Chuyên đề vật lý " Bề mặt Fermi "
lượt xem 18
download
Như chúng ta thấy ở phần 8.8, sự tắt dần của sóng siêu âm không trực tiếp cho hình dạng của bề mặt fermi. Nhưng nếu từ trường cùng được sử dụng với sóng siêu âm, khi đó hiện tượng thu được phụ thuộc trực tiếp vào diện mạo hình học của bề mặt. Những hiện tượng này rất phức tạp trong lý thuyết và trong thực nghiệm; có nhiều cách khác nhau để sắp xếp chiều của từ trường, vector lan truyền của sóng siêu âm và sự phân cực của vector sóng, ...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Chuyên đề vật lý " Bề mặt Fermi "
- Trần Văn Thảo Cao học VLLT DHKHTN K19 9.5. Những dao động âm – Magneto Như chúng ta thấy ở phần 8.8, sự tắt dần của sóng siêu âm không trực tiếp cho hình dạng của bề mặt fermi. Nhưng nếu từ trường cùng được sử dụng với sóng siêu âm, khi đó hiện tượng thu được phụ thuộc trực tiếp vào diện mạo hình học của bề mặt. Những hiện tượng này rất phức tạp trong lý thuyết và trong thực nghiệm; có nhiều cách khác nhau để sắp xếp chiều của từ trường, vector lan truyền của sóng siêu âm và sự phân cực của vector sóng, để hoàn thành sự phân tích người ta phải xây dựng hàm dẫn tổng quát (q, ) , tương tự như (8.115), nhưng thể hiện qua hệ tọa độ cyclotron như trong (9.14) ho ặc (9.21). Điều này có thể được thực hiện nhưng chắc chắn phức tạp hơn bởi những hoàn cảnh hình học của nó. 1 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Hình 164: Bề mặt Fermi của Đồng. Tuy nhiên, trường hợp đơn giản sau đây sẽ minh họa các hiệu ứng. Giả sử chúng ta có từ trường theo trục z và sóng siêu âm ngang, với vector phân cực theo trục y, lan truyền theo trục x. Xét quỹ đạo thực của electron trong không gian thực. Đối với những electron tự do quỹ đạo này sẽ là hình xoắn ốc, tức là sẽ thu được hình tròn khi ta chiếu lên mặt phẳng (x,y). Đối với ‘quỹ đạo’ trong không gian k thì việc chiếu được xác định dễ dàng. Tổng quát, e (9.45) k H r c Giống như (6.40). Theo sau, lấy tích phân theo thời gian ta được e (9.46) k H r c Quỹ đạo của k trong không gian k tương tự như quỹ đạo r trong không gian thực e lên mặt phẳng x – y, chỉ khác là nhân thêm H và quay vuông góc với H c Hình 165: (a) Quỹ đạo của electron trong không gian thực.(b) Quỹ đạo trên bề mặt Fermi. 2 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Bây giờ ta xét điện trường thiết lập bởi sóng âm học. Cho những mục đích thực nghiệm chúng ta có thể giải quyết điều này khi dao động điện trường dừng dừng lan truyền ngang theo chiều lan truyền. Trong thực nghiệm, để làm cho H 1 , chúng ta cần từ trường đủ mạnh khoảng H ; các electron chuyển động nhiều vòng theo quỹ đạo của nó trước khi tán xạ hoặc trước khi điện trường thay đổi. Hệ số quan trọng tại thời điểm đó là sự biến thiên điện trường do những electron chuyển động xung quanh quỹ đạo của nó. Đó là điều hiển nhiên từ hình 165, nó có thể làm trường này được sắp xếp, nó gia tốc những electron chuyển động giống như trong quỹ đạo với E và v song song. Điều này là sự ‘cộng hưởng hình học’; điều kiện hiển nhiên là đường kính của quỹ đạo là số nguyên lần nữa bước sóng của trường: c 1 (9.47) 2k y ( n ) 2rx eH 2 Đối với bước sóng cố định, sự hấp thụ sẽ biến đổi, khi H biến đổi với định nghĩa chu kỳ 1/H. Chu kỳ này sẽ cho đường kính của bề mặt Fermi, khi đo tại những điểm nơi mà vận tốc những electron song song với vector điện trường đươc sinh ra bởi nguồn sóng. Tuy nhiên, điều kiện cộng hưởng này (9.47) thì không th ật sự chính xác. Có thể thấy điều này khi ta xét trường hợp quỹ đạo tròn, ở đây (9.48) v y (t ) v0 sin H t (9.49) x(t ) rx sin H t Vì thế rằng trong trường E y exp(iqx) năng lượng hấp thụ trên một chu kỳ sẽ là 2 / B exp(iqrx sin H t ) sin H tdt E.vdt E yv0 0 2 E y v0 exp(iqr sin ) sin d x H 0 3 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 E y v0 (9.50) 2 J1 (qrx ) H 1 ‘Sự cộng hưởng’ vì vậy là điểm cực đại của hàm Bessel J1 (qrx ) . Thay vì là (n ) trong 2 1 (9.47) chúng ta nhận được những số tương tự như 1.22, 2.23, 3.24 ... (n ) . Vì vậ y 4 chúng ta phải quan tâm giải thích hiệu ứng. Hơn nữa mối quan hệ giữa trường biến dạng của sóng đàn hồi và những lực của các electron được đưa vào trong phép tính và những ảnh hưởng vị trí của sự cộng hưởng. Hình 166: Hiệu ứng kích thước R.f. (a) quỹ đạo cực trị; (b) quỹ đạo tán xạ; (c) Chuỗi quỹ đạo gây ra bởi những lớp bên trong. Đường kính quỹ đạo của những electron có thể được xác định trực tiếp bởi Gantmakher hoặc hiệu ứng kích thước r.f. Trở khán bề mặt của một mẫu kim loại rất tinh khiết, với từ trường song song với bề mặt thì được đo ở tần số radio tùy ý H . Electron được gia tốc ở bên trong sâu trong lớp bề mặt đi theo một quỹ đạo kín, đường kính sẽ tăng khi H giảm. Khi quỹ đạo này đủ lớn, những electron va chạm ít với bề mặt 4 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 của mẫu kim loại và bị tán xạ. Điện trở bề mặt nhạy với những điện tử ‘linh động’ (8.7; 9.2), những sự thay đổi khi 2rx trong (9.47) bằng với bề dầy của mẫu (hình 166). Hiện tượng này dẫn tới không sử dụng được điều kiện cộng hưởng cyclotron, và rõ ràng hơn so với hiệu ứng âm magneto bởi vì bề mặt thật sự là một không gian gián đoạn. Nhưng những dao động với chu kỳ 1/H được quan sát lại, với sự giao thoa từ những đóng góp của các nhóm những quỹ đạo cực trị khác nhau. Có điều này là vì ảnh hưởng của những electron ở sâu bên trong lớp bề mặt của mẫu kết hợp để sinh ra dòng mỏng khoanh tròn ở đường kính bên dưới bề mặt này. Lớp vỏ mới này đóng vai trò như là nguồn khác và tạo nên một bộ quỹ đạo. Nếu một chuỗi quỹ đạo có thể thật sự tồn tại bên trong mẫu, khi đó mẫu sẽ xuất hiện rõ ràng trong trường r.f. hơn chúng ta mong đợi. Nhưng ngay lúc những electron ở dưới quỹ đạo thấp nhất va chạm với bề mặt này, trở khán thay đổi mạnh. Với khả năng kết hợp thêm những quỹ đạo cực trị, những quan sát thu được khá phức tạp. Với những điều này và hiện tượng không công hưởng magnetomorphic thì có khả năng thu được thông tin chi tiết về bề mặt fermi. 9.6. Sự lượng tử hóa quỹ đạo Tần số cyclotron H giống tần số của dao động điều hòa đơn giản. Chúng ta mong đợi rằng tìm năng lượng lượng tử hóa trong đơn vị của H . Điều này thật tế đúng, mặt dù một cách tổng quát tuyệt đối chưa được chứng minh. Xét những electron trong từ trường. Chúng thỏa mãn phương trình schrodinger 1 e ( A)2 (9.51) 2m i c Ở đây a là thế vector. Chúng ta cần những trạng thái dừng của hệ này. Ta chọn (9.52) A (0, H x , 0) Trường H được cho xoắn theo trục z. Thế (9.52) vào (9.51) ta phải giải 2 2 2m ieH 2 (9.53) x) 2 2 0 ( x 2 y c z 5 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Phương trình này có một nghiệm dạng (9.54) ( x, y, z ) exp{i( y k z z )}u ( x ) Ở đây u(x) thỏa mãn phương trình 2 u 2m ' eH 2 (9.55) { 2 ( x ) }u 0 2 c x 2 2 Với (9.56) ' kz 2m Ở đây sự chuyển động theo trục z song song với trường thật sự giống những electron tự do, và sự đóng góp cho động năng là tương tự nhau. Nhưng đối với sự chuyển động trong mặt phẳng (x,y) chúng ta phải giải phương trình mới, có thể viết 2 2 u ( x ) 1 eH 2 (9.57) ) u( x) ' u ( x) x ( 2 2m x 2m mc m Tần s ố eH (9.58) H mc Có một điểm ở tâm 1 (9.59) x0 H m Vì vậ y 1 ' ( n ) H (9.60) 2 Và 2 2 1 (n )H (9.61) kz 2 2m 6 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Đây là kết quả mà sau khi: năng lượng của những trạng thái được diễn tả như tổng của năng lượng tịnh tiến cùng với từ trường, cùng với năng lượng lượng tử của chuyển động cylotron trong mặt phẳng tới trường. Câu hỏi thú vị là - làm thế nào chúng ta điếm được những trạng thái? Giả sử chúng ta có một cái hợp, như trong phần 1.7, có những cạnh Lx , Ly , Lz . Hiển nhiên, k z bị 2 lượng tử hóa, như thường dùng đơn vị . Hơn nữa từ dạng (9.54), bị lượng tử hóa Lz 2 với đơn vị . Nhưng chú ý rằng năng lượng thì không phụ thuộc , vì thế người ta có Ly thể giả thiết đối với một giá trị được cho của n chúng ta có thể có bất kỳ giá trị nào của trong một tập vô hạn. Như biểu diễn trong (9.59), hàm u phụ thuộc vào ở tâm 1 v y (9.62) x0 H m H Điều này có nghĩa là nếu những trạng thái của electron hướng theo chiều y với vận tốc v y thì nó sẽ chuyển động vào trong đường tròn trong từ trường, với tâm là x0 . Đường này phải không quá lớn. Chúng ta phải có x0 bên trong cái hợp, vì thế chúng ta có (9.63) 0 x0 Lx Đây là giới hạn của vị trí tâm này. 7 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Hình 167: Nghiệm của phương trình schrodinger cho electron trong trường điện từ. Nhưng dạng (9.62) này mang hạn chế trong dãy giá trị được phép đối với . 2 Không chỉ biến này bị lượng tử hóa đơn vị mà nó phải thỏa mãn Ly m H eH (9.64) 0 Lx Lx c Vì vậ y chỉ có Ly m H (9.65) p Lx 2 Những giá trị khác của . mỗi mức của (9.61) tương ứng với một chọn lựa đặt biệt của n và k z , là suy biến p lần. 8 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Tất nhiên, từ trường bị chia nhỏ trong sự lượng tử hóa. Những biến số k x , k y , k z là trong hệ tọa độ không gian k thì không còn là những số lượng tử tốt nữa; hàm sống trong (9.54) không còn phù hợp cho tồn tại những giá trị của những tham số này. Tuy nhiên, chúng ta hãy sử dụng không gian tương đương này, và chúng ta hãy trình bày p mức mới có một số giá trị của được cho bởi (9.61) bởi các bề mặt tương ứng với năng lượng này trong sơ đồ nguyên bản của chúng ta. Bỏ qua trục tọa độ z, những bề mặt này là những đường tròn trong mặt phẳng (x,y). Những trạng thái mới không thật sự được đặt ở bất kỳ điểm nào trong những đường tròn này; chúng sẽ được quay xung quanh với tần số H . Nhưng chúng ta có thể phân loại những mức khác nhau trong từ trường bằng cách đặt tên những đường tròn mà trên đó chúng được phép. Hình 168: Sự sắp xếp lượng tử cho những electron tự do: (a) không có từ trường; (b) trong từ trường. Thật sự chúng ta có thể kiểm tra tổng số của các mức liên kết với một thể tích vĩ mô đã cho của không gian k giống như trong sự sắp xếp mới như nó ở trước đó. Chúng ta có thể sử dụng (9.7); Vùng giữa hai bề mặt năng lượng được phân biệt bởi năng lượng là 9 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 2 m* H (9.66) A 2 Giả sử rằng là một lượng tử của tần số cylotron H . Nhớ lại rằng mật độ của những trạng thái được phép trong sơ đồ lượng tử hóa truyền thống là ( Lx Ly ) /(2 )2 trên một đơn vị diện tích của không gian mặt phẳng (k x , k y ) (phần 1.6). Vì vậy, số trạng thái của hai quỹ đạo lượng tử là * Lx Ly LL 2 mH H x y2 p (9.67) A 2 2 (2 ) (2 ) Do (9.65) Kết quả này có được sau khi chúng ta chỉ ra sự ảnh hưởng của từ trường để tạo nên những quỹ đạo lượng tử trong không gian k, và là nguyên nhân của những trạng thái electron tự do xít lại gần những quỹ đạo nhất. Số trạng thái trên quỹ đạo là số giá trị thật sự giữa các trạng thái được phép. Chuyện gì sẽ xảy ra trong trường hợp tổng quát, khi chúng ta đề cập tới những electron trong tinh thể? Đối với dãy vuông lý thuyết gần cổ điển phần 6.5 là hợp lý. Phương trình Schrodinger (6.30) cho Hamiiltonian tương đương có nghiệm trong từ trường mà sẽ thỏa mãn giới hạn của nguyên lý tương ứng ở những số lượng tử lớn, và sẽ bị lượng tử hóa theo công thức pha số nguyên. p.dr (n )2 (9.68) Ở đây n là số nguyên, là pha hiệu chỉnh (Đặt trưng 1/2), và p và r là nh ững giá trị kết hợp miêu tả động lượng và tọa độ của hạt khi nó đi trên quỹ đạo. Chúng ta có thể sử dụng (9.45) để tính tọa độ r của electron trên quỹ đạo không gian thực, và chúng ta có thể thừa nhận động lượng được tính e p k A (9.69) c 10 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Bằng hình học thường kết quả này thu được là diện tích của quỹ đạo trong không gian k bị lượng tử hóa 2 eH (9.70) (n ) An c Hiển nhiên từ (9.61), (9.66) và (9.5) rằng kết quả đã thu được cho những electron tự do. Sự mô tả những mức electron trong từ trường bây giờ được quy định theo cấu trúc trong không gian k. Chọn một giá trị của n. Trên mỗi mặt phẳng của mặt cắt của bề mặt fermi tới từ trường , vẽ năng lượng đi vòng quanh diện tích An . Nối những đường viền liên tiếp nhau thành hình ống, với trục song song tới H, và hằng số diện tích của mặt cắt ngang. Vẽ tương tự những đường cho những giá trị của n. Thừa nhận rằng những điểm cho phép trong quy ước dãy lượng tử hóa tất cả xít gần lại nhau trên ống gần nhất. Điều này sẽ cho số trạng thái suy biến trong năng lượng phải được thỏa mãn tính tuần hoàn vòng mỗi ống với tần số cylotron xấp xỉ cho tọa độ của chúng. 11 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Hình 169: Những ống đã lượng tử hóa trong những mức từ trường 9.7. Hiệu de Haas – van Alphen Sự lượng tử hóa này có một vài hiệu ứng thú vị và nổi bậc. Năng lượng của khí electron phụ thuộc vào độ mạnh của từ trường. Nhưng từ trường lại nhạy cảm (Chúng ta không xét ảnh hưởng spin ở đây) và độc lập với nhiệt độ, những dao động như là những sự thay đổi từ trường. Đây là hiệu ứng de Haas – van Alphen. Để tính toán hiệu ứng này cho hình dạng tổng quát của bề mặt Fermi, Chúng ta có thể đi tới những điều theo sau. Chúng ta hãy viết năng lượng tự do của hệ; Đối với nhóm Fermi – Dirac điều này được cho bởi F N kT ln(1 e( i ) / kT ) (9.71) t Ở đây chúng ta lấy tổng trên tất cả trạng thái tọa độ, của năng lượng i , nhưng chúng ta cố định thế Fermi bởi số trạng thái lấp đầy (như trong (4.9). Nghĩa là Đối với hệ của chúng ta các mức lượng tử hóa Landau, năng lượng được cho bởi (9.72) i (n , k z ) Ở đây n là số lượng tử quỹ đạo như trong (9.61) – nhưng mỗi mức không suy biến, như trong (9.65). Lấy một đường ống trong tinh thể, với đơn vị là những bề mặt; bởi (9..67) hoặc (9.70), sẽ có 13 eH (9.73) d k 2 dk z 3 2 c 4 Những trạng thái phụ thuộc độ dài của dk z (được đo theo phương của H) của mỗi ống trong không gian k. Vì vậy 12 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 eH ln(1 exp[{ (n , k z )} / kT ])}dkz (9.74) F N kT { 2 2 c n 0 Để đánh giá trọn vẹn giá trị này, chúng ta sử dụng Thủ thuật thuần toán học công thức tổng Poisson. Xét f(x) là một hàm tùy ý . trong dãy n
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Hãy tập trung sự chú ý, tích phân trên có dạng ln(1 exe[{ ( x , k z )}/ kT ]) cos 2 xsdx 0 2 f 0 cos 2 xs 1 0 0 (9.80) 2 2 [ f ( ) ]x 0 [ f ( ) 2 ]dx 0 4 2 s 2 kT 4 s kT x x x x Ở đây chúng ta sử dụng cơ sở ln(1 e( ) / kT ) f 0 ( ) (9.81) kT Hàm Fermi đã định nghĩa trong (4.8), và chúng ta đã tích hợp hai phần. Ta bỏ qua phần đầu tiên trong (9.80), bởi vì ta chỉ quan tâm trong phần dao động của năng lượng tự do. Sử dụng (9.61), chúng ta có định nghĩa ( x , k z ) ( x )H f (k z ) (9.82) 2 H và 2 0 . Ngược lại giới hạn dưới của tích phân có thể là , khi đó Vì thế x x chỉ có những đóng góp quan trọng cho tích phân từ gần mức Fermi ở đây . Vì vậy, sự đóng góp cho năng lượng tự do từ mẫu này của phân bố Fermi tỉ lệ f 0 H ( , k z ) (9.83) cos 2 xs I8 (k z ) dx 4 2 s 2 kT x Trong tích phân này, m ặt dù trên danh nghĩa dạng (4.13), không thể được đánh giá bởi công thức (4.13) bởi vì sự dao động quá nhanh bên trong b ề dầy của dãy Fermi. Nhưng f 0 chúng ta có thể sử dụng có điểm cực đại tại X nơi x (9.84) ( X , kz ) Ta có thể nói rằng c (9.85) A( , k z ) X 2 eH 14 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Ở đây A( , k z ) là diện tích mặt cắt của bề mặt Fermi, ở mức Fermi hiện tại, trong lớp k z . f 0 Chúng ta phân tích tích phân trên điểm này, chú ý tới là một hàm chẵn của x x f 0 H kT cos 2 xs( X H ) d I8 (k z ) 2 2 4 s kT 2 skT f 0 H cos 2 sX cos( ) d 4 2 s 2 kT H 2 2 skT / H H scA( , k z ) cos( ){ } 4 2 s 2 kT sinh(2 2 skT / H ) eH scA( , k z ) (9.86) g (s , k z ) cos( eH Lúc này có lẽ chúng ta nên tập trung, và cố gắng xem chuyện gì đang xảy ra. Chúng ta đang xét một lớp đặt biệt của bề mặt Fermi. Mức Fermi đã được cố định bởi thể tích không cần trùng khớp với sự lượng tử hóa quỹ đạo từ trường. Khi trường thay đổi quỹ đạo bị lượng tử hóa được vẽ phía trong và trên khắp mức Fermi hình 170. 15 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Hình 170: (a) Bề mặt Fermi không cần trùng khớp với những quỹ đạo bị lượng tử hóa. (b) Khi từ trường thay đổi, những mức bị lượng tử hóa xuyên qua những mức Fermi. Hình 171: Sự chiếm đóng của những mức từ khi từ trường thay đổi. Chúng ta giả thiết T=0, vì thế sự phân bố Fermi là rõ nét nhất. Chuyện gì sẽ xả y ra khi quỹ đạo bị lượng tử hóa trên khắp ? Ví dụ giả sử, trường đó là như vậy nằm ở khoảng giữa hai quỹ đạo (hình 171 (a)). Khi đó số trạng thái bên dưới mức Fermi sẽ thật sự chính xác nếu không có những mức từ, nhưng tổng năng lượng của khí electron sẽ nhỏ 1 H trên một electron ở mức Fermi. Bây giờ hơn trong trường hợp không có từ trường, 2 khi H tăng những electron này sẽ vẽ lên mức fermi (hình 171 (b)) vì th ế năng lượng tự do của chúng tăng đến cực đại. Nhưng khi mức từ xuyên qua mức Fermi, nó bắt đầu trở nên trống rỗng (hình 171(c)) và n ăng lượng trung bình của những electron giảm một lần nữa tới giá trị cực tiểu khi một lần nữa lại nằm giữa hai quỹ đạo bị lượng tử hóa. Vì vậy, năng lượng tự do của khí electron dao động đều đặn với chu kỳ được xác định bởi khoảng giữa của quỹ đạo bị lượng tử hóa và mức Fermi. Điều này có nghĩa là (9.86); Chu kỳ này xuất phát từ điều kiện scA( , k z ) (9.87) 2n eH 16 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Hầu hết công thức từ (9.74) tới (9.81) là phương tiện để khai triển dao động như một chuỗi Fourier, khi thay đổi năng lượng như các mức trên khắp bề mặt Fermi thì không phải là hàm sin đơn giản. Điều này giải thích hệ số s, dẫn tới sống hài bậc cao. Chúng ta cũng cho phép bề mặt Fermi không có hình d ạng hoàn hảo khi T 0 ; thật vậy, tất cả các dao động sẽ tồn tại yếu nếu kT H (9.88) Nói cách khác, từ trường phải đủ mạnh để tạo nên khoảng cách các quỹ đạo của bề dầy của lớp nhiệt trên bề mặt Fermi. Nhưng chúng ta vẫn chưa hoàn thành việc khai triển. Điều này là điều đặc biệt, mặt cắt ở ks ; chúng ta phải lấy tổng trên tất cả các mặt khác scA( , k z ) eH F 2kT (1) s (9.89) g ( s, k z ) cos( dk z 2 2 c eH s 1 Tích phân này là loại tích phân Fresnel; nó cũng cho biết rằng sự đóng góp chủ yếu xuất phát từ pha dừng. Chúng ta hãy giả thiết rằng A( , k z ) (9.90) 0 k z k z k0 . Khai triển tại điểm này: k z k0 k ' , và 1 A A0 k '2 A0 ... '' (9.91) 2 (Sự dao động của g ( s, k z ) có thể bỏ đi và chúng ta cũng hoàn toàn giả định rằng mỗi phần của bề mặt Fermi có tâm hình học). Vì vậy sc eH 1 F 2kT (1) s g (s , k0 ) cos{ ( A0 k '2 A0 ...)}dk ' '' 2 2 c eH 2 s 1 1 scA0 eH 2eH s 2kT (1) ) 2 cos( ) g ( s, k0 )( 2 2 c sc | A0 '' | eH 4 s 1 17 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 eH 1 1 sc 1 2kT (1) s ( (9.92) )2 | A0 '' | 2 cos( A0 ) 2 2 sc sinh(2 skT / H ) eH 4 s 1 Bởi đặt tính của tích phân Fresnel. Bằng cách vi phân hai lần với sự chú ý tới H, điều này có thể được đưa ra khi có sự đóng góp của độ nhạy từ tính của kim loại. Có vẻ công thức rất phức tạp nhưng việc giải thích thì đơn giản. Thay vì xem xét mặt đơn lẻ, chúng ta đi xem xét toàn b ộ chiều dài của ống từ trường phát sinh ra xa bên ngoài giống như sự gia tăng của từ trường. Như chúng ta thấy ở trên, có sự thay đổi năng lượng khi mỗi ống xuyên qua mức Fermi. Nhưng khi một ống được phát sinh , tất cả những điều đó xả y tại những giao điểm của nó với bề mặt Fermi di chuyển lên hoặc xuống (hình 169) vì thế có một ít ảnh hưởng trên năng lượng, ngoại trừ khi ống rời bề mặt Fermi một cách hoàn toàn, ở diện tích cực đại hoặc cực tiểu của mặt cắt. Điều này giải thích sự xuất hiện của A0 trong hệ số tuần hoàn. Đối với sóng hài bậc nhất. c (9.93) A0 2 (n ) eH Trong đó là sự hiệu chỉnh pha. Vì vậy, chu kỳ của dao động, khi moment từ trường được vẽ như là hàm của 1/H, cho trực tiếp diện tích mặt cắt cực đại hoặc cực tiểu của bề mặt Fermi tới từ trường. Thật vậy, nếu có mặt cắt cực đại và cực tiểu khác đối với bề mặt Fermi, thì mỗi sự đóng góp mẫu dao động của nó và kết quả moment từ có thể được diễn tả rất phức tạp như là hàm của trường. Biên độ của dao động sẽ phụ thuộc vào A0'' - độ cong địa phương của bề mặt Fermi xung quanh mặt cắt cực trị. Nó cũng phụ thuộc vào nhiệt độ xấp xỉ kT ) vì thế tần số cyclotron trên quỹ đạo dừng có thể được xác định. Nhưng nếu có exp( H 1 tạp chất tán xạ, biên độ sẽ giảm hơn nữa bởi hệ số exp( ) tức là nếu như hệ không thể H được làm lạnh dưới nhiệt độ T0 . kT Những phân tích trên cho năng lượng tự do, và moment từ của khí electron. Những thuộc tính khác dễ thấy của hệ, như tính dẫn điện và nhiệt, cũng biểu diễn tương 18 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 tự như ảnh hưởng của dao động trong từ trường mạnh. Các phân tích chính thức như vậ y thì phức tạp hơn nhưng nó phụ thuộc vào bản chất các biến của mật độ trạng thái ở mức Fermi khi trường biến đổi. Những biến đổi tính dẫn điện được gọi là hiệu ứng Haas- Shubnikov. 9.8. Sự hấp thụ quang học Magneto Trong bán dẫn mức Landau có thể được xác định trực tiếp bởi phương pháp quang học. Xét ví dụ, vùng dẫn của những electron với khối lượng hiệu dụng m* là một parabol đơn giản. Trong từ trường bị lượng tử hóa (9.61) các mức năng lượng nằm trên là một dãy các parabol trong không gian k z bởi lượng tử từ H (hình 172) Hình 172: (a) Sơ đồ lượng tử hóa từ trường đối với dãy Parabol. (b) mật độ các trạng thái. Số lượng các trạng thái được gán cho mỗi đoạn của Parabol được cho bởi (9.67) . Đối với mỗi số lượng tử từ n, chúng ta có mật độ trạng thái trong kích thước. Hơn nữa từ những sự đóng góp của tất cả parabol dưới năng lượng chúng ta nhận được tổng mật độ hàm trạng thái. 1 1 2m* 3 1 2 N H ( ) 2 ( 2 ) 2 H { ( n ) H } (9.94) 4 2 n 19 Tranvanthao1985@yahoo.com
- Trần Văn Thảo Cao học VLLT DHKHTN K19 Hình 173: Những sự chuyển đổi qung học Magneto trong bán dẫn với hai vùng của lỗ trống. Khi H 0 , công thức tích phân này là tiêu chu ẩn Parabol của hàm mật độ trạng thái 1 (4.33). Nhưng từ trường sinh ra hiệu ứng kỳ dị van Hove (phần 2.5) của loại 2 ở mức Landau, trong sự hòa hợp với các đối số tổng quát cho hiệu ứng de Haas – van phần 9.7. Sự dịch chuyển giữa các mức sẽ thu được từ quy luật lựa chọn n 1 ; đây là cách khác để diễn tả cộng hưởng cyclotron (9.2). Nhưng cấu trúc từ trong mật độ trạng thái thì cũng đủ rộng để được quan sát thấy trong phổ hồng ngoại dịch chuyển sang những vùng khác, như phần thảo luận ở 8.5. Đây chính là hiệu ứng quang học Maneto cơ bản. Để giải thích các quan sát thực ngiệm, người ta phải cho phép lượng tử hóa các vùng hóa trị, với những giá trị khác nhau của H và m* (hình 173). Đối với quá trình dịch chuyển mạnh sẽ xảy ra mà không cần có từ trường, chúng ta có thể đưa ra phần tử ma trận (8.40) không phụ thuộc H, và áp đặt một quy tắt lựa chọn n 0 . Sự liên kết của 20 Tranvanthao1985@yahoo.com
CÓ THỂ BẠN MUỐN DOWNLOAD
-
đề tài : CƠ SỞ LÝ THUYẾT CỦA QUÁ TRÌNH HẤP PHỤ
54 p | 1024 | 220
-
Luận án tiến sỹ " Áp dụng phương pháp phần tử hữu hạn giải một số bài toán tĩnh và động của vật rắn có biến dạng phức tạp "
27 p | 188 | 60
-
Luận văn Vật lý hạt nhân - HÀ MẠNH KHƯƠNG
8 p | 293 | 48
-
Chuyên đề VẬT LÍ ỨNG DỤNG " MÀNG QUANG HỌC "
38 p | 179 | 40
-
Báo cáo chuyên đề: Tìm hiểu vật liệu mới trong ngành xây dựng bê tông xỉ thép
39 p | 265 | 35
-
Luận văn: ĐÁNH GIÁ THỰC TRẠNG ĐÀN BÒ VÀNG, NGHIÊN CỨU ẢNH HƯỞNG CỦA VIỆC SỬ DỤNG BÒ ĐỰC GIỐNG 7/8 MÁU SIND VÀ BỔ SUNG THỨC ĂN TINH TỚI TỶ LỆ SỐNG, SINH TRƯỞNG CỦA ĐÀN BÊ LAI TẠI HUYỆN CHỢ ĐỒN TỈNH BẮC KẠN
0 p | 119 | 15
-
Tiểu luận thuyết tương đối tổng quát
8 p | 91 | 12
-
Luận văn Thạc sĩ Kỹ thuật Xây dựng: Nghiên cứu lý thiết và công nghệ sản xuất cát nhân tạo, sử dụng cát nhân tạo trong bê tông xi măng
86 p | 55 | 12
-
Luận án tiến sĩ Kỹ thuật Môi trường: Nghiên cứu, ứng dụng xử lý amoni trong nước ngầm trên hệ thiết bị sử dụng vật liệu mang vi sinh chuyển động
142 p | 94 | 10
-
Luận án Tiến sĩ Khoa học Nông nghiệp: Nghiên cứu sự chuyển hóa vật chất hữu cơ trong ao nuôi tôm thẻ chân trắng Litopenaeus vannamei (Boone, 1931) thâm canh
153 p | 37 | 8
-
Luận án Tiến sĩ Vật lý: Nghiên cứu ảnh hưởng của các chất hòa tan lên cấu trúc phân tử bề mặt phân cách chất lỏng - không khí bằng quang phổ học dao động tần số tổng
145 p | 31 | 6
-
Tóm tắt Luận văn Thạc sĩ Khoa học: Nghiên cứu ứng dụng để xử lý một số hợp chất ô nhiễm hữu cơ bằng xúc tác quang các hợp chất của Vonfram
26 p | 68 | 5
-
Tóm tắt luận án Tiến sĩ chuyên ngành Kỹ thuật môi trường: Nghiên cứu biến tính than hoạt tính làm vật liệu xử lí một số chất độc tồn tại dưới dạng ion trong nước
26 p | 17 | 4
-
Luận văn Thạc sĩ Khoa học vật chất: Lực căng mặt ngoài của ngƣng tụ Bose - Einstein một thành phần trong thống kê chính tắc
50 p | 26 | 4
-
Tóm tắt Luận án tiến sĩ Kỹ thuật môi trường: Nghiên cứu, ứng dụng xử lý amoni trong nước ngầm trên hệ thiết bị sử dụng vật liệu mang vi sinh chuyển động
26 p | 44 | 3
-
Tóm tắt Luận án Tiến sĩ Vi sinh vật học: Phân lập, tuyển chọn vi khuẩn kết tụ sinh học, chuyển hóa nitơ và tích lũy Poly-P trong nước thải sản xuất hủ tiếu Mỹ Tho và ứng dụng xử lý nước thải
37 p | 29 | 3
-
Khóa luận tốt nghiệp đại học: Sử dụng dây nano kim loại để bắt bẫy nguyên tử lạnh
47 p | 21 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn