intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Báo cáo hóa học: " Research Article Solutions to a Three-Point Boundary Value Problem"

Chia sẻ: Nguyen Minh Thang | Ngày: | Loại File: PDF | Số trang:20

43
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article Solutions to a Three-Point Boundary Value Problem

Chủ đề:
Lưu

Nội dung Text: Báo cáo hóa học: " Research Article Solutions to a Three-Point Boundary Value Problem"

  1. Hindawi Publishing Corporation Advances in Difference Equations Volume 2011, Article ID 894135, 20 pages doi:10.1155/2011/894135 Research Article Solutions to a Three-Point Boundary Value Problem Jin Liang1 and Zhi-Wei Lv2, 3 1 Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China 2 Department of Mathematics and Physics, Anyang Institute of Technology, Anyang, Henan 455000, China 3 Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China Correspondence should be addressed to Jin Liang, jinliang@sjtu.edu.cn Received 25 November 2010; Accepted 19 January 2011 Academic Editor: Toka Diagana Copyright q 2011 J. Liang and Z.-W. Lv. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. By using the fixed-point index theory and Leggett-Williams fixed-point theorem, we study the exis- tence of multiple solutions to the three-point boundary value problem u t a t f t, u t , u t 0; u 1 − αu η λ, where η ∈ 0, 1/2 , α ∈ 1/2η, 1/η are constants, 0, 0 < t < 1; u 0 u0 λ ∈ 0, ∞ is a parameter, and a, f are given functions. New existence theorems are obtained, which extend and complement some existing results. Examples are also given to illustrate our results. 1. Introduction It is known that when differential equations are required to satisfy boundary conditions at more than one value of the independent variable, the resulting problem is called a multipoint boundary value problem, and a typical distinction between initial value problems and multipoint boundary value problems is that in the former case one is able to obtain the solutions depend only on the initial values, while in the latter case, the boundary conditions at the starting point do not determine a unique solution to start with, and some random choices among the solutions that satisfy these starting boundary conditions are normally not to satisfy the boundary conditions at the other specified point s . As it is noticed elsewhere see, e.g., Agarwal 1 , Bisplinghoff and Ashley 2 , and Henderson 3 , multi point boundary value problem has deep physical and engineering background as well as realistic mathematical model. For the development of the research of multi point boundary value problems for differential equations in last decade, we refer the readers to, for example, 1, 4–9 and references therein.
  2. Advances in Difference Equations 2 In this paper, we study the existence of multiple solutions to the following three-point boundary value problem for a class of third-order differential equations with inhomogeneous three-point boundary values, ut a t f t, u t , u t 0, 0 < t < 1, 1.1 u 1 − αu η u0 u0 0, λ, where η ∈ 0, 1/2 , α ∈ 1/2η, 1/η , λ ∈ 0, ∞ , and a, f are given functions. To the authors’ knowledge, few results on third-order differential equations with inhomogeneous three-point boundary values can be found in the literature. Our purpose is to establish new existence theorems for 1.1 which extend and complement some existing results. Let X be an Banach space, and let Y be a cone in X . A mapping β is said to be a nonnegative continuous concave functional on Y if β : Y → 0, ∞ is continuous and 1 − t y ≥ tβ x 1−t β y , x, y ∈ Y, t ∈ 0, 1 . β tx 1.2 Assume that H 1 a ∈ C 0, 1 , 0, ∞ , 1 − s sa s ds < ∞, 0< 0 1.3 f ∈ C 0, 1 × 0, ∞ × 0, ∞ , 0, ∞ . Define f t, u, v max f0 lim max sup , v v → 0 t∈ 0,1 u∈ 0, ∞ f t, u, v min f0 lim min inf , v v → 0 t∈ 0,1 u∈ 0, ∞ 1.4 f t, u, v max f∞ lim max sup , v → ∞ t∈ 0,1 v u∈ 0, ∞ f t, u, v min f∞ lim min inf . v → ∞ t∈ 0,1 u∈ 0, ∞ v This paper is organized in the following way. In Section 2, we present some lemmas, which will be used in Section 3. The main results and proofs are given in Section 3. Finally, in Section 4, we give some examples to illustrate our results.
  3. Advances in Difference Equations 3 2. Lemmas C1 0, 1 be a Banach Space with norm Let E u max u , u , 2.1 1 where max |u t |, u u max u t . 2.2 t∈ 0,1 t∈ 0,1 It is not hard to see Lemmas 2.1 and 2.2. Lemma 2.1. Let u ∈ C1 0, 1 be the unique solution of 1.1 . Then 1 ut G t, s a s f s , u s , u s d s 0 2.3 1 αt2 λ t2 G1 η , s a s f s , u s , u s d s , 2 1 − αη 2 1 − αη 0 where ⎧ 1 ⎨ 2t − t − s s, s ≤ t, 2 G t, s 2 ⎩ 1 − s t2 , t ≤ s, 2.4 ⎧ ⎨ 1 − t s, s ≤ t, ∂G t, s G1 t , s ⎩ 1 − s t, ∂t t ≤ s. Lemma 2.2. One has the following. i 0 ≤ G1 t, s ≤ 1 − s s, 1/2 t2 1 − s s ≤ G t, s ≤ G 1, s 1/2 1 − s s. ii G1 t, s ≥ 1/4 G1 s, s 1/4 1 − s s, for t ∈ 1/4, 3/4 , s ∈ 0, 1 . G1 1/2, s ≥ 1/2 1 − s s, for s ∈ 0, 1 . iii Lemma 2.3. Let u ∈ C1 0, 1 be the unique solution of 1.1 . Then u t is nonnegative and satisfies u. u1 Proof. Let u ∈ C1 0, 1 be the unique solution of 1.1 . Then it is obvious that u t is nonnegative. By Lemmas 2.1 and 2.2, we have the following.
  4. Advances in Difference Equations 4 i For t ≤ η, t 1 2ts − s2 1 − αη t2 s α − 1 a s f s , u s , u s d s ut 2 1 − αη 0 η t2 1 − αη t2 s α − 1 a s f s , u s , u s d s t 1 t2 1 − s a s f s , u s , u s d s λ t2 , η 2.5 t 1 2s 1 − αη 2ts α − 1 a s f s, u s , u s ds ut 2 1 − αη 0 η 2t 1 − αη 2ts α − 1 a s f s, u s , u s ds t 1 2t 1 − s a s f s, u s , u s d s 2λt , η that is, u t ≤ u t . ii For t ≥ η, η 1 2ts − s2 1 − αη t2 s α − 1 a s f s , u s , u s d s ut 2 1 − αη 0 t 2ts − s2 1 − αη t2 αη − s a s f s, u s , u s ds η 1 t2 1 − s a s f s , u s , u s d s λ t2 , t 2.6 η 1 2s 1 − αη 2ts α − 1 a s f s, u s , u s ds ut 2 1 − αη 0 t 2s 1 − αη 2t αη − s a s f s, u s , u s ds η 1 2t 1 − s a s f s, u s , u s d s 2λt . t
  5. Advances in Difference Equations 5 On the other hand, for η ≤ s ≤ t, we have 2s 1 − αη 2t αη − s − 2ts − s2 1 − αη t2 αη − s αη t − s 2 s−t s 1−t 2−t s s−t 2.7 s αη t − s s−t− s 1−t 2−t . 2 αη Since α ∈ 1/2η, 1/η , 2s 1 − αη 2t αη − s ≥ 2ts − s2 1 − αη t2 αη − s . 2.8 So, u t ≤ u t . Therefore, u t ≤ u t , which means u≤u, u u. 2.9 1 The proof is completed. Lemma 2.4. Let u ∈ C1 0, 1 be the unique solution of 1.1 . Then 1 min u t ≥ u 1. 2.10 4 t∈ 1/4,3/4 Proof. From 2.3 , it follows that 1 ut G1 t , s a s f s , u s , u s d s 0 1 αt λt G1 η , s a s f s , u s , u s d s 1 − αη 1 − αη 0 2.11 1 ≤ 1 − s sa s f s, u s , u s d s 0 1 α λ G1 η , s a s f s , u s , u s d s . 1 − αη 1 − αη 0 Hence, 1 ≤ 1 − s sa s f s, u s , u s d s u u 1 0 2.12 1 α λ G1 η , s a s f s , u s , u s d s . 1 − αη 1 − αη 0
  6. Advances in Difference Equations 6 By Lemmas 2.2 and 2.3, we get, for any t ∈ 1/4, 3/4 , 1 min u t min G1 t , s a s f s , u s , u s d s t∈ 1/4,3/4 t∈ 1/4,3/4 0 1 αt λt G1 η , s a s f s , u s , u s d s 1 − αη 1 − αη 0 2.13 1 1 ≥ 1 − s sa s f s, u s , u s d s 4 0 1 α λ G1 η , s a s f s , u s , u s d s . 1 − αη 1 − αη 0 Thus, 1 min u t ≥ u 1. 2.14 4 t∈ 1/4,3/4 Define a cone by 1 u ∈ E : u ≥ 0, min u t ≥ K u . 2.15 1 4 t∈ 1/4,3/4 Set {u ∈ K : u {u ∈ K : u < r }, r }, Kr ∂Kr r > 0, 1 1 2.16 {u ∈ K : u ≤ r }, u∈K:r≤β u , u ≤s , Kr K β, r, s s > r > 0. 1 1 Define an operator T by 1 Tu t G t, s a s f s , u s , u s d s 0 2.17 1 αt2 λ t2 G1 η , s a s f s , u s , u s d s . 2 1 − αη 2 1 − αη 0 Lemma 2.1 implies that 1.1 has a solution u u t if and only if u is a fixed point of T . From Lemmas 2.1 and 2.2 and the Ascoli-Arzela theorem, the following follow. Lemma 2.5. The operator defined in 2.17 is completely continuous and satisfies T K ⊂ K .
  7. Advances in Difference Equations 7 Theorem 2.6 see 10 . Let E be a real Banach Space, let K ⊂ E be a cone, and Ωr {u ∈ K : u ≤ r }. Let operator T : K ∩ Ωr → K be completely continuous and satisfy Tx / x, for all x ∈ ∂Ωr . Then i if T x ≤ x , for all x ∈ ∂Ωr , then i T, Ωr , K 1, ii if T x ≥ x , for all x ∈ ∂Ωr , then i T, Ωr , K 0. Theorem 2.7 see 8 . Let T : Pc → Pc be a completely continuous operator and β a nonnegative continuous concave functional on P such that β x ≤ x for all x ∈ Pc . Suppose that there exist 0 < d0 < a0 < b0 ≤ c such that a {x ∈ P β, a0 , b0 : β x > a0 } / ∅ and β T x > a0 for x ∈ P β, a0 , b0 , T x < d0 for x ≤ d0 , b c β T x > a0 for x ∈ P β, a0 , c with T x > b0 . Then, T has at least three fixed points x1 , x2 , and x3 in Pc satisfying x1 < d0 , a0 < β x2 , x3 > d0 , β x3 < a0 . 2.18 3. Main Results In this section, we give new existence theorem about two positive solutions or three positive solutions for 1.1 . Write −1 1 1 α Λ1 1 − s sa s d s G1 η , s a s d s , 1 − αη 0 0 3.1 −1 3/4 3/4 α Λ2 1 − s sa s d s G1 η , s a s d s . 1 − αη 1/4 1/4 Theorem 3.1. Assume that ∞; H1 min f0 min f∞ H2 there exists a constant ρ1 > 0 such that f t, u, v ≤ 1/2 Λ1 ρ1 , for t ∈ 0, 1 , u ∈ 0, ρ1 and v ∈ 0, ρ1 . Then, the problem 1.1 has at least two positive solutions u1 and u2 such that 0 < u1 < ρ1 < u2 1 , 3.2 1 for λ small enough. Proof. Since f t, u, v ∞, 3.3 min f0 lim min inf v v → 0 t∈ 0,1 u∈ 0, ∞
  8. Advances in Difference Equations 8 there is ρ0 ∈ 0, ρ1 such that f t, u, v ≥ 8Λ2 v, for t ∈ 0, 1 , u ∈ 0, ∞ , v ∈ 0, ρ0 , Λ2 > 0. 3.4 Let Ωρ0 u∈K: u < ρ0 . 3.5 1 Then, for any u ∈ ∂Ωρ0 , it follows from Lemmas 2.2 and 2.3 and 3.4 that 1 1 1 Tu G1 , s a s f s, u s , u s d s 2 2 0 1 α λ G1 η , s a s f s , u s , u s d s 2 1 − αη 2 1 − αη 0 1 1 ≥ G1 , s a s f s, u s , u s d s 2 0 1 α 3.6 G1 η , s a s f s , u s , u s d s 2 1 − αη 0 3/4 3/4 1 α ≥ 1 − s s a s 8 Λ2 u s d s G1 η , s a s 8 Λ2 u s d s 2 1 − αη 2 1/4 1/4 3/4 3/4 α 1 ≥ 4 Λ2 1 − s sa s d s G1 η , s a s d s u1 1 2 1 − αη 4 1/4 1/4 u 1. Hence, ≥ u 1. Tu 3.7 So ≥ u 1, ∀u ∈ ∂Ωρ0 . Tu 3.8 1 By Theorem 2.6, we have i T, Ωρ0 , K 0. 3.9 On the other hand, since f t, u, v ∞, 3.10 min f∞ lim min inf v → ∞ t∈ 0,1 u∈ 0, ∞ v
  9. Advances in Difference Equations 9 ∗ ∗ there exist ρ0 , ρ0 > ρ1 such that 1∗ f t, u, v ≥ 8Λ2 v, for t ∈ 0, 1 , u ∈ 0, ∞ , v ≥ 3.11 ρ. 40 ∗ Let Ωρ0 {u ∈ K : u < ρ0 }. Then, by a argument similar to that above, we obtain ∗ 1 ≥ u 1, ∀u ∈ ∂Ωρ0 . Tu 3.12 ∗ 1 By Theorem 2.6, i T, Ωρ0 , K 0. 3.13 ∗ Finally, let Ωρ1 {u ∈ K : u < ρ1 }, and let λ satisfy 0 < λ ≤ 1/2 1 − αη ρ1 for any 1 u ∈ ∂Ωρ1 . Then, H2 implies 1 Tu t G1 t , s a s f s , u s , u s d s 0 1 αt λt G1 η , s a s f s , u s , u s d s 1 − αη 1 − αη 0 1 1 1 α 1 λ ≤ 1 − s sa s Λ1 ρ1 ds Λ1 ρ1 ds G1 η , s a s 1 − αη 1 − αη 2 2 3.14 0 0 1/2 1 − αη ρ1 1 1 1 α ≤ Λ1 1 − s sa s d s G1 η , s a s d s ρ 1 1 − αη 1 − αη 2 0 0 1 1 ρ1 ρ1 2 2 u 1, which means that T u ≤ u 1 . Thus, T u ≤ u 1 , for all u ∈ ∂Ωρ1 . 1 Using Theorem 2.6, we get i T, Ωρ1 , K 1. 3.15 ∗ From 3.9 – 3.15 and ρ0 < ρ1 < ρ0 , it follows that i T, Ωρ0 \ Ωρ1 , K −1, i T, Ωρ1 \ Ωρ0 , K 1. 3.16 ∗
  10. Advances in Difference Equations 10 Therefore, T has fixed point u1 ∈ Ωρ1 \ Ωρ0 and fixed point u2 ∈ Ωρ0 \ Ωρ1 . Clearly, u1 , u2 are ∗ both positive solutions of the problem 1.1 and 0 < u1 < ρ1 < u2 1 . 3.17 1 The proof of Theorem 3.1 is completed. Theorem 3.2. Assume that 0; H3 max f0 max f∞ H4 there exists a constant ρ2 > 0 such that f t, u, v ≥ 2Λ2 ρ2 , for t ∈ 0, 1 , u ∈ 0, ρ2 and v ∈ 1/4 ρ2 , ρ2 . Then, the problem 1.1 has at least two positive solutions u1 and u2 such that 0 < u1 < ρ2 < u2 3.18 1 1 for λ small enough. Proof. By f t, u, v max f0 lim max sup 0, 3.19 v v → 0 t∈ 0,1 u∈ 0, ∞ we see that there exists ρ∗ ∈ 0, ρ2 such that 1 f t, u, v ≤ Λ1 v, for t ∈ 0, 1 , u ∈ 0, ∞ , v ∈ 0, ρ∗ . 3.20 2 Put Ωρ∗ u∈K: u < ρ∗ , 3.21 1 and let λ satisfy 1 0
  11. Advances in Difference Equations 11 1 1 1 α 1 λ ≤ 1 − s sa s Λ1 u s d s Λ1 u s d s G1 η , s a s 1 − αη 1 − αη 2 2 0 0 1 − αη ρ∗ 1 1 1 α ≤ Λ1 1 − s sa s d s G1 η , s a s d s u 1 − αη 1 2 1 − αη 2 0 0 1 1 ≤ u ρ∗ 1 2 2 u 1. 3.23 So T u ≤ u 1 . Hence, T u 1 ≤ u 1 , for all u ∈ ∂Ωρ∗ . Applying Theorem 2.6, we have i T, Ωρ∗ , K 1. 3.24 Next, by f t, u, v max f∞ lim max sup 0, 3.25 v → ∞ t∈ 0,1 u∈ 0, ∞ v we know that there exists r0 > ρ2 such that 1 f t, u, v ≤ Λ1 v, for t ∈ 0, 1 , u ∈ 0, ∞ , v ≥ r0 . 3.26 2 Case 1. maxt∈ 0,1 f t, u, v is unbounded. Define a function f ∗ : 0, ∞ → 0, ∞ by f∗ ρ max f t, u, v : t ∈ 0, 1 , u, v ∈ 0, ρ . 3.27 Clearly, f ∗ is nondecreasing and limρ → ∗ ∞f ρ /ρ 0, and 1 f∗ ρ ≤ Λ1 ρ, 3.28 for ρ > r0 . 2 Taking ρ∗ ≥ max{2r0 , 2λ/ 1 − αη , 2ρ2 }, it follows from 3.26 – 3.28 that 1 f t, u, v ≤ f ∗ ρ∗ ≤ Λ1 ρ ∗ , for t ∈ 0, 1 , u, v ∈ 0, ρ∗ . 3.29 2
  12. Advances in Difference Equations 12 By Lemmas 2.2 and 2.3 and 3.28 , we have 1 Tu t G1 t , s a s f s , u s , u s d s 0 1 αt λt G1 η , s a s f s , u s , u s d s 1 − αη 1 − αη 0 1 1 1 α 1 λ 3.30 Λ1 ρ∗ ds Λ1 ρ∗ ds ≤ 1 − s sa s G1 η , s a s 1 − αη 1 − αη 2 2 0 0 ρ∗ 1 1 1 α G1 η , s a s d s ρ ∗ ≤ Λ1 1 − s sa s d s 1 − αη 2 2 0 0 ρ∗ . So T u ≤ ρ∗ , and then T u ≤ ρ∗ . 1 Case 2. maxt∈ 0,1 f t, u, v is bounded. In this case, there exists an M > 0 such that max f t, u, v ≤ M, for t ∈ 0, 1 , u, v ∈ 0, ∞ . 3.31 t∈ 0,1 Choosing ρ∗ ≥ max{2ρ2 , 2M/Λ1 , 2λ/ 1 − αη }, we see by Lemmas 2.2 and 2.3 and 3.31 that 1 Tu t G1 t , s a s f s , u s , u s d s 0 1 αt λt G1 η , s a s f s , u s , u s d s 1 − αη 1 − αη 0 ρ∗ 1 1 3.32 α ≤M 1 − s sa s d s G1 η , s a s d s 1 − αη 2 0 0 ρ∗ ρ∗ ≤ 2 2 ρ∗ , which implies T u ≤ ρ∗ , and then T u ≤ ρ∗ . 1 Therefore, in both cases, taking < ρ∗ , Ωρ∗ u∈K: u 3.33 1
  13. Advances in Difference Equations 13 we get ≤ u 1, ∀u ∈ ∂Ωρ∗ . Tu 3.34 1 By Theorem 2.6, we have i T, Ωρ∗ , K 1. 3.35 Finally, put Ωρ2 {u ∈ K : u < ρ2 }. Then H4 implies that 1 1 1 1 Tu G1 , s a s f s, u s , u s d s 2 2 0 1 α λ G1 η , s a s f s , u s , u s d s 2 1 − αη 2 1 − αη 0 3/4 3/4 1 α 3.36 ≥ 1 − s sa s 2Λ2 ρ2 ds G1 η, s a s 2Λ2 ρ2 ds 2 1 − αη 2 1/4 1/4 3/4 3/4 α ≥ Λ2 ρ 2 1 − s sa s d s G1 η , s a s d s 1 − αη 1/4 1/4 ρ2 , that is, T u ≥ ρ2 , and then T u ≥ u 1 , for all u ∈ ∂Ωρ2 . By virtue of Theorem 2.6, we have 1 i T, Ωρ2 , K 0. 3.37 From 3.24 , 3.35 , 3.37 , and ρ∗ < ρ2 < ρ∗ , it follows that i T, Ωρ∗ \ Ωρ2 , K i T, Ωρ2 \ Ωρ∗ , K −1. 1, 3.38 Hence, T has fixed point u1 ∈ Ωρ2 \ Ωρ∗ and fixed point u2 ∈ Ωρ∗ \ Ωρ2 . Obviously, u1 , u2 are both positive solutions of the problem 1.1 and 0 < u1 < ρ2 < u2 1 . 3.39 1 The proof of Theorem 3.2 is completed. Theorem 3.3. Let there exist d0 , a0 , b0 , and c with 0 < d0 < a0 < 32a0 < b0 ≤ c, 3.40
  14. Advances in Difference Equations 14 such that 1 f t, u, v ≤ Λ1 d 0 , t ∈ 0 , 1 , u ∈ 0 , d0 , v ∈ 0 , d0 , 3.41 4 f t, u, v ≥ 35Λ2 a0 , t ∈ 0, 1 , u ∈ a0 , b0 , v ∈ a0 , b0 , 3.42 1 f t, u, v ≤ Λ1 c, t ∈ 0, 1 , u ∈ 0, c , v ∈ 0, c . 3.43 2 Then problem 1.1 has at least three positive solutions u1 , u2 , u3 satisfying u1 < d0 , a0 < β u2 , u3 > d0 , β u3 < a0 , 3.44 1 1 for λ ≤ 1/2 1 − αη d0 . Proof. Let u ∈ K. min |u t |, βu 3.45 t∈ 1/4,3/4 Then, β is a nonnegative continuous concave functional on K and β u ≤ u for each u ∈ K . 1 Let u be in Kc . Equation 3.43 implies that 1 Tu t G1 t , s a s f s , u s , u s d s 0 1 αt λt G1 η , s a s f s , u s , u s d s 1 − αη 1 − αη 0 3.46 1/2 1 − αη c 1 1 1 α ≤ Λ1 1 − s sa s d s G1 η , s a s d s c 1 − αη 1 − αη 2 0 0 c. ≤ c. This means that T : Kc → Kc . Hence, T u 1 Take 1 t ∈ 0, 1 . u0 t a0 b0 , 3.47 2 Then, u0 ∈ u ∈ K β, a0 , b0 : β u > a0 / ∅. 3.48
  15. Advances in Difference Equations 15 By 3.42 , we have, for any u ∈ K β, a0 , b0 , 1 β Tu min G t, s a s f s , u s , u s d s t∈ 1/4,3/4 0 1 αt2 λ t2 G1 η , s a s f s , u s , u s d s 2 1 − αη 2 1 − αη 0 1 12 ≥ t s 1 − s a s f s, u s , u s d s min 2 t∈ 1/4,3/4 0 1 αt2 λ t2 G1 η , s a s f s , u s , u s d s 2 1 − αη 2 1 − αη 0 3/4 2 2 3/4 11 α 1 ≥ s 1 − s a s 35Λ2 a0 ds G1 η, s a s 35Λ2 a0 ds 2 1 − αη 24 4 1/4 1/4 35 a0 32 > a0 . 3.49 Therefore, a in Theorem 2.7 holds. ≤ d0 By 3.41 , we see that for any u 1 1 Tu t G1 t , s a s f s , u s , u s d s 0 1 αt λt G1 η , s a s f s , u s , u s d s 1 − αη 1 − αη 0 1/2 1 − αη d0 1 1 1 α 1 ≤ 1 − s sa s Λ1 d0 ds Λ1 d0 ds G1 η , s a s 1 − αη 1 − αη 4 4 0 0 3 d0 . 4 3.50 ≤ 3/4 d0 < d0 . This means that b of Theorem 2.7 holds. So, T u 1 Moreover, for any u ∈ K β, a0 , c with T u > b0 , we have 1 1 β Tu min G t, s a s f s , u s , u s d s t∈ 1/4,3/4 0 1 αt2 λ t2 G1 η , s a s f s , u s , u s d s 2 1 − αη 2 1 − αη 0
  16. Advances in Difference Equations 16 1 12 ≥ t 1 − s sa s f s, u s , u s d s min 2 t∈ 1/4,3/4 0 1 αt2 λ t2 G1 η , s a s f s , u s , u s d s 2 1 − αη 2 1 − αη 0 1 1 1 ≥ × 1 − s sa s f s, u s , u s d s 2 16 0 1 α λ G1 η , s a s f s , u s , u s d s 1 − αη 1 − αη 0 1 1 ≥ G1 t , s a s f s , u s , u s d s 32 0 1 α λ G1 η , s a s f s , u s , u s d s 1 − αη 1 − αη 0 1 1 ≥ G1 t , s a s f s , u s , u s d s 32 0 1 αt λt G1 η , s a s f s , u s , u s d s 1 − αη 1 − αη 0 1 Tu t , 32 3.51 which implies 1 1 β Tu ≥ 3.52 Tu > b0 > a0 . 1 32 32 So, c in Theorem 2.7 holds. Thus, by Theorem 2.7, we know that the operator T has at least three positive fixed points u1 , u2 , u3 ∈ Kc satisfying u1 < d0 , a0 < β u2 , u3 > d0 , β u3 < a0 . 3.53 1 1 4. Examples In this section, we give three examples to illustrate our results. Example 4.1. Consider the problem 1 t−1 2−u t 1/2 2 ut 2 1 ut ut 0, 0 < t < 1, 10 4.1 1 u 1 −u u0 u0 0, λ, 2
  17. Advances in Difference Equations 17 where η 1/2, α 1. Set 1 2t−1 1 2−u t 1/2 2 4.2 at , f t, u t , u t ut ut . 10 Then, ∞. min f0 min f∞ 4.3 So, the condition H1 is satisfied. Observe −1 1 1 α Λ1 1 − s sa s d s G1 η , s a s d s 1 − αη 0 0 −1 1 η 1 α 1 − s sa s d s 1 − η sa s d s η 1 − s a s ds 1 − αη 0 0 η 4.4 −1 1 1/2 1 1 1 1 1 1 1 1−s s 1− 1−s ds s ds ds 1 − 1/2 10 2 10 2 10 0 0 1/2 24. Taking for t ∈ 0, 1 , u ∈ 0, ρ1 , v ∈ 0, ρ1 , ρ1 4, 4.5 we have 1 f t, u, v ≤ 1 Λ1 ρ1 4.6 12 16 36 9 ρ1 < 1 2 ρ1 . 2 Thus, condition H2 is satisfied. Therefore, by Theorem 3.1, the problem 4.1 has at least two positive solutions u1 and u2 such that 0 < u1 < 4 < u2 1 , 4.7 1 for 1 1 0
  18. Advances in Difference Equations 18 Example 4.2. Consider the problem 2 −u t 2 × 58 1 ut t2 sin u t ut 5 0, 0 < t < 1, 4.9 1 u 1 −u u0 u0 0, λ, 2 where η 1/2, α 1. Set 2 −u t 58 1 4.10 at 2, f t, u, v t2 sin u t ut 5 . Then, max f0 max f∞ 0, 4.11 that is, the condition H3 is satisfied. Moreover, −1 3/4 3/4 α Λ2 1 − s sa s d s G1 η , s a s d s 1 − αη 1/4 1/4 −1 3/4 1/2 3/4 1 1 1 4.12 1 − s s2ds 1− 1 − s 2ds s2ds 1 − 1/2 2 2 1/4 1/4 1/2 48 . 29 Taking 1 for t ∈ 0, 1 , u ∈ 0, ρ2 , v ∈ ρ2 8, ρ2 , ρ2 , 4.13 4 we get 96 f t, u, v ≥ 58 82 5−8 8 ρ2 > 2 Λ2 ρ2 82 4.14 ρ2 . 29 Thus, condition H4 is satisfied. Consequently, by Theorem 3.2, we see that for 1 1 0
  19. Advances in Difference Equations 19 Example 4.3. For the problem 1.1 , take η 1/2, α 1, and a t 2. Then, 6 48 Λ1 Λ2 4.17 , . 5 29 Let 1425 d0 1, a0 2, b0 99, c , 6 ⎧ ⎪1 − t t2 u tv ⎪ ⎪ t ∈ 0, 1 , u ∈ 0, 1 , v ∈ 0, 1 . , ⎪ 10 ⎪ ⎪ 10 10 ⎪ ⎪ ⎪ ⎪1 − t ⎪ t2 t ⎪ ⎪ ⎪ ⎪ 10 ⎪ 10 10 ⎪ ⎪ ⎪ ⎪ u − 1 70 v − 1 , t ∈ 0, 1 , u ∈ 1, 2 , v ∈ 1, 2 , ⎪ 70 ⎪ 4.18 ⎨ f t, u, v ⎪ 1 − t t2 t ⎪ ⎪ t ∈ 0, 1 , u ∈ 2, 99 , v ∈ 2, 99 , 140, ⎪ 10 ⎪ ⎪ 10 10 ⎪ ⎪ ⎪ ⎪ 1 − t t2 ⎪ t ⎪ ⎪ ⎪ 140 ⎪ 10 ⎪ 10 10 ⎪ ⎪ ⎪ ⎪ u − 99 v − 99 ⎪ 2v ⎪ ⎩ t ∈ 0, 1 , u ∈ 99, ∞ , v ∈ 99, ∞ . 2 sin , 1 t2 u2 Then, 1−t t2 u tv 1 1 1 3 ≤ f t, u, v 10 10 10 10 10 10 10 1 Λ1 d 0 , t ∈ 0, 1 , u ∈ 0, 1 , v ∈ 0, 1 , 4 1−t t2 t 140 ≥ 140 > 35Λ2 a0 f t, u, v 10 10 10 48 35 × × 2, t ∈ 0, 1 , u ∈ 2, 99 , v ∈ 2, 99 , 4.19 29 1−t 2v u − 99 v − 99 t2 t f t, u, v 140 2 sin 1 t2 u2 10 10 10 3 1423 1 ≤ < Λ1 c 140 2 10 10 2 1 6 1425 ×× t ∈ 0, 1 , u ∈ 99, ∞ , v ∈ 99, ∞ , , 25 6 which implies 1 Λ1 c, t ∈ 0, 1 , u ∈ 0, c , v ∈ 0, c . 4.20 f t, u, v < 2
  20. Advances in Difference Equations 20 That is, the conditions of Theorem 3.3 are satisfied. Consequently, the problem 1.1 has at least three positive solutions u1 , u2 , u3 ∈ Kc for 1 1 λ≤ 1 − αη d0 4.21 2 4 satisfying u1 < 1, 2 < β u2 , u3 > 1, β u3 < 2 . 4.22 1 1 Acknowledgments This paper was supported partially by the NSF of China 10771202 and the Specialized Research Fund for the Doctoral Program of Higher Education of China 2007035805 . References 1 R. P. Agarwal, Focal Boundary Value Problems for Differential and Difference Equations, vol. 436 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998. 2 R. L. Bisplinghoff and H. Ashley, Principles of Aeroelasticity, Dover Publications, Mineola, NY, USA, 2002. 3 J. Henderson, Ed., Boundary Value Problems for Functional-Differential Equations, World Scientific, River Edge, NJ, USA, 1995. 4 D. R. Anderson, “Green’s function for a third-order generalized right focal problem,” Journal of Mathematical Analysis and Applications, vol. 288, no. 1, pp. 1–14, 2003. 5 R. I. Avery and A. C. Peterson, “Three positive fixed points of nonlinear operators on ordered Banach spaces,” Computers & Mathematics with Applications, vol. 42, no. 3–5, pp. 313–322, 2001. 6 A. Boucherif and N. Al-Malki, “Nonlinear three-point third-order boundary value problems,” Applied Mathematics and Computation, vol. 190, no. 2, pp. 1168–1177, 2007. 7 G. L. Karakostas, K. G. Mavridis, and P. C. Tsamatos, “Triple solutions for a nonlocal functional boundary value problem by Leggett-Williams theorem,” Applicable Analysis, vol. 83, no. 9, pp. 957– 970, 2004. 8 R. W. Leggett and L. R. Williams, “Multiple positive fixed points of nonlinear operators on ordered Banach spaces,” Indiana University Mathematics Journal, vol. 28, no. 4, pp. 673–688, 1979. 9 Y. Sun, “Positive solutions for third-order three-point nonhomogeneous boundary value problems,” Applied Mathematics Letters, vol. 22, no. 1, pp. 45–51, 2009. 10 D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, vol. 5 of Notes and Reports in Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1988.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2