Công nghệ sinh học về nano
lượt xem 135
download
Công nghệ sinh học (CNSH) thực sự trở thành một ngành công nghiệp vào cuối những năm 1970 nhưng nó đã được đề cập và tiên đoán tiềm năng phát triển từ 60 năm trước đó [1]. CNSH là tập hợp các khám phá khoa học và kỹ thuật thí nghiệm cho phép các nhà khoa học thao tác và sử dụng các hệ thống sinh học trong nghiên cứu cơ bản và phát triển các sản phẩm thương mại [2]. Với nền tảng là công nghệ tái tổ hợp, CNSH đã và đang có những bước tiến thần kỳ,...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Công nghệ sinh học về nano
- ------------------------------------------- CÔNG NGHỆ SINH HỌC NANO -------------------------------------------
- MỤC LỤC 1. GIỚI THIỆU CHUNG 1.1 Lịch sử phát triển 1.1.1 Công nghệ sinh học 1.1.2 Công nghệ nano 1.1.3 Công nghệ sinh học nano 1.2. Hướng nghiên cứu chính 1.3 Tiềm năng 2. KHỐI CẤU TRÚC VÀ NGUYÊN LÝ CHẾ TẠO 2.1 Vật liệu nano 2.1.1 Dạng cầu 2.1.2 Dạng thanh 2.2 Các phần tử sinh học trong CNSH nano 2.2.1 Protein 2.2.2 DNA 2.2.3 Các cấu trúc khác 2.3 Cấu trúc nano tích hợp 2.3.1 Microarray 2.3.2 Microfluidic 2.3.3 Điện cực nano (nanosensor) 2.3.4 Thiết bị nano (nanodevice) 3. PHƯƠNG PHÁP CHẾ TẠO VẬT LIỆU NANO 3.1 Phương pháp hóa học 3.1.1 Micelle ngược 3.1.2 Khử 3.1.3 Tổng hợp điện hóa 3.2 Phương pháp vật lý 3.2.1 Các phương pháp cơ học 3.2.2 Vi định vị không gian 3.2.3 Tổng hợp trong pha khí 3.2.4 Hồ quang điện 3.3 Các phương pháp sinh học 3.3.1 Tự lắp ráp phân tử 3.3.2 Vi chế tác dựa trên khuôn sinh học 3.3.3 Phỏng sinh học 2.3.4 Sinh học phân tử 4. ỨNG DỤNG 4.1 Khám phá, phân phối thuốc và các phân tử liệu pháp 4.2 Chẩn đoán và điều trị
- 4.3 Kháng vi sinh vật 4.4 Phát hiện-xác định cấu tử sinh học 4.5 Phân tách các cấu tử sinh học 4.6 Máy tính nano sinh học TÀI LIỆU THAM KHẢO 1. GIỚI THIỆU CHUNG 1.1 Lịch sử phát triển 1.1.1 Công nghệ sinh học Công nghệ sinh học (CNSH) thực sự trở thành một ngành công nghiệp vào cuối những năm 1970 nhưng nó đã được đề cập và tiên đoán tiềm năng phát triển từ 60 năm trước đó [1]. CNSH là tập hợp các khám phá khoa học và kỹ thuật thí nghiệm cho phép các nhà khoa học thao tác và sử dụng các hệ thống sinh học trong nghiên cứu cơ bản và phát triển các sản phẩm thương mại [2]. Với nền tảng là công nghệ tái tổ hợp, CNSH đã và đang có những bước tiến thần kỳ, với ngày càng nhiều ứng dụng mới. CNSH hiện đại tập trung nghiên cứu các quá trình, cơ chế ở mức phân tử. Sinh học phân tử càng phát triển, càng cần các công cụ, vật liệu mới nhằm thâm nhập sâu hơn vào thế giới hiển vi của những quá trình, cấu trúc sinh học. 1.1.2 Công nghệ nano Nano theo tiếng Latinh (νανοσ) nghĩa là nhỏ xíu. Vào thế kỷ thứ VII trước Công nguyên, Mimnermus, thi gia HyLạp, đã sáng tác bài thơ có tên “nữ hoàng Ναννο”. Đến thế kỷ thứ II sau Công nguyên, ναννο là tên một loại bánh bơ có dầu ôliu, sang thế kỷ thứ III sau Công nguyên thì nó lại mang nghĩa bồn rửa bát đĩa lớn. Tiền tố nano xuất hiện trong tài liệu khoa học lần đầu tiên vào năm 1908, khi Lohmann sử dụng nó để chỉ các sinh vật rất nhỏ với đường kính 200 nm [3]. Vào năm 1974, Tanigushi lần đầu tiên sử dụng thuật ngữ công nghệ nano (nanotechnology) hàm ý sự liên kết các vật liệu cho kỹ thuật chính xác trong tương lai [3]. Hiện tại trong khoa học, tiền tố nano biểu thị con số 10-9 tức kích thước 1 phần tỷ m (hình 1). Tổ chức Nanotechnology Initiative (NNI) trực thuộc chính phủ Mỹ định nghĩa công nghệ nano (CNNN) là “bất cứ thứ gì liên quan đến các cấu trúc có kích thước nhỏ hơn 100nm”. Định nghĩa này đã loại bỏ một cách độc đoán chủ thể của các nghiên cứu liên quan khác tập trung vào các thiết bị vi lỏng (microfluidic) và các vật liệu đang được tiến hành ở quy mô µm [4]. Trong cuốn “Bionanotechnology: lessons from nature”, Goodsell định nghĩa CNNN là “thao tác và chế tạo ở quy mô nano với độ chính xác nguyên tử” [5]. Cụ thể hơn, CNNN là khoa học, kỹ thuật và thao thác liên quan tới các hệ thống có kích thước nano, ở đó các hệ thống này thực hiện nhiệm vụ điện, cơ, sinh, hóa hoặc tính toán đặc biệt. Nền tảng của công nghệ này là hiện tượng “các cấu trúc, thiết bị và hệ thống có tính chất và chức năng mới khi ở kích thước siêu nhỏ”. Cấu trúc cơ bản của CNNN bao gồm các hạt hay tinh thể nano, lớp nano và ống nano. Các cấu trúc nano này khác nhau ở chỗ chúng được tạo thành như thế nào và các nguyên tử, phân tử của chúng được sắp xếp ra sao [6] 1.1.3 Công nghệ sinh học nano CNNN phát triển tất yếu dẫn tới nhu cầu tìm kiếm các mối liên kết giữa những vật có kích thước nano. Điều đó tự phát dẫn tới sinh học (lĩnh vực khoa học “nóng” nhất) (hình 2). Các
- nhà khoa học mong muốn sự giao thoa giữa CNSH và CNNN bởi lẽ CNNN mang lại cho sinh học những công cụ mới trong khi sinh học cho phép CNNN đạt được các hệ thống có chức năng mới [7]. Công nghệ này tạo ra sự hợp tác chưa từng có giữa các nhà khoa học vật liệu, vật lý học và sinh học [8]. CNSH nano là tập con của CNNN, nó cũng gần với CNSH nhưng thêm khả năng thiết kế và biến đổi các chi tiết sinh học ở mức độ nguyên tử [5]. Hiện có nhiều cách định nghĩa CNSH nano. CNSH nano là bất cứ ứng dụng nào của CNNN trong nghiên cứu sinh học bao gồm: khám phá thuốc, thiết bị phân phối thuốc, công cụ chuẩn đoán, liệu pháp và vật liệu sinh học mới [9]. Theo NIH, CNSH nano là: 1. Áp dụng công cụ ở kích thước nano vào hệ thống sinh học và 2. Sử dụng hệ thống sinh học làm khuôn mẫu để phát triển các sản phẩm mới cỡ nano. Ở đây, cần phân biệt giữa ‘Nano2Bio’ (sử dụng CNNN để phân tích và tạo ra các hệ thống sinh học), và ‘Bio2Nano’ (sử dụng vât liệu và cấu trúc sinh học để tạo các hệ thống kỹ thuật) [10]. Hình 3 thể hiện khái quát các định nghĩa CNSH nano nêu trên. Hình 3. Bức tranh toàn cảnh CNSH nano. Trong đó, các hệ thống, thiết bị riêng lẻ cũng như tích hợp được tạo ra từ nền tảng là sự giao thoa giữa CNSH và CNNN nhằm ứng dụng trong y học, sinh học… (Theo www.nano2life.org) 1.2. Hướng nghiên cứu chính Cùng với sự nở rộ của CNNN, CNSH nano cũng đang có những bước tiến thành kỳ. Một số ví dụ của CNSH nano trong nghiên cứu và phát triển [11]: • Chụp ảnh và nghiên cứu tương tác giữa các đơn phân tử sinh học. • Màng chức năng tự lắp ráp với các tính chất như xúc tác, quang hoạt, dẫn điện, điện hóa và lọc nước, lọc khí, vi sinh vật. • Động cơ DNA (DNA motor) dựa trên lực tạo ra khi lai các trình tự bổ sung với nhau. • Chụp ảnh quá trình vận động của virus, protein, prion và thuốc trong tế bào sống. • Chuyển gene và đột biến điểm chính xác. • Các bộ phận phân tử mới hướng đích và tăng phản ứng miễn dịch • Công nghệ phân phối thuốc hướng đích
- • Khai thác các động cơ sinh học như cơ và các protein vận động khác, để tạo năng lượng điện hoặc cơ. Hiện tại trên thị trường đã có những sản phẩm thương mại của CNSH nano. Bảng 1 liệt kê một số công ty thành công trong lĩnh vực CNSH nano theo ba hướng nghiên cứu chính là (i) phân tích sinh học; (ii) phân phối thuốc và liệu pháp; (iii) thiết bị y học và cảm biến sinh học. Rõ ràng, có sự chồng lấp giữa các lĩnh vực này, và một lĩnh vực phát triển sẽ xúc tác sự phát triển của lĩnh vực khác [12]. Như một tất yếu trong các lĩnh vực công nghệ cao và mới, Mỹ luôn là nước dẫn đầu thể hiện ở số công ty vượt trội. Tuy nhiên, một số nước khác như Úc Nhật, Canada, Nhật, Anh cũng đã có những công ty tham gia vào thị trường đầy tiềm năng này.
- 1.3 Tiềm năng Có thể nói, trong thời điểm hiện tại, có thể thấy tiềm năng phát triển của một công nghệ hay kỹ thuật mới rõ nhất qua nguồn ngân sách nghiên cứu hàng năm và doanh thu đem lại từ các sản phẩm thương mại của nó. Được toàn thế giới nghiên cứu và đầu tư phát triển, ngân sách đầu tư cho CNNN của các tổ chức thuộc chính phủ đã tăng khoảng 7 lần từ 430 triệu năm 1997 lên 3 tỉ USD năm 2003[13]. Tỷ lệ đầu tư cho nghiên cứu và đào tạo CNSH nano bằng khoảng 6% của công nghệ nano. Trong lĩnh vực tư nhân, các công ty lớn hiện tập trung ứng dụng CNNN cho vât liệu, hóa học, điện; đầu tư trong dược và các hệ thống sinh học nano khác ước tính khoảng 10%. Tuy nhiên, các công ty nhỏ và quỹ đầu tư mạo hiểm chi nhiều hơn trong lĩnh vực này (30-40%) [13]. Từ năm 1999, 52% trong số 900 triệu USD trong quỹ đầu tư mạo hiểm chi cho CNNN tập trung vào thiết lập CNSH nano (hình 4a). Trên thực tế, trong khi trong khi vốn đầu tư mạo hiểm suy giảm từ năm 2001 đến 2002, đầu tư vào CNSH nano lại tăng 313% (hình 4b). Sự tăng trưởng này do hai yếu tố chủ chốt: các ưu đãi của chính phủ và sự khan hiếm các sáng chế y dược học [9]. Trên 50% vốn đầu tư mạo hiểm trong 4 năm gần đây được chi cho các công ty hoạt động trong CNSH nano [8]. Mặc dù Mỹ chiếm gần 1/3 tổng chi cho CNNN toàn cầu [9]. Các quốc gia khác cũng không đứng ngoài cuộc, sau 3 năm kể từ khi cựu tổng thống Mỹ Bill Clinton thành lập NNI, 35 quốc gia khác đã xây dựng các chương trình trong công nghệ này [8]. Năm 2004, chính phủ Mỹ chi 847 triệu USD cho CNNN trong khi đó Nhật và liên minh Châu Âu cũng chi không kém. Thái Lan đang ở giai đoạn giữa của chương trình CNNN quốc gia 6 năm với tổng ngân sách 620 triệu USD [14]. Anh là quốc gia cuối cùng tăng chi tiêu trong công nghệ nano, được giới thiệu vào tháng 6 một sự gần như gấp đôi cam kết của nó với £90 ($141) triệu cho quỹ MicroNanoTechnology Network [8]. Ngân sách đầu tư cho CNNN của chính phủ một số nước
- được thể hiện trong bảng 2. Theo National Science Foundation, thị trường CNSH nano sẽ đạt xấp xỉ 36 tỷ USD vào năm 2006 [15]. Không nằm ngoài vòng xoáy chung, Việt Nam cũng đã và đang chú trọng vào công nghệ nano. Năm 2004, vốn đầu tư vào môi trường và CNNN đã tăng hơn 50% so với năm 2003 [16]. Trong lĩnh vực đào tạo, ĐHQG - TP.HCM [17], ĐHBK - TP.HCM [18], Trường ĐH-KHTN [19] và Đại học Công nghệ trực thuộc ĐHQG-HN [20], ĐHBK-HN đã và đang nghiên cứu, đào tạo về công nghệ nano. Khu công nghệ cao TPHCM cũng tập trung đẩy mạnh CNNN [21]. Trong triển khai thực tiễn, thành công rực rỡ nhất của CNNN tại Việt Nam là chế tạo thành công than nano "lỏng" [22] ứng dụng làm pin nguyên liệu, chế tạo vi mạch [23]. Ngoài ra còn có các nghiên cứu về cấu trúc nano đa lớp, vật liệu từ có cấu trúc nano [24] và đã chế tạo thành công cảm biến nano dùng để xác định nồng độ khí gas hoá lỏng [25]. Khu công nghệ cao TP.HCM cũng đang hợp tác với trung tâm nhiệt đới Việt Nga để chế tạo mặt nạ sinh học dùng than nano [26], giấy và mực nano [27]. Tuy nhiên, CNSH nano vẫn là một điều gì đó mới lạ ở Việt Nam. Trong lĩnh vực đào tạo, trường ĐHBK-HN mới có dự thảo chương trình đào tạo thạc sỹ về CNSH nano. Tại đây cũng bắt đầu triển khai ứng dụng CNNN trong chế tạo thuốc hướng đích. GS. Phạm Thị Trân Châu (Trung tâm CNSH - ĐHQG HN), PGS. Nông Văn Hải (Viện Khoa học và công nghệ Việt Nam) và GS. Nguyễn Hữu Đức (Trường Đại học Công nghệ - ĐHQG - HN) đang thảo luận để khởi động kết hoạch nghiên cứu ứng dụng của các hạt nano trong y - sinh học để chẩn đoán và chữa bệnh [24]. Nói chung, CNSH nano tại Việt Nam hiện chỉ mới đang đặt những viên gạch móng đầu tiên. 2. KHỐI CẤU TRÚC VÀ NGUYÊN LÝ CHẾ TẠO 2.1 Vật liệu nano Vật liệu nano là vật liệu có ít nhất một chiều có kích thước nm. Hình 5 cho thấy một số vật liệu nano tiêu biểu và kích thước của chúng.
- Đặc trưng của vật liệu nano Các tính chất vật lý, hóa học của vật liệu đều bị giới hạn bởi kích thước, gọi là kích thước tới hạn. Các tính chất như điện, từ, quang và hóa học đều có độ dài tới hạn cỡ nm. Nếu vật liệu nhỏ hơn kích thước này thì tính chất của nó hoàn toàn bị thay đổi. Tính chất đặc biệt của vật liệu nano được đem lại do kích thước của nó nhỏ hơn kích thước tới hạn của vật liệu. Bảng 3. Kích thước của một số cấu tử nano Phân loại vật liệu nano Theo trạng thái, người ta phân chia vật liệu nano thành trạng thái rắn, lỏng và khí. Vật liệu nano được tập trung nghiên cứu hiện nay là vật liệu rắn, sau đó mới đến chất lỏng và khí. Về hình dáng vật liệu, người ta chia vật liệu nano thành: • Vật liệu nano không chiều (cả ba chiều đều có kích thước nano), ví dụ, đám nano, hạt nano... • Vật liệu nano một chiều là vật liệu trong đó hai chiều có kích thước nano, ví dụ, dây nano, ống nano (NT),... • Vật liệu nano hai chiều là vật liệu trong đó một chiều có kích thước nano, ví dụ, màng mỏng,... • Ngoài ra còn có vật liệu có cấu trúc nano hay nanocomposite trong đó chỉ có một phần của vật liệu có kích thước nm, hoặc cấu trúc của nó có nano không chiều, một chiều, hai chiều đan xen lẫn nhau. Trong khuôn khổ bài viết tập trung vào CNSH nano này, tôi chỉ đề cập đến những vật liệu nano đã và đang được ứng dụng trong ngành khoa học mới mẻ này. Do vậy, để tiện theo dõi tôi chia vật liệu nano dùng trong CNSH nano thành hai loại là dạng cầu (điểm lượng tử, dendrimer, lỗ nano, vỏ nano và hạt nano) và dạng thanh (ống nano, que nano, dây nano). 2.1.1 Dạng cầu Điểm lượng tử (QD)
- QD là một hạt vật chất được tạo nên từ các vật liệu nhóm II–VI (CdSe) hoặc III-V (InP) trong bảng hệ thống tuần hoàn [28], có kích thuớc nhỏ (< 10 nm) [29] tới mức khi thêm hay lấy đi một điện tử sẽ làm thay đổi tính chất của nó. Khi ta kích thích một QD càng nhỏ thì năng luợng và cuờng độ phát sáng của nó càng tăng, mang lại bước sóng phát xạ khả điều hướng và đa hình phổ phát xạ của QD (hình 6). Vì vậy nó là cửa ngõ cho hàng loạt những áp dụng kỹ thuật mới (wikipedia). Trong số các vật liệu nano, QD hiện được nghiên cứu và ứng dụng nhiều nhất. Có thể nói, với những ưu điểm vượt trội của mình, QD sẽ dần thay thế các chất phát huỳnh quang trong những ứng dụng trước đây như lai in situ, FRET, xác định khả năng di động của tế bào…. Dendrimer Dendrimer là các phân tử được chế tạo bằng cách thêm liên tiếp các đơn vị nhánh tỏa ra ngoài từ điểm khởi đầu (hình 7) [31]. Chất khơi mào (initiator): Có thể tạo dendrimer từ phân tử gốc là nguyên tố đa trị. Có thể gắn thêm các nhóm chức để tạo dendrimer đa chức năng. Đơn vị nhánh: đơn vị nhánh bên trong có thể toàn bộ là amin (DAB-Am = PPI = Astromol), hỗn hợp amine/amide (PAMAM), toàn bộ amide (L-lysine dendrimers), gallate ho ặc resorcinolate. Nếu muốn dùng dendrimer làm thuốc, cần dùng đơn vị nhánh phù hợp với các ứng dụng dược học (không độc, hiệu quả cao, có khả năng giám sát….). Thể liên kết và bề mặt: Tính đa dạng của các cấu trúc dendrimer được tạo nên chủ yếu nhất bởi nhóm bề mặt và loại thể liên kết được dùng [31]. Lỗ nano (nanopore) Lỗ nano được tạo nên từ các vật liệu rắn (như silicon nitride) bằng kỹ thuật khắc bởi tia ion (ion-beam sculpting technique) [32, 33] theo hai cách: tạo lỗ bằng cách khắc trên màng, hoặc lấp các lỗ lớn hơn dưới những điều kiện ở đó quá trình chuyển khối biên là chủ đạo. Chiều sâu của lỗ nano trên màng là 5-10 nm và đường kĩnh lỗ là 3nm. Chúng nhỏ đến mức chỉ cho một mạch đơn DNA đi qua (hình 8a). Vỏ nano (Nanoshell) Vỏ nano là khối cầu silica rỗng với các hạt vàng bao quanh (hình 8b). Có thể gắn kháng thể lên bề mặt nhằm tạo ra khối cầu hướng đích [33, 36, 37]. Hạt nano (Nanoparticle) Hạt kim loại nano thường được định nghĩa là các hạt tách biệt có kích thước 1 - 50 nm được ngăn cản sự kết tụ bằng vỏ bảo vệ. Phụ thuộc vào vỏ bảo vệ được sử dụng, chúng được tái phân tán trong nước (“hydrosols”) hoặc dung môi hữu cơ (“organosols”) (hình 8c) [29, 38]. Lõi của hạt nano có thể là hạt C, hạt kim loại [39, 40], hạt từ, hạt hữu cơ [41], hạt silica [42] … 2.1.2 Dạng thanh Ống nano Được khám phá lần đầu tiên bởi Dr. Sumio Lijima tại NEC, Nhật (1991), NT carbon là mạng
- lưới lục giác của các nguyên tử C thông qua liên kết C sp2 trên graphite, có đường kính ~1nm và chiều dài 1-100 µm. NT carbon có các tính chất hết sức ưu việt như kích thước và khối lượng nhỏ, độ dẫn điện, dẫn nhiệt, độ bền cao… [38, 43]. Có hai loại NT là NT một vách và NT đa vách (hình 9.1, 9.1) [43]… Có thể gắn các cấu tử sinh học với NT carbon (hình 9.3), cho phép sử dụng hệ thống lai như các thiết bị cảm biến sinh học hoặc transistor với phổ hoạt động rất hiệu quả, tạo ra các cấu trúc nano phức hợp và mạch nano (nanocircuit) với các tính chất và chức năng được điều khiển [44]. Ngoài NT carbon, cùng với sự phát triển của công nghệ nano, ngày nay người ta còn tạo ra NT peptide [45]. Dây nano Các dây nano kim loại khác nhau gồm bạc [46], vàng [47], platinum [48], palladium [49], ZnS [50], đồng [51], silicon [52] được tạo ra nhờ khuôn DNA hoặc tổng hợp hóa học. Có thể tạo sợi vàng nano bằng cách sử dụng protein dẫn hướng (RecA) [53]. Patolsky và cộng sự polymer từng bước các đơn vị monomer G-actin gắn hạt vàng nano và các đơn vị G-actin không đánh dấu để tạo ra các sợi protein gắn kim loại sau khi xúc tác sự kim loại hóa các hạt nano (hình 10a) [54]. Hình 10b minh họa dây nano silica quấn quanh một sợi tóc, nó nhỏ bằng một phần năm virus, nhưng bền gấp 5 lần tơ nhện. Mã vạch nano (Nanobarcode, NBC) Mã vạch nano được hiểu là vật liệu nano có khả năng mã hóa khác nhau tương ứng với từng loại phân tử đích. Chúng có thể là các hạt nano hình trụ có vạch phân bố tự do, rộng 12 - 15 µm và dài 1 - 50 µm. Các mô hình sọc làm chúng tách biệt (giống như mã vạch truyền thống) dưới ánh sáng, kính hiển vi huỳnh quang hoặc khối phổ (hình 11) [29]. Nanobarcode tạo thành vừa có khả năng mã hóa vừa có khả năng dò. Gần đây, que nano đa kim loại với sọc barcode đã được chế tạo thành công. Người ta có thể nhận diện chúng bằng cách đo hệ số phản xạ [55]. Ngoài ra người ta còn tạo ra các NBC có bản chất là phân tử DNA lai có nhiều đầu, mỗi đầu gắn với một loại mẫu dò và tín hiệu phát huỳnh quang màu khác nhau để tạo ra phân tử có khả năng mã hóa [56]. Que nano (Nanorod) Trong CNNN, que nano được sử dụng khá phổ biến. Chúng được tạo thành từ kim loại, phi kim hoặc muối như Co, CuO, Au, CdSe, BaCrO4, BaWO4 [38], gắn với các nhóm chức nhằm mang lại khả năng tự lắp ráp thành các cấu trúc hai hoặc ba chiều. Hiện tại, trong CNSH, các que nano đa thành phần như que nano Au/Ni [57] (phần vàng gắn với yếu tố hướng đích, phần Ni gắn với plasmid tạo ra một vector chuyển gene rất hiệu quả), Au-Ni-Au đã cho thấy các ứng dụng to lớn trong chuyển gene và phân tách chọn lọc các cấu tử sinh học. Ngoài những vật liệu nano kể trên, với các phương pháp tổng hợp hóa học, người ta còn tạo ra các cấu trúc đĩa nano (nanodisks), hạt nano đa vỏ, cách tử nano tam giác và các cấu trúc nano nhánh [41], mang lại những ứng dụng hết sức đa dạng trong CNSH nano. Bên cạnh vật liệu nano, các phần tử sinh học đóng vai trò vô cùng quan trọng trong CHSH nano. Cho đến nay, người ta mới chỉ lợi dụng được một phần rất nhỏ của các cấu tử, cấu trúc và nguyên lý sinh học trong CNSH nano.
- 2.2 Các phần tử sinh học trong CNSH nano Tế bào là tập hợp của hàng ngàn bộ máy nano (nanomachine, nanodevice), chúng có thể được thu nhận và biến đổi để thực hiện các nhiệm vụ CNNN tùy theo chủ định của chúng ta. Hiện tại, trên 10.000 bộ máy nano đang làm việc trong cơ thể mỗi người. Đáng chú ý là sau khi tách và tinh chế, các bộ máy nano này vẫn giữ chức năng ở kích thước phân tử. Chúng là những bộ máy phân tử độc lập, được lợi dụng để phục vụ con người [5]. Các phân tử sinh học có thể đóng vai trò như các thành phần thu nhận, vận chuyển ánh sáng, chuyển hóa tín hiệu, xúc tác, bơm hoặc đông cơ trong các bộ máy nano để tạo ra năng lượng hoặc các sản phẩm đặc biệt, thực hiện các nhiệm vụ kiểm soát hay lưu giữ dữ liệu [60]. Các cấu trúc thiết yếu trong trao đổi chất tế bào (ty thể, túi vận chuyển, ribosome…) có thể trở thành các “bộ phận” của bộ máy sinh học-nano. Và với các tiến bộ công nghệ, chúng ta có thể mở rộng chức năng của các bộ máy này theo mục đích của mình, biến đổi các bộ máy nano phân tử sinh học sẵn có hoặc thiết kế những cái hoàn toàn mới [5, 61]. Theo xu thế hiện nay, người ta không ngừng tìm hiểu, khám phá các cơ chế sinh học, tận dụng tối đa mọi tiềm năng sẵn có trong các hệ thống sinh học để ứng dụng vào CNSH nano. Bởi thế, có thể nọi mọi cấu tử sinh học đều đã và đang là đối tượng nghiên cứu của CNSH nano. 2.3.1 Protein Trong CNSH nano, protein được sử dụng rất phổ biến. Chúng có thể đóng vai trò mẫu dò trong kỹ thuật protein chip [62], trợ giúp quá trình tự lắp ráp theo cơ chế kháng nguyên-kháng thể [38], được bao gói trong các vật liệu nano khác như một phân tử liệu pháp (kháng thể) [38] và đặc biệt nhất là vai trò động cơ nano. Động cơ sinh học nano là protein và phức hệ protein thực hiện các chức năng khác nhau thiết yếu cho sự sống như tái bản và biệt hóa của tế bào. Chúng sử dụng năng lượng hóa học, điện hóa hoặc điện thế và chuyển năng lượng này thành lực cơ học [63]. Tự nhiên luôn cung cấp cho chúng ta một dải rộng các động cơ sinh học nano (hình 13), chúng được tiến hóa để thực hiện các chức năng đặc biệt với hiệu quả cao [64]. Các protein vận động như myosin và kinesin đóng vai trò vận chuyển và truyền động, các động cơ có bản chất RNA làm virus dễ dàng bao gói axit nucleic [65], RNA polymerase chuyển động dọc theo DNA khi phiên mã, [66] và động cơ tiên mao đẩy vi khuẩn đi [67]. Một số enzyme như kinesin, RNA polymerase, myosin, và adenosine triphosphate (ATP) synthase có chức năng như các động cơ sinh học quay hoặc tịnh tiến ở kích thước nano. Kết hợp các động cơ phân tử sinh học với các hệ thống được chế tạo ở kích thước nano cho phép phát triển các thiết bị lai hữu cơ-vô cơ có khả năng sử dụng ATP như nguồn năng lượng. Cách tiếp cận này có thể cho phép tạo ra các cảm biến, biến năng cơ học và cơ cấu truyền động mới [68, 69]. Các cơ chế bởi đó các động cơ sinh học tạo ra lực là một lĩnh vực nghiên cứu thú vị trong đó các quá trình đáng kể được tạo thành [70] 2.3.2 DNA Có thể nói, chưa một cấu tử sinh học nào được nghiên cứu kỹ như DNA. Tuy nhiên, có lẽ không ai có thể ngờ rằng DNA lại có thể có những ứng dụng bước ngoặt, đột phá đến như vậy khi CNSH nano ra đời. Có thể sử dụng tính chất nhận biết phân tử kết hợp với các tính chất cơ học khác nhau của DNA mạch đơn và kép để tạo các thiết bị nano thực hiện nhiều nhiệm vụ hơn với các ứng dụng từ chế tạo nano đến phân phối thuốc thông minh [71]. Có thể dùng DNA để tạo ra các
- bộ máy với khả năng chuyển động quay, đẩy và giãn dài, hoặc thậm chí vận động đẳng hướng [71-73]. Có thể phát minh các thiết bị nano tự sinh để bắt giữ và giải phóng các phân tử, thực hiện các nhiệm vụ xử lý thông tin đơn giản [71]. Một mảng ứng dụng rất lớn nữa của DNA là làm mẫu dò trong gene chip, một kỹ thuật chỉ mới được phát minh vào đầu những năm 1990 và tiềm năng phát triển có thể so với PCR [62]. Ngoài ra, với các tính chất tự lắp ráp (TLR), bắt cặp bổ sung…, với khả năng tổng hợp nhân tạo chính xác phân tử DNA đến từng base (cả mạch đơn lẫn mạch kép), khi gắn DNA với các cấu tử sinh học hoặc cấu trúc, phần tử nano khác sẽ cho ta những ứng dụng hết sức phong phú và đa dạng. Có thể nói, CNSH nano mới chỉ lợi dụng được một phần rất nhỏ bé so với tiềm năng vốn có của DNA. 2.3.3 Các cấu trúc khác Ngoài protein và DNA, một số cấu trúc sinh học khác cũng cho thấy tiềm năng ứng dụng to lớn trong CNSH nano. Các lớp bề mặt tế bào vi khuẩn gọi là S-layer, S-layer neoglycoprotein tích hợp có thể sử dụng trong thiết kế vaccine, phân phối thuốc sử dụng sự nhận biết carbohydrate. Ngoài ra, có thể sử dụng glycoprotein, polysaccharide, mono hay oligosaccharide làm mẫu dò trong glycan array [74] hoặc chính bản thân tế bào cũng được lợi dụng làm khuôn để chế tạo dây nano [50]. Với sự phát triển như vũ bão của công nghệ hiện nay, có thể nói, mọi cấu tử sinh học ở kích thước nano đều có tiềm năng ứng dụng trong CNSH nano. 2.3 Cấu trúc nano tích hợp Ngày nay, người ta thiết kế và chế tạo các bộ máy sinh học nano để thực hiện các nhiệm vụ đặc biệt ở quy mô nano, như hướng đích tới các tế bào ung thư hoặc giải quyết một một nhiệm vụ máy tính đơn giản. Khi CNSH nano phát triển, chúng ta sẽ tái thiết kế các bộ máy phân tử của tế bào để thực hiện những nhiệm công nghệ và sức khỏe con người ở quy mô lớn hơn. Các cấu trúc lớn sẽ được xây dựng với độ chính xác nguyên tử với các máy lắp ghép phân tử sinh học hoặc bằng cách sử dụng các mô hình sinh học để lắp ghép. Nhìn vào tế bào, chúng ta có thể tìm thấy các động cơ tự động chính xác, bộ nhớ truy cập ngẫu nhiên, cảm biến… tất cả chúng đều ở quy mô phân tử, sẵn sàng để thu nhận bởi CNSH nano [5]. 2.2.1 Microarray Trong kỹ thuật DNA array, người ta cố định axit nucleic có trình tự xác định (mẫu dò) trên giá thể (mảng) thích hợp theo thứ tự. Axit nucleic cần nghiên cứu (đích) được đánh dấu sau đó lai với mẫu dò trên mảng. Ở những điều kiện lý tưởng, các axit nucleic có trình tự bổ sung sẽ bắt cặp chính xác với nhau. Hơn nữa dưới các điều kiện này, cường độ phát hiện tín hiệu tỷ lệ trực tiếp với lượng mẫu dò nên có thể định lượng các loại axit nucleic trong mẫu ban đầu [75]. Trên cơ sở DNA array, các mẫu dò các mẫu dò có bản chất khác nhau đã được phát triển để tạo ra protein array [76, 77], PNA array [78], peptide array [79], glycan array [74], nanowire array [52, 54], cantilever array [80] … mang lại những ứng dụng hiệu năng cao hết sức đa dạng [62]. 2.2.2 Microfluidic Một số thiết bị điều khiển lợi dụng ưu thế của các thiết bị kích thước nhỏ (cỡ µm) so với các thiết bị lớn: giảm lượng mẫu và hóa chất tiêu tốn, thời gian phân tích ngắn hơn, độ nhạy cao hơn, mang lại các phân tích in situ thời gian thực và tiện lợi. Có thể hình dung là tương tự với các vi mạch tích hợp sử dụng transitor thu nhỏ trong tính toán tự động, microfluidic chip có thể được tự động hóa quy mô lớn trong quá trình sinh học sử dụng các thể tích nl. Ngày nay,
- chúng ta đang thấy các hệ thống microfluidic thật sự nổi lên để điều khiển các vật liệu ở mức nl, chúng được gọi là các hệ thống nanofluidic [81]. 2.2.3 Điện cực nano (nanosensor) Điện cực sinh học là một thiết bị gồm thụ thể sinh học và một yếu tố chuyển đổi có khả năng chuyển hóa những thông tin đặc biệt thành các hiệu ứng có thể đo đạc (như tín hiệu điện). Vì tính đặc hiệu cao của các thụ thể sinh học (DNA, kháng thể), so với điện cực hóa học, điện cực sinh học nhạy hơn nhiều trong các đánh giá sinh học [82]. Dùng vật liệu nano trong điện cực sinh học cho phép sử dụng một số kỹ thuật truyền tín hiệu mới. Vì m, các điện cực nano, mẫu dò nano và các hệ thống khác là nhữngµkích thước dưới lĩnh vực cách mạng hóa trong phân tích sinh học và hóa học, cho phép phân tích nhanh nhiều cơ chất cùng lúc in vivo [83]. Một trong các điện cực nano đang được ưu tiên phát triển hàng đầu là PEBBLE. Chúng có kích thước 20-100nm, được thiết kế đặc biệt để sử dụng trong các môi trường sinh học [84]. Do có kích thước nhỏ nên điện cực này tối thiểu hóa các tác hại vật lý đối với tế bào. Hơn nữa do thuốc nhuộm được nang hóa trong chất nền trơ nên PEBBLE tạo ra pha cảm biến tách biệt với tế bào, do đó tránh được khả năng gây nhiễu hóa học. Các peptide vòng chứa một số axit amin thay thế dạng D- và L- được sử dụng trong một loại cảm biến hóa sinh và hóa học mới do nhóm của Bayley tại Texas A&M University phát triển [85]. Trong đó, họ đặt màng lipid kép chứa một kênh α-haemolysin (αHL, hình 16) giữa hai dung dịch điện cực, cho điện thế chuyển màng không đổi chạy qua và đo dòng chuyển màng. Dòng này đi đôi với sự vận chuyển của các ion chạy qua kên αHL vào lỗ trung tâm [85]. 2.2.4 Thiết bị nano (nanodevice) Thiết bị nano được định nghĩa là tổ hợp lắp ráp của các phân tử đã được thiết kế từ trước để thực hiện chuyển động [86]. Hiện có khá nhiều thiết bị nano được tạo ra nhằm thực hiện các chuyển động tịnh tiến [87-89], quay [72], nâng lên hạ xuống [90], co bóp (hình 17) [73, 87, 91- 93]. Phổ biến nhất là thiết bị nano dựa trên DNA, kế đó là các thiết bị được thiết kế đặc biệt lợi dụng các động cơ phân tử, có bản chất là protein [68, 92]. “Nhiên liệu” của các thiết bị này có thể là ATP, enzyme, các kích thích bên ngoài hoặc thậm chí là tự cấp nguyên liệu dựa trên các thay đổi môi trường in vivo (như pH) hoặc TLR thông qua các nguyên lý bổ sung. 3. PHƯƠNG PHÁP CHẾ TẠO VẬT LIỆU NANO 3.1 Phương pháp hóa học Tổng hợp hóa học giúp tạo ra lượng lớn vật liệu nano với giá thành hợp lý. Có thể bắt đầu với dung dịch muối và cho thêm hóa chất (như hydroxide). Sau khi sản phẩm ở trạng thái siêu bão hòa, quá trình kết tủa xảy ra do sự nhân hóa đồng hoặc dị hợp (homogeneous or heterogeneous nucleation). Để tạo hạt với phân bố kích thước hẹp, toàn bộ quá trình kết tủa phải xảy ra cùng lúc và phải không có sự nhân hóa sau khi đã tạo thành hạt. Tính chất hạt phần lớn được xác định bởi tốc độ phản ứng, tốc độ phản ứng lại bị ảnh hưởng bởi n ồng độ của các chất tham gia phản ứng, nhiệt độ, pH và thứ tự chất phản ứng cho vào dung dịch. Vật liệu nano đa pha (multiphase nanomaterial) khó tạo ra hơn bằng phương pháp hóa học vì mỗi pha cần các điều kiện kết tủa khác nhau. Có thể giới hạn kích thước hạt bằng cách tạo ra rất nhiều vị trí hạt nhân hóa (nucleation site) sử dụng micelle ngược (reverse micelle), ho ặc bằng cách bao phủ bề mặt (capping the surface) [94].
- 3.1.1 Micelle ngược Một số chất hoạt động bề mặt là các nguyên tử dạng que với đầu ưa nước và kỵ nước. Khi trộn dầu, nước và chất hoạt động bề mặt với nhau theo tỷ lệ thích hợp, các phân tử hoạt động bề mặt tự sắp xếp tạo thành vỏ cầu (spherical shells) với nước choán đầy không gian trong vỏ. Kiểu sắp xếp hình học của chất hoạt động bề mặt và nước như vậy gọi là micelle ngược (reverse micelle), xảy ra để tối thiểu hóa năng lượng.[94] Có thể điều khiển được kích thước của micelle ngược vì kích thước của nó phụ thuộc tuyến tính vào tỷ lệ của lượng nước trên lượng chất hoạt động bề mặt. Có thể thực hiện hầu hết các phản ứng trong nước cũng như trong nước chứa bên trong micelle. Do đó, có thể kết tủa các hạt nano bên trong micelle. Kích thước hạt nano bị giới hạn bởi kích thước của micelle ngược [94]. có thể cho phân tử mũ (chất gắn cộng hóa trị với bề mặt của vật liệu) vào dung dịch để ngăn cản quá trình kết tụ của các hạt nano mới tạo thành (hình 18). Thiolate là các chất capping thường được sử dụng nhất. Capping cũng hạn chế kết tụ [94]. 3.1.2 Khử Các hạt nano được kết tủa thường là oxit hoặc hydroxid. Nếu cần hạt nano kim loại, có thể khử oxid hoặc hydroxid bằng hydro ở nhiệt độ cao. Cũng có thể khử bằng rượu đa chức (như ethylene glycol) ở nhiệt độ cao [94]. Quá trình khử hóa học muối kim loại (hình 18) khi có chất ổn định để tạo hạt keo kim loại hóa trị không (zerovalent) trong dung dịch lỏng ho ặc dung môi hữu cơ được công bố lần đầu tiên vào năm 1857 bởi Faraday, và cách tiếp cận này đã trở thành một trong các phương pháp tổng hợp mạnh và phổ biến nhất trong lĩnh vực này. Phương pháp chuẩn đầu tiên để tạo ra hạt keo kim loại (như hạt vàng 20nm bằng cách khử [AuCl4–] bằng sodium citrate) được thiết lập bởi Turkevich [38]. 3.1.3 Tổng hợp điện hóa Từ năm 1994, sự chế tạo rất linh hoạt các keo lưỡng và đơn kim loại cấu trúc nano đã được Reetz và nhóm nghiên cứu của ông phát triển. Quá trình tổng hợp điện hóa tổng quát gồm 6 bước nhỏ (hình 20). 1. Sự phân rã do ôxy hóa của điện cực anode kim loại 2. Các kim loại hóa trị n dịch chuyển đến cathode 3. Tạo thành nguyên tử kim loại hóa trị 0 tại cathode 4. Tạo thành các hạt kim loại bởi quá trình hạt nhân hóa và phát triển (nucleation and growth) 5. Đình trệ quá trình phát triển và ổn định hóa các hạt bằng chất bảo vệ keo 6. Kết tủa các hạt keo kim loại cấu trúc nano Bằng cách sử dụng quá trình tổng hợp điện hóa, có thể tạo ra hạt cầu Pd(0) với kích thước 1 - 6 nm. Phương pháp điện hóa đã được áp dụng thành công để chuẩn bị một số organosol và hydrosol kim loại như Pd, Ni, Co, Fe, Ti, Ag, và Au ở quy mô hàng trăm mg (hiệu suất >95%) [38]. 3.2 Phương pháp vật lý 3.2.1 Các phương pháp cơ học Nghiền trục cao năng
- Có thể sử dụng phương pháp nghiền trục cao năng (high-energy ball milling), còn gọi là bào mòn cơ học (mechanical attrition) để giảm kích thước vật liệu hạt từ vài µm xuống còn 2- 20nm. Quá trình này chậm và cần nhiều thời gian để đạt được các kích thước nhỏ nhất có thể. Ưu điểm của phương pháp này là tương đối rẻ và dễ tăng quy mô để sản xuất lượng lớn vật liệu. Thông thường, để tối đa hóa năng lượng bào mòn, người ta sử dụng thép cứng cao phân tử (high-mass hard-steel). Ăn mòn có học cũng tạo ra các vật liệu siêu ổn định (metastable). Nếu nghiền khi có O2 hoặc N2, có thể tạo thành oxit hoặc nitrit [94]. Cắt bằng laze Trong kỹ thuật cắt bằng laser (Hình 21(a)) ngưới ta đặt graphite trong lò và dùng xung laser mạnh để cắt nó trong khí trơ. Đầu tiên, dùng điện cực carbon nguyên chất với nhiệt độ khí argon xung quanh 1200oC. Khí mang argon tập hợp các sản phẩm và lắng chúng (deposit) khi phủ cơ chất làm lạnh. Lớp phủ gồm các ống nano 4-24 lớp (Hình 21(b)), chiều dài < 300 nm, cùng với một lượng nhỏ cơ chất như onion. SWNT chỉ được tạo ra sau đó, khi trộn một lượng nhỏ (
- kích thước 1-100 nm bằng cách này, nhưng nhược điểm là biến thiên kích thước hạt lớn [38, 94]. Một cách khác là tạo ra chùm hạt nano nhờ dòng khí áp lực. Nếu có một dòng khí áp lực, có thể tập hợp các hạt theo phương ngang một đoạn khá xa từ nơi xuất phát. Ưu điểm của phương pháp này là có thể tạo ra một phổ lớn các hạt nano phân bố kích thước hẹp [94]. Hình 22. Sơ đồ thiết bị tạo ra, tập hợp và nén các hạt nano trong khí trơ. 3.2.4 Hồ quang điện Hồ quang điện là phương pháp tạo ống nano carbon đầu tiên được công bố và cũng là phương pháp sản xuất ở quy mô công nghiệp đầu tiên [38]. Để sản xuất MWNT, sử dụng hai điện cực graphite siêu tinh sạch. Khi phun hồ quang điện giữa hai điện cực chứa vật liệu trong khí trơ sẽ làm vật liệu chuyển sang trạng thái siêu bão hòa [94]. Trong quá trình phát triển, các ống nano được tạo thành và lắng trên cathode; anode xảy ra quá trình ăn mòn liên tục [38]. Phương pháp này thường được sử dụng để tạo ra fullerene (C60) và ống nano carbon. Nhiệt độ cao trong hồ quang làm thăng hoa vật liệu [94]. Hình 23. (a) Thiết bị tạo ống nano carbon bằng phương pháp hồ quang điện. Mô hình này tạo ra các ống nano carbon nhiều thành khi các que nano tinh sạch được sử dụng tại các điện cực và tạo ra các ống nano đơn thành khi chất xúc tác kim loại được trộn với lõi của anode. (b) Ảnh định vị trên cathode; (c) Ảnh TEM của MWNT [Theo 38]. Phương pháp khác gắn các hạt kim loại xúc tác vào điện cực carbon tạo ra SWNT. Để thực hiện thí nghiệm này, sử dụng mô hình tương tự của MWNT nhưng lỗ đường kính nhỏ hơn được khoan trong anode và bao gói với một hỗn hợp của chất xúc tác kim loại và bột graphide (Hình 23). Sau thời gian tổng hợp ngắn (thường vài phút) có thể tập hợp một mạng lưới vật liệu giống như mạng chứa SWNT từ bề phản ứng [38]. Nhược điểm của phương pháp này là mẫu chứa một lượng đang kể tạp chất không phải ống nano và chất xúc tác; cần tiến hành tinh sạch sau tổng hợp để thu mẫu tinh sạch [38]. 3.3 Các phương pháp sinh học 3.3.1 Tự lắp ráp phân tử Tự lắp ráp (TLR) là quá trình tự tổ chức của 2 hay nhiều thành phần thành một khối lớn thông qua các liên kết đồng và/hoặc phi đồng hóa trị [97]. TLR phân tử (MSA) là một cách tiếp cận tuyệt vời để chế tạo các cấu trúc siêu phân tử. MSA được tạo thành bởi các liên kết phi đồng hóa trị yếu- đáng chú ý là liên kết H, liên kết ion, tương tác kỵ nước, van der Waals và liên kết H qua nước. Mặc dù khi đứng riêng, các liên kết này tương đối yếu nhưng trong tổng thể chung, chúng chi phối quá trình hình thành cấu trúc của tất cả các đại phân tử sinh học và ảnh hưởng đến tương tác của chúng với các phân tử khác. Tất cả các phân tử sinh học, bao gồm peptide và protein, tương tác và tự tổ chức thành các cấu trúc xác định, có chức năng. Bằng cách quan sát quá trình các cấu trúc siêu phân tử lắp ráp trong tự nhiên, chúng ta có thể bắt đầu khai thác sự TLR để tạo ra những vật liệu tổng hợp hoàn toàn mới. DNA, peptide và protein là các khối cấu trúc đa tác dụng để lắp ráp các vật liệu. Tự nhiên luôn sử dụng chúng như các bộ khung để tạo ra rất nhiều loại vật liệu khác nhau (collagen, keratin… ) [98].
- Chế tạo sợi nano Một loại sợi nano được tạo thành từ các peptide ion hóa tự lắp ráp bổ sung [99], chúng tạo thành trong dung dịch lỏng với hai bề mặt: một ưa nước, một kỵ nước. Các gốc βphiến kỵ nước tự bảo vệ chúng khỏi nước và TLR trong nước theo cách tương tự trong gấp nếp protein in vivo. Đặc trưng cấu trúc độc nhất vô nhị của các peptide “Lego phân tử” này là chúng tạo thành các liên kết ion bổ sung với sự lặp lại đều đặn trên bề mặt ưa nước (hình 24a). Có thể định hướng điện tích theo chiều ngược lại, để tạo ra các phân tử hoàn toàn khác. Trình tự được thiết kế tốt cho phép các peptide TLR theo trật tự, trong một quá trình giống như sự lắp ráp polymer đã được nghiên cứu kỹ [98]. Chế tạo NT Phospholipid dễ dàng TLR trong dung dịch nước, tạo thành các cấu trúc khác nhau bao gồm micelle, túi và ống. Schnur và cộng sự đi tiên phong trong công nghệ tự lắp ghép ống lipid để tạo ra các vật liệu dùng trong lĩnh vực chế tạo vật liệu mới sử dụng các khối cấu trúc đơn giản [98] (hình 24b). Bao gói các bề mặt với độ dày nm Zhang và cộng sự tập trung thiết kế các peptide TLR thành một lớp đơn trên các bề mặt, cho phép các phân tử dính với nhau để tương tác với tế bào và dính trên bề mặt [100]. Các peptide này có ba vùng chung dọc theo chiều dài của nó: một phối tử nhận biết và gắn tế bào đặc biệt, một thể liên kết để phân tách vật lý với bề mặt và neo để gắn cộng hóa trị với bề mặt [98]. Gần đây, Zang và đồng sự đã tiến một bước xa hơn: sử dụng các peptide và protein như một loại mực, họ in trực tiếp các ký hiệu đặc biệt trên bề mặt polyethylene glycol không bám dính để nhanh chóng lắp ráp các mô hình tùy thích mà không cần mặt nạ hay con dấu (hình 24c). Bộ khung sợi nano peptide và protein Có thể lắp ráp các bộ khung peptide ba chiều bằng cách nhúng peptide TLR vào dung dịch muối hoặc môi trường sinh lý để tạo ra các cấu trúc đại phân tử [101]. Nếu thay alanine bằng các gốc kỵ nước hơn như valine, leucine, isoleucine, phenylalanine hay tyrosine, các phân tử có khuynh hướng TLR lớn hơn và tạo thành các chất nền peptide [102]. Chế tạo các dây nano sử dụng bộ khung sinh học Có thể dùng NT peptide TLR làm khuôn cho quá trình kim loại hóa. Khi bộ khung hữu cơ bị loại bỏ, lưu lại dây dẫn điện tinh sạch trên bề mặt. Có rất nhiều phương pháp gắn tinh thể nano kim loại dẫn điện vào peptide [98]. Matsui và cộng sự đã chế tạo thành công NT peptide thành dây nano. Họ không chỉ bao gói NT peptide với đồng và niken mà còn bọc NT của họ trong avidin, làm chúng có thể gắn đặc hiệu với các bề mặt vàng [103]. Hình 25. Khám phá và chọn các vật liệu điện sử dụng hệ thống trình diện bacteriophage. Một thư viện phage tái tổ hợp được sử dụng để gắn chọn lọc với vật GaAs. Đường đỏ (đường kính 1 µm) tương ứng với GaAs và vùng đen (đường kính 4 µm) là SiO2. Sự gắn đặc hiệu peptide này cũng có thể được sử dụng để phân phối các tinh thể nano tới các vị trí đặc biệt
- [Theo 104]. Belcher và cộng sự tiến hành một cách tiếp cận rất khác để không chỉ khám phá mà còn chế tạo các vật liệu điện và từ rất khác so với các vật liệu truyền thống. Họ tạo ra bacteriophage TLR đã biến đổi di truyền sao cho có thể dùng chúng để chọn các vật liệu từ, bán dẫn hoặc dẫn điện (hình 25) [104]. Hình 24. Lắp ráp các vật liệu peptide. (a) Peptide tự bổ sung ion hóa có 16 axit amin, kích thước ~5 nm. Chúng TLR tạo thành sợi nano với các gốc không phân cực nằm trong (xanh lá cây), và các gốc tích điện – (đỏ) và + (xanh da trời) tạo thành các tương tác ion bổ sung giống như bàn cờ vua. Các sợi nano này tạo thành các chất nền đan xen sau đó tạo thành scaffold hydrogel với trên 99.5% là nước. (b) Một loại peptide giống chất hoạt động bề mặt, kích thước ~2nm, TLR thành NT hoặc túi nano (nanovesicle) với đường kính 30–50 nm. (c) Peptide bao gói nano bề mặt với ba phân đoạn riêng biệt, có thể sử dụng như mực để in trực tiếp trên bề mặt. (d) Peptide công tắc phân tử, với tính lưỡng cực mạnh, biến đổi hình dạng mạnh giữa α-helix và β-strand hoặc β-sheet dưới kích thích ngoại lai. Các tinh thể nano có thể được gắn với các peptide lưỡng cực này để chế tạo chúng thành các công tắc nhỏ [Theo 98]. Các hạt keo vàng có thể TLR thành một cấu trúc tập trung bằng cách gắn với các hạt 13nm không bổ sung với các oligonucleotide DNA có hai đầu gắn với nhóm thiol và sau đó kết tụ với một phức hệ oligonucleotide với các đầu dính và bổ sung với hai trình tự ghép [105]. Quá trình lắp ráp hoàn toàn thuận nghịch thông qua các chu kỳ lai và biến tính bởi nhiệt thông thường. 3.3.2 Vi chế tác dựa trên khuôn sinh học Về mặt nguyên lý, các đặc trưng có tính lặp lại và các motif khả nhận diện của các đại phân tử sinh học có thể được khai thác để chế tạo các cấu trúc và thiết bị nano [106]. Một trong các ví dụ tiêu biểu là chế tạo tấm hoặc các dây nano dẫn điện. Dây nano bạc dẫn điện đã được chế tạo bằng cách lắp ráp trên khuôn DNA [107]. Nhiều motif DNA không thông dụng cũng có thể được sử dụng để tạo nên các khối cấu trúc phân tử bởi khả năng kết hợp của DNA thông qua đầu dính có tính đặc hiệu rất cao. Các phân tử DNA phân nhánh có các đầu dính đầy hứa hẹn cho các cấu trúc tuần hoàn. Các phân tử DNA 8 µm, TLR trong dung dịch để tạo thành các tinh thể một miền có kích thước 2 x với độ dày đồng nhất từ 1 đến 2 nm. Hơn nữa, sử dụng oligonucleotide tổng hợp mang các base biến đổi cho phép điều khiển cấu trúc của khối tuần hoàn bằng cách gắn thêm các nhóm chức năng như chất xúc tác, enzyme, và protein, các cụm kim loại hoặc các c ấu trúc nano DNA khác như polyhedra [108] hoặc vòng Borromean [50]. Mao và cộng sự đã tạo ra các virus có khả năng kết tinh các hạt tinh thể nano ZnS hoặc CdS bằng kỹ thuật phage display. Các virus này được cho vào dung dịch chứa chất bán dẫn và các hạt tinh thể nano tạo thành dọc theo khuôn virus tạo thành dây nano (hình 26) [50]. Hình 26. (A) Sơ đồ chế tạo dây nano trên nền tảng kỹ thuật phage display và (B) dây nano ZnS-virus [Theo 50]. 3.3.3 Phỏng sinh học
- Trong tương lai, các hệ thống vật liệu chức năng được phát triển cho công nghệ sinh học nano hoặc công nghệ nano có thể gồm protein (hình 27). Chúng tham gia vào quá trình lắp ráp, chế tác và chắc chắn, trong cấu trúc sản phẩm cuối cùng, mang lại các chức năng đặc bi ệt, có thể điều khiển tương tự các cấu trúc trong mô xốp và rắn sinh học. Trong lĩnh vực phỏng sinh học phân tử (molecular biomimetic, MB)- trong đó kết hợp hài hòa các lĩnh vực sinh học và vật lý truyền thống- có thể tạo ra các vật liệu lai được lắp ráp từ mức phân tử sử dụng các tính chất nhận biết và gắn đặc biệt của protein với các chất vô cơ. MB mang lại ba giải pháp giúp điều khiển và chế tác cấu trúc nano quy mô lớn cũng như lắp ráp các vật liệu hai, ba chiều một cách có trật tự (hình 27). Giải pháp thứ nhất là chọn lọc là thiết kế ở mức phân tử và di truyền các peptide, protein gắn chất vô cơ. Điều này cho phép đạt được khả năng điều khiển ở những mô thức nhỏ nhất. Thứ hai, có thể sử dụng các protein này làm chất kết nối hay các tập hợp lắp ráp phân tử để liên kết thực thể phân tử, bao gồm hạt nano, polymer chức năng hoặc các cấu trúc khác trên khuôn phân tử. Hình 27. Khả năng sử dụng của các protein gắn chất vô cơ: (a) thể liên kết để cố định hạt nano. (b) các phân tử chức năng lắp ráp trên cơ chất đặc biệt. (c) thể kết nối đa năng gồm 2 protein tiếp giáp với các đơn vị vô cơ nano. NSL, thể kết nối không đặc hiệu [Theo 109]. Giải pháp thứ ba là tự lắp ráp và/hoặc đồng lắp ráp các phân tử sinh học thành cấu trúc nano có trật tự. Điều này đảm bảo một quá trình lắp ráp tinh vi để tạo ra các cấu trúc nano phức tạp, và có thể là các cấu trúc có thứ bậc, tương tự trong tự nhiên. Hình 28. Tiềm năng ứng dụng của MB trong công nghệ nano và công nghệ sinh học nano sử dụng các polypeptide biến đổi di truyền gắn chất vô cơ [Theo 38]. Chỉ một vài polypeptide đã được xác định là gắn đặc hiệu với các chất vô cơ. Chúng hầu hết là các protein khoáng hóa sinh học, tiết ra từ mô rắn (hard tissue) sau khi được phân tách, tinh chế và tách dòng. Mặc dù cách tiếp cận này khó, tốn thời gian và có nhiều giới hạn lớn, một số protein tách theo cách này đã được sử dụng như enzyme để tổng hợp các chất vô cơ nhất định. Cách tiếp cận phổ biến hơn là thu polypeptide gắn chất hữu cơ nhờ các kỹ thuật sinh học. Trong cách tiếp cận này, một lượng lớn, thư viện ngẫu nhiên được sàng lọc để xác định các trình tự đặc hiệu gắn tốt với vật liệu hữu dùng trong thực nghiệm. Đạt được điều này sẽ là một nhảy vọt phi thường, với khả năng tạo ra các khối cấu trúc nano trong đó protein và tính chất gắn của nó được tạo ra nhờ kỹ thuật DNA trong khi thành phần vô cơ mang các chức năng đặc biệt (như điện, quang, từ). Các polypeptide gắn này (hay các protein nhỏ) được gọi là các protein kỹ thuật di truyền cho chất vô cơ [38].
- 3.3.4 Sinh học phân tử Một phần không thể thiếu trong CNSH nano là sinh học phân tử. Sinh học phân tử phát triển mang lại một nền tảng công nghệ cho CNSH nano. Các kỹ thuật lai, dung hợp protein, tạo đột biến… được dùng thường nhật trong CNSH nano để tạo ra các khối cấu trúc sinh học, các kỹ thuật nhạy mới. Các hệ thống sinh học có khả năng độc nhất vô nhị trong việc điều khiển cấu trúc, pha, chiều hướng và topo học cấu trúc nano của các tinh thể vô cơ. Các nghiên cứu gần đây đã lợi dụng các nguyên lý nhận biết sinh học để phát triển các kỹ thuật mới nhằm bố trí các vật liệu từ tính, bán dẫn và dẫn điện. Các kỹ thuật trình diện phage (phage display) tái tổ hợp đã được sử dụng để xác định các peptide gắn chất bán dẫn thuộc nhóm III–V và II–VI như ZnSe và GaAs, với các vật liệu từ tính và với calcium carbonate, phosphate. Các peptide có tính đặc hiệu bề mặt tinh thể, có thể phân biệt giữa các hợp kim bán dẫn tương tự như GaAs và AlGaAs, và được sử dụng để tạo ra các hạt nano và các dị cấu trúc. Các phương pháp tổ hợp tương tự đã được sử dụng để tạo ra các cụm nano CdS gói peptide và các protein gắn vàng [96]. Hơn nữa, một số chủng vi khuẩn có khả năng kháng kim loại đáng ngạc nhiên, như bạc và một số thậm chí tích lũy bạc tại thành tế bào với một lượng lên đến 25% trong lượng sinh khối khô. Chủng Pseudomonas stutzeri AG259, phân lập từ mỏ bạc tích lũy các tinh thể đơn bạc với hình dạng và thành phần xác định, như các hinhhf tam giác và lục giác đều, với kích thước dưới 200nm trong không gian ngoại biên [110]. Như vậy, có thể nói, sinh học phân tử là một công cụ không thể thiếu, là kỹ thuật nền của công nghệ sinh học nano. 4. ỨNG DỤNG CNSH nano phản ánh tầm quan trọng ngày càng tăng của khoa học nano và công cụ nano trong việc tạo ra các loại vật liệu sinh học mới để sử dụng trong kỹ thuật mô (tissue engineering) và sắp xếp tế bào (cell patterning), điện cực dùng trong chuẩn đoán, lỗ nano để giải trình tự DNA, vật liệu nano để hiện hình đơn phân tử hoặc tế bào và các thiết bị/vật liệu/hạt nano sử dụng trong phân phối thuốc hoặc liệu pháp y học [4]. Các sản phẩm CNSH nano đầu tiên là kính hiển vi và microfluidic để thao tác ở quy mô nm. Sau đó thị trường đưa ra các hệ thống sử dụng vật liệu nano như điểm lượng tử, vật liệu composite (cơ cấu peptide-lipid) và cảm biến sinh học (mảng ống nano carbon). Mặc dù sau vài năm thương mại hóa, các sản phẩm sử dụng vật liệu cấu trúc nano để phân phối thuốc và kỹ thuật mô đang tiếp cận pha thử nghiệm y học. Xa nhất với khả năng thương mại hóa là các thiết bị điện nano tích hợp, đầy hứa hẹn với những ứng dụng chăm sóc sức khỏe như các điện cực cấy dưới da với khả năng quản lý và đáp ứng theo tình trạng sức khỏe [12]. Mihail Roco, chủ tịch của Nanoscale Science, Engineering and Technology Subcommittee tại NNI, tiên đoán vào năm 2015, ít nhất 1 nửa các loại thuốc được tạo ra sẽ dựa trên CNNN [8].
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sinh học Công nghệ Nano
65 p | 1350 | 740
-
Bài tổng quan công nghệ sinh học nanô
16 p | 437 | 172
-
Hiệu ứng bề mặt ở cấu trúc nano
12 p | 307 | 124
-
Công nghệ nano và cuộc cách mạng xanh: Những lợi ích về môi trường .
13 p | 220 | 103
-
Các vật liệu quang điện tử và quang tử nanô
11 p | 381 | 48
-
Ứng dụng của công nghệ phân tử Nano bạc trong lọc nước.
2 p | 158 | 27
-
Vật liệu Nano lai hữu cơ vô cơ và ứng dụng trong quang điện tử và y sinh học
5 p | 188 | 20
-
Một số kết quả nghiên cứu bước đầu về sensor ADN điện hóa
6 p | 91 | 9
-
Triển vọng ứng dụng vật liệu tổ hợp cấu trúc nano oxit sắt từ than sinh học để xử lý nguồn nước bị ô nhiễm
8 p | 69 | 8
-
Nghiên cứu hiệu ứng kháng nấm Phytophthora capsici gây bệnh chết nhanh ở cây hồ tiêu của chế phẩm nano bạc chế tạo bằng phương pháp chiếu xạ
6 p | 110 | 8
-
Nghiên cứu tổng hợp hydroxyllapatit dùng làm vật liệu sinh học
2 p | 88 | 8
-
Bức tranh công nghệ thế giới 2009 và xu hướng những năm tới
16 p | 55 | 5
-
Nghiên cứu thử nghiệm xử lý thuốc bảo vệ thực vật Glyphosat bằng công nghệ oxy hóa điện hóa
7 p | 47 | 5
-
Nano bạc trong khử trùng môi trường nuôi cấy in vitro cây hoa cúc (Chrysanthemum morifolium Ramat cv. Jimba)
9 p | 40 | 3
-
Ảnh hưởng của kích thước hạt nano đồng đến sự sinh trưởng của vi khuẩn lam Microcystis aeruginosa
7 p | 47 | 3
-
Khả năng kháng một số vi khuẩn của composite cellulose vi khuẩn kết hợp nano bạc
9 p | 38 | 3
-
Áo bọc tim cảm biến gắn trên tim người sử dụng công nghệ in sinh học 3D
6 p | 5 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn