YOMEDIA
ADSENSE
Calculation of the Ettingshausen Coefficient in a Rectangular Quantum Wire with an Infinite Potential in the Presence of an Electromagnetic Wave
29
lượt xem 1
download
lượt xem 1
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
The theoretical results for the EC are numerically evaluated, plotted and discussed for a specific RQWIP GaAs/GaAsAL. We also compared received EC with those for normal bulk semiconductors and quamtum wells to show the difference. The Ettingshausen effect in a RQWIP in the presence of an EMW is newly developed.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Calculation of the Ettingshausen Coefficient in a Rectangular Quantum Wire with an Infinite Potential in the Presence of an Electromagnetic Wave
VNU Journal of Science: Mathematics – Physics, Vol. 33, No. 4 (2017) 17-23<br />
<br />
Calculation of the Ettingshausen Coefficient<br />
in a Rectangular Quantum Wire with an Infinite Potential<br />
in the Presence of an Electromagnetic Wave<br />
(the Electron - Optical Phonon Interaction )<br />
Cao Thi Vi Ba, Tran Hai Hung*, Doan Minh Quang, Nguyen Quang Bau<br />
Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, Vietnam<br />
Received 11 October 2017<br />
Revised 24 October 2017; Accepted 25 October 2017<br />
<br />
Abstract: The Ettingshausen coefficient (EC) in a Rectangular quantum wire with an infinite<br />
potential (RQWIP)in the presence of an Electromagnetic wave (EMW) is calculated by using a<br />
quantum kinetic equation for electrons. Considering the case of the electron - optical phonon<br />
interaction, we have found the expressions of the kinetic tensors ik , ik , ik , ik . From the kinetic<br />
tensors, we have also obtained the analytical expression of the EC in the RQWIP in the presence<br />
of EMW as function of the frequency and the intensity of the EMW, of the temperature of system,<br />
of the magnetic field and of the characteristic parameters of RQWIP. The theoretical results for<br />
the EC are numerically evaluated, plotted and discussed for a specific RQWIP GaAs/GaAsAL. We<br />
also compared received EC with those for normal bulk semiconductors and quamtum wells to<br />
show the difference. The Ettingshausen effect in a RQWIP in the presence of an EMW is<br />
newly developed.<br />
Keywords: Ettingshausen effect, Quantum kinetic equation, RQWIP, Electron - phonon<br />
interaction, kinetic tensor.<br />
<br />
1. Introduction<br />
Nowadays, the theoretical study of kinetic effects in low-dimensional systems is increasingly<br />
interested, especially on the electrical, magnetic and optical properties of the low-dimensional systems such<br />
as: the absorption of electromagnetic waves, the acoustomagnetoelectric effect, the Hall effect, ... These<br />
results show us that there are some significant differences from the bulk semiconductor that the previous<br />
researches studied [1-12]. Among those, the Ettingshausen effect has just been researched in bulk<br />
semiconductors [13] and only been studied on the theoretical basis in 2-D systems [14]. Furthermore, no<br />
research has been done on the Ettinghausen effect in 1-D systems such as quantum wires so far. In this<br />
paper, the calculation of Ettingshausen coefficient in the Rectangular quantum wire with an infinite<br />
<br />
_______<br />
<br />
<br />
Corresponding author. Tel.: 84-903293995.<br />
Email: haihung307@gmail.com<br />
https//doi.org/ 10.25073/2588-1124/vnumap.4236<br />
<br />
17<br />
<br />
C.T.V. Ba et al. / VNU Journal of Science: Mathematics – Physics, Vol. 33, No. 4 (2017) 17-23<br />
<br />
18<br />
<br />
potential in the presence of magnetic field, electric field under the influence of electromagnetic wave is<br />
done by using the quantum kinetic equation method that brings the high accuracy and the high efficiency.<br />
Comparing the results obtained in this case with in the case of the bulk semiconductors and quantum<br />
wires, we see some differences. To demonstrate this, we estimate numerical values for a GaAs/GaAsAl<br />
quantum wire.<br />
2. Calculation of the Ettingshausen coefficient in a Rectangular quantum wire with an infinite<br />
potential in the presence of an electromagnetic wave<br />
In a model, we consider a wire with rectangular cross section (Lx Ly) and the length Lz. The effective<br />
mass of electron is denoted as m. The RQWIP is subjected to a crossed dc electric field E1 ( 0,0,E1 ) and<br />
magnetic field B ( B,0,0 ) in the presence of a strong EMW characterized by electric field<br />
E( t ) E0 sin( t ) (with E0 and are the amplitude and the frequency of LR, respectively). Under these<br />
condition, the wave function and energy spectrum of confined electron can be written as:<br />
<br />
,k ( x, y,z) <br />
<br />
1 i kz<br />
e<br />
Lz<br />
<br />
0 x Lx<br />
2<br />
n x<br />
2<br />
l y<br />
<br />
sin(<br />
)<br />
sin(<br />
) when <br />
Lx<br />
Lx<br />
Ly<br />
Ly<br />
<br />
0 y Ly<br />
<br />
(1)<br />
<br />
and ,k ( x, y,z) 0 if else.<br />
k z2 2 2 n2 l 2 <br />
1<br />
1 eE1 <br />
( k ) <br />
<br />
2 2 c ( N ) <br />
<br />
<br />
2m<br />
2m Lx Ly <br />
2<br />
2m c <br />
2<br />
<br />
2<br />
<br />
(2)<br />
<br />
eB<br />
is the cyclotron frequenciesn; and ‟ are the<br />
m<br />
quantum numbers (n,l) and (n,l‟) of electron; N, N‟ are the Landau level (N=0,1,2,…). These expressions<br />
differ from the equivalent expressions in bulk semiconductors [14] and quantum wells [13].<br />
The Hamiltonnian of the electron - optical phonon interaction system in the above RQWIP can be<br />
written as:<br />
e<br />
H ( k A( t ) )a,k a ,k q bq bq <br />
c<br />
q<br />
,k<br />
(3)<br />
2<br />
2 <br />
Cq I , ' ( q ) a ,k q a ',k ( bq bq ) ( q )a,k q a ',k<br />
where kz is the electron wave momentum; c <br />
<br />
, ',k ,q<br />
<br />
q<br />
<br />
<br />
,k<br />
<br />
Where a<br />
<br />
<br />
q<br />
<br />
and a ,k ( b and bq ) are the creation and the annihilation operators of electron (optical<br />
<br />
phonon); k is the electron wave momentum; q is the phonon wave vector; q are optical phonon<br />
1<br />
1 <br />
(here V is<br />
<br />
0 <br />
is magnetic permeability of high frequency dielectric, 0 is magnetic<br />
<br />
frequency; Cq the electron – optical phonon interaction constant: | Cq |2 =<br />
the unit normalization volume, <br />
<br />
e2o<br />
2 0 q 2V<br />
<br />
permeability of static dielectric; I , ' ( q ) is the electron form factor, which is determinned by [8], different<br />
from that in cylindrical quantum wire; q is the potential undirected:<br />
<br />
C.T.V. Ba et al. / VNU Journal of Science: Mathematics – Physics, Vol. 33, No. 4 (2017) 17-23<br />
<br />
q 2 i ( eE c [ q,h ])<br />
3<br />
<br />
<br />
q <br />
q<br />
<br />
19<br />
<br />
(4)<br />
<br />
( h is unit vector in the direction of magnetic field).<br />
Through some computation steps, the quantum kinetic equation takes the form:<br />
e<br />
<br />
m kn<br />
,k<br />
<br />
,k<br />
<br />
δ(ε ε ,k )<br />
<br />
τ<br />
<br />
<br />
n ,k<br />
e<br />
kF<br />
<br />
m ,k k<br />
<br />
<br />
e<br />
c h , kn ,k δ(ε ε ,k<br />
m<br />
,k<br />
<br />
<br />
2 e<br />
δ(ε ε ,k ) <br />
Cq<br />
m , ' ,q ,k<br />
<br />
<br />
<br />
2<br />
n ',q k n ,k 1 <br />
2 2<br />
<br />
<br />
<br />
<br />
2<br />
<br />
<br />
) <br />
<br />
2<br />
<br />
I , ' ( q ) N q k <br />
<br />
<br />
2<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
',k q ,k o <br />
<br />
o<br />
',k q<br />
,k<br />
4 2<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
2<br />
2 <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
n<br />
<br />
n<br />
1<br />
<br />
',k q ,k o <br />
o<br />
',k q<br />
',k q<br />
,k<br />
,k <br />
4 2<br />
2 2 <br />
<br />
<br />
<br />
<br />
<br />
2<br />
2<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
',k q ,k o <br />
o<br />
',k q<br />
.k<br />
4 2<br />
4 2<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
(5)<br />
<br />
<br />
<br />
<br />
<br />
( ε ε<br />
<br />
,k<br />
<br />
<br />
<br />
)<br />
<br />
Equation (5) we put:<br />
R( ) <br />
,k<br />
<br />
Q( ) <br />
<br />
S( ) <br />
<br />
e<br />
kn δ(ε ε ,k )<br />
m ,k<br />
<br />
n ,k<br />
e<br />
kF<br />
<br />
m ,k k<br />
<br />
(6)<br />
<br />
<br />
F<br />
T;<br />
δ(ε ε ,k ) ; F e.E1 <br />
T<br />
<br />
<br />
(7)<br />
<br />
2<br />
2 e<br />
2<br />
C(q) I , ' ( q ) N q k <br />
<br />
m , ' ,q ,k<br />
<br />
<br />
2 <br />
2<br />
n ',q k n ,k 1 <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
',k q ,k o <br />
<br />
o<br />
',k q<br />
,k<br />
2 2 <br />
4 2<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
2<br />
2 <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
n<br />
<br />
n<br />
1<br />
<br />
',k q ,k o <br />
o<br />
',k q<br />
',k q<br />
,k<br />
,k <br />
4 2<br />
2 2 <br />
<br />
<br />
<br />
<br />
<br />
2<br />
2<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
',k q ,k o <br />
o<br />
',k q<br />
.k<br />
4 2<br />
4 2<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
(8)<br />
<br />
<br />
<br />
<br />
<br />
( ε ε<br />
<br />
,k<br />
<br />
<br />
<br />
).<br />
<br />
We obtain the following equations:<br />
R( ) <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
( ) Q( ) S( ),h h .<br />
2 2<br />
c<br />
<br />
<br />
<br />
<br />
<br />
( )<br />
Q( ) S( ) c ( ) h ,Q( ) h ,S( ) <br />
1 c2 2 ( )<br />
<br />
(9)<br />
<br />
C.T.V. Ba et al. / VNU Journal of Science: Mathematics – Physics, Vol. 33, No. 4 (2017) 17-23<br />
<br />
20<br />
<br />
After some approximate developing and computation steps, we obtain the expression of Ettinghausen<br />
coefficient as follows:<br />
xx xy xy xx<br />
1<br />
(10)<br />
P<br />
H xx T xx xx T K L <br />
xx<br />
xx<br />
<br />
<br />
<br />
<br />
<br />
<br />
Here:<br />
ea<br />
eb<br />
2<br />
ea<br />
eb<br />
2<br />
( 1 c2 2 )<br />
; xy <br />
.c .c .<br />
2<br />
2<br />
2 2<br />
2<br />
2<br />
1 c <br />
m<br />
1 c <br />
m<br />
1 2 2 <br />
1 2 2 <br />
<br />
(11)<br />
<br />
eb<br />
2<br />
.( 1 c2 2 ).<br />
2<br />
mT<br />
1 2 2 <br />
<br />
(12)<br />
<br />
xx <br />
<br />
b<br />
2<br />
b<br />
2<br />
.( 1 c2 2 ).<br />
;<br />
<br />
<br />
.<br />
<br />
<br />
.<br />
xy<br />
c<br />
2<br />
2<br />
m<br />
m<br />
1 2 2 <br />
1 2 2 <br />
<br />
(13)<br />
<br />
T <br />
<br />
b<br />
<br />
.( 1 c2 2 ).<br />
2<br />
mT<br />
1 2 2 <br />
<br />
(14)<br />
<br />
xx <br />
<br />
c<br />
<br />
xx <br />
<br />
c<br />
<br />
c<br />
<br />
c<br />
<br />
xx<br />
<br />
2<br />
<br />
c<br />
<br />
2<br />
<br />
c<br />
<br />
1/ 2<br />
<br />
e Lx 2m <br />
a<br />
<br />
2 <br />
4m <br />
<br />
b<br />
<br />
2 eNo<br />
m<br />
<br />
2<br />
<br />
1 eE1 2 2 n2 l 2 <br />
1 <br />
<br />
<br />
<br />
exp β ε F <br />
2 2 c N <br />
<br />
<br />
2m c <br />
2m Lx Ly <br />
2 <br />
<br />
<br />
<br />
<br />
<br />
(A A<br />
<br />
<br />
1<br />
<br />
2<br />
<br />
, '<br />
<br />
1<br />
1 <br />
A3 A4 A5 A6 A7 A8 ) <br />
I .I , ' e B<br />
o <br />
<br />
(16)<br />
<br />
2<br />
<br />
<br />
2<br />
2 2 n2 l 2 <br />
1 1 eE <br />
<br />
<br />
I exp F <br />
2 2 c N <br />
, I , ' I , ' ( q ) dq<br />
<br />
2m Lx Ly <br />
2 2m c <br />
<br />
<br />
<br />
<br />
<br />
Lx kBTe2 B2<br />
A1 <br />
e<br />
8 2 3<br />
<br />
11<br />
<br />
A2 <br />
A3 <br />
<br />
B211<br />
<br />
B<br />
e<br />
( 2B11m )1/ 2 K 1 ( 11 )2 <br />
<br />
2 <br />
2<br />
2 m<br />
<br />
Lx kBTe4 Eo2 B11 B2<br />
e<br />
16m2 ( / 8m )3/ 2 4<br />
<br />
11<br />
<br />
<br />
1 <br />
<br />
<br />
B11 <br />
<br />
<br />
Lx kBTe4 Eo2 B13 B2 <br />
Lx kBTe4 Eo2 B14 B2 <br />
1 <br />
1 <br />
e<br />
<br />
<br />
,<br />
A<br />
<br />
e<br />
<br />
<br />
<br />
<br />
4<br />
2<br />
3/ 2<br />
4<br />
2<br />
3/ 2<br />
4<br />
16m ( / 8m ) <br />
B13 <br />
16m ( / 8m ) <br />
B14 <br />
<br />
<br />
13<br />
<br />
Lx kBTe2 B4<br />
A5 <br />
e<br />
8 2 3<br />
<br />
15<br />
<br />
A6 <br />
<br />
14<br />
<br />
B215<br />
<br />
B<br />
e<br />
( 2B15 m )1/ 2 K 1 ( 15 )2 <br />
<br />
2 <br />
2<br />
2 m<br />
<br />
Lx kBTe4 Eo2 B15 B2<br />
e<br />
16m2 ( / 8m )3 / 2 4<br />
<br />
15<br />
<br />
<br />
1 <br />
<br />
<br />
B15 <br />
<br />
<br />
(15)<br />
<br />
(17)<br />
<br />
C.T.V. Ba et al. / VNU Journal of Science: Mathematics – Physics, Vol. 33, No. 4 (2017) 17-23<br />
<br />
A7 <br />
<br />
Lx kBTe4 Eo2 B17 B2 <br />
1<br />
e<br />
<br />
16m2 ( / 8m )3 / 2 4<br />
B<br />
17<br />
<br />
<br />
B11 <br />
<br />
17<br />
<br />
n' 2 n2 l' 2 l 2<br />
<br />
<br />
2m L2x<br />
L2y<br />
<br />
2<br />
<br />
2<br />
<br />
<br />
Lx kBTe4 Eo2 B18 B218<br />
,<br />
A<br />
<br />
e<br />
8<br />
2m2 ( / 8m )3 / 2 4<br />
<br />
<br />
21<br />
<br />
<br />
1 <br />
<br />
<br />
B18 <br />
<br />
<br />
<br />
c N' N o ,<br />
<br />
<br />
B13 B11 , B14 B11 , B15 B11 2o , B17 B15 , B18 B15 <br />
<br />
Here 1 / ( kBT ) ; hx 0,hy 0,hz 1; K L , ,T ,k B , 0 , , F :is the lattice heat conductivity, the<br />
momentum laxation time, the temperature, the Boltzmann constant, the static dielecttric constant, the high<br />
frequency dielectric constant, and the Fermi level, respectively. The expressions of the kinetic tensors<br />
ik , ik , ik , ik (11-14) and of the EC (10) as well as functions of the frequency and the intensity of the<br />
EMW, of the temperature of system, of the magnetic field and of the characteristic parameters of RQWIP<br />
are different from those in bulk semiconductors and quamtum wells. It is newly developed in the quantum<br />
theory of Ettinghausen effect.<br />
3. Numerical results<br />
We will survey, plot and discuss the expressions for the case of a specific GaAs/GaAsAl quantum well.<br />
The parameters used in the calculations are as follows:<br />
<br />
10.9, 12.9, 0 36.25meV , 5320 kg.m 3 , 3.10 13 s 1 ,<br />
F 50meV , 10 12 s,Lx 8.10 9 m,Ly 7.10 9 m,m 0,067.m0 ( m<br />
<br />
0<br />
<br />
is the mass of a free electron )<br />
<br />
In Fig. 1, we show the dependence of the EC on the laser frequency. From the figure, we see that the<br />
EC in RQWIP decreased is nonliner with the frequency, however, the EC in the quantum wells increased<br />
with the frequency [14]. This also demonstrates its difference in bulk semiconductors [13].<br />
In Fig. 2, we show the dependence of the EC on laser amplitute. We found that the EC in RQWIP<br />
decreased is nonliner with laser amplitude. This is similar in the case of quantum wells, however, the EC in<br />
the quantum wire has decreased much faster than in quantum wells and in bulk semiconductors [13,14].<br />
<br />
Fig 1. The dependence of EC on laser<br />
frequency.<br />
<br />
Fig 2. The dependence of EC on<br />
laser amplitute.<br />
<br />
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn