers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 33, pp. 25–31, 1947. 13 P. Erdos, “On a theorem of Hsu and Robbins,” Annals of Mathematical Statistics, vol. 20, pp. 286–291, ¨ 1949. 14 F. Spitzer, “A combinatorial lemma and its application to probability theory,” Transactions of the American Mathematical Society, vol. 82, pp. 323–339, 1956. 15 S. H. Sung, “On the strong convergence for weighted sumsof random variables,” Statistical Papers. In press. 16 P. Chen, T.-C. Hu, X. Liu, and A. Volodin, “On complete convergence for arrays of rowwise negatively ı associated random variables,” Rossi˘skaya Akademiya Nauk, vol. 52, no. 2, pp. 393–397, 2007.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2