intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề kiểm tra KSCL lần 2 Toán 12 (2013-2014) - THPT chuyên Vĩnh Phúc

Chia sẻ: Van Nhu Loan | Ngày: | Loại File: PDF | Số trang:22

105
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Để trau dồi, củng cố kiến thức và phát huy năng lực của mình. Mời các bạn cùng tham khảo 3 đề kiểm tra khảo sát chất lượng lần 2 môn Toán lớp 12 của Sở Giáo dục và Đào tạo trường THPT chuyên Vĩnh Phúc.

Chủ đề:
Lưu

Nội dung Text: Đề kiểm tra KSCL lần 2 Toán 12 (2013-2014) - THPT chuyên Vĩnh Phúc

  1. www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO  KHẢO SÁT CHẤT LƯỢNG LẦN THỨ II  Trường THPT Chuyên Vĩnh Phúc  NĂM HỌC 2013 – 2014  (Đề có 01 trang)  Môn : Toán 12; Khối A­B  Thời gian: 180  phút (Không kể giao đề)  I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)  Câu 1 (2,0 điểm) Cho hàm số  y = x 4 - 2mx 2 + 2  + m4 , với  m là tham số thực.  m a)  Khảo sát sự biến thiên và vẽ đồ thị hàm số  khi m = 1.  b)  Tìm các giá trị của m để hàm số có cực đại, cực tiểu mà các điểm cực đại, cực tiểu của đồ thị tạo thành tam  giác có diện tích bằng 1.  1 - 2 sin x - 2 sin 2 x + 2 cos x  Câu 2 (1,0 điểm) Giải phương trình = cos 2 x - 3 (1 + cos x ) .  2sin x - 1  x ( x + 2 ) Câu 3 (1,0 điểm) Giải bất phương trình ³ 1 .  3  ( x + 1  )  -  x 1  2  Câu 4 (1,0 điểm) Tính tích phân  I = ò  3 - 2x).e x  dx .  (8x 0  Câu 5 (1,0 điểm) Cho hình chóp đều  S . ABCD có độ dài cạnh đáy bằng  a , mặt  bên của hình chóp tạo với mặt đáy  o  góc 60  . Mặt phẳng  ( P  chứa  AB  và đi qua trọng tâm tam giác  SAC cắt  SC , SD  lần lượt tại  M , N . Tính thể  tích  )  khối chóp  S . ABMN  theo  a .  Câu 6 (1,0 điểm) Cho a, b, c là các số thực dương thỏa mãn a 2 + b 2 + c 2  = 5 ( a + b + c ) - 2  .  ab æ 3 1  ö Tìm giá trị nhỏ nhất của biểu thức  P = a + b + c + 48 ç ç a + 10  + 3  ÷ è b+c ÷ ø  II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ làm một trong hai phần (phần A hoặc phần B)  A.  Theo chương trình Chuẩn  Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ  Oxy , cho 2 đường thẳng  d1  : 2 x - 3 y + 1 = 0 ,  d 2  : 4 x + y - 5 = 0 .  Gọi  A  là giao điểm của  d  và  d  . Tìm  toạ độ điểm  B  trên  d  và toạ độ  điểm  C  trên d  sao cho  D  1  2  1  2  ABC có trọng  tâm G ( 3;5  .  )  Câu 8.a (1,0 điểm)Trong không gian  với hệ tọa độ Oxyz, cho đường thẳng  d  đi qua điểm M ( 0; -  )  và có véc tơ  1;1  r  chỉ phương u = (1; 2; 0 ) ;  điểm A ( -  2;3  . Viết phương trình  mặt phẳng ( P )  chứa đường thẳng  d  sao cho khoảng  1; )  cách từ điểm  A  đến mặt phẳng ( P )  bằng  3 .  4 x - 2 x  + 1  Câu 9.a (1,0 điểm) Giải phương trình log 2  x 2.16 - 2.4 + 1 x ( )  = 2 x 2.8x - 3.2 x  + 1  .  B. Theo chương trình Nâng cao  Câu  7.b (1,0 điểm) Trong  mặt  phẳng  với  hệ  toạ độ  Oxy ,  cho tam  giác  ABC  vuông  tại A ( 3; 2 ) , tâm  đường  tròn  æ 3 ö ngoại tiếp tam giác  ABC  là  I ç1;  ÷ và  đỉnh  C  thuộc  đường thẳng  d : x - 2 y - 1 = 0 . Tìm toạ độ  các đỉnh  B  và  C .  è 2 ø  Câu 8.b (1,0 điểm) Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):  x + y + z = 0. Lập phương trình mặt  phẳng (Q) đi qua gốc toạ độ, vuông góc với (P) và cách điểm  M(1; 2; ­1) một khoảng bằng  2 .  2 4 - x  - x + 1  Câu 9.b (1,0 điểm)  Giải bất phương trình ³ 0.  log 2  ( x - 3  )  ­­­­­­­­­­­­­­­­­­ Hết ­­­­­­­­­­­­­­­­­­­­ 
  2. www.VNMATH.com SỞ GD­ĐT VĨNH PHÚC  THI KHSCL LẦN II NĂM HỌC 2013 – 2014  TRƯỜNG THPT CHUYÊN  HƯỚNG DẪN CHẤM TOÁN 12 A,B.  Hướng dẫn chung.  ­  Mỗi một bài toán có thể có nhiều cách giải, trong HDC này chỉ trình bày sơ lược một cách giải. Học sinh có  thể giải theo nhiều cách khác nhau, nếu đủ ý và cho kết quả đúng, giám khảo vẫn cho điểm tối đa của phần  đó.  ­  Câu  (Hình học không gian), nếu học sinh vẽ hình sai hoặc không vẽ hình chính của bài toán, thì không cho  điểm; câu  (Hình học giải tích) không nhất thiết phải vẽ hình.  ­  Điểm toàn bài chấm chi tiết đến 0.25, không làm tròn.  ­  HDC này có 07  trang.  Câu  Nội dung trình bày  Điểm  1  a) (1 điểm)  (2,0 điểm)  4 2  ­ Khi  m = 1  thì  y = x - 2 x + 3  *)Tập xác định  D =  R *) Sự biến thiên :  0,25  é x = 0  Chiều biến thiên  y ' = 4 x - 4 x = 4 x( x -  ,  y ' = 0 Û ê x = 1  3 2  1)  ê ê x = -1  ë  ­ Hàm số đồng biến trên các  khoảng ( ­1 ; 0) và (1 ; +¥ ), nghịch biến trên các khoảng  ( (-¥; -  và (0 ; 1)  1) ­ Cực trị : Hàm  số đạt cực đại tại  x = 0; yCР = 3  Hàm số đạt cực tiểu tại  x = ±1; yCT  = 2  0,25  ­ Giới hạn  lim  = +¥  x®±¥ ­ Bảng biến thiên :  x -¥  ­1                     0                    1 +¥  y’  ­  0          +         0  ­  0               +  +¥  3 +¥  0,25  y 2  2  Đồ thị  y  3  0, 25 2  ­2  ­1  0          1         2  x 
  3. www.VNMATH.com b)  (1 điểm)  ­  Tập xác định D = R  é x  = 0  ­  Ta có  y ' = 4 x3  - 4  ;  y  ' = 0  Û ê 2  mx 0,25  ë x = m Hàm số có cực đại, cực tiểu  Û y ' = 0  có  ba nghiệm phân biệt  Û m > 0  Khi  m > 0  đồ thị hàm số có một điểm cực đại là  A ( 0 , m 4  +  2 m )  và hai điểm cực tiểu là  0,25  B ( - m ; m 4 - m 2 + 2 m ), C ( m ; m 4 - m 2  +  2 m )  ABC cân tại  A ,  A ΠOx ;  B, C đối xứng nhau qua  Ox . Gọi  H  là trung điểm của  BC D  1 1  ( m )  Þ H 0; m 4 - m 2  + 2  ;  Þ S DABC  = AH .BC = m 2 .2  m = m m 2 2  0,25  Theo giả thiết  S DABC  = 1 Þ m 2 . m = 1 Û m = 1  0,25  Vậy đáp số bài toán là  m = 1  2  1  (1,0 điểm)  Điều kiện  2sin x - 1 ¹ 0 Û sin x ¹ 2  1 - 2 sin x - 2 sin 2 x + 2 cos x  = cos 2 x - 3 (1 + cos x ) 2sin x - 1  (1 - 2sin x ) . (1 + 2 cos x ) Û = 2 cos2  x - 1 - 3 (1 + cos x )  2sin x - 1  0,25 Û -1 - 2 cos x = 2 cos2 x - 1 - 3 (1 + cos x ) Û 2cos2  x + 2 - 3 cos x - 3 = 0 ( )  0,25 é ê x = p + k 2 p é cos x = -1  ê p Ûê ê 3  Û ê x = 6  + k 2  ( k Î Z )  p 0,25  ê cos x = ê ë 2  ê p ê x = - + k 2  p ë  6  1  Kết hợp điều kiện  sin x ¹  ta được nghiệm phương trình là 2  0,25  p x = p + k 2p ; x = - + k 2  ( k ΠZ )  p 6  3  ì x ( x + 2 ) ³ 0  (1,0 điểm)  ï ï x ³ 0  ï 3  Điều kiện í 3  Û x ³ 0 ; x³0Þ ( x + 1)  - x > 0  ï( x + 1) ³ 0  ï 3  ï ( x + 1)  - x ³ 0  î  0,25  Do vậy x ( x + 2  ) 3  ³1Û x ( x + 2) ³ ( x + 1  3  - ) x  ( x + 1  ) - x  Û x 2 + 2 x ³ x3 + 3 x 2  + 4 x + 1 - 2 ( x + 1) x ( x + 1  ) Û x3 + 2 x 2 + 2 x + 1 - 2 ( x + 1) x ( x + 1) £ 0 Û ( x + 1) é x 2  + x + 1 - 2 x ( x + 1) ù £ 0  ë û  0,25
  4. www.VNMATH.com 2  Û x 2  + x + 1 - 2 x ( x + 1) £ 0 Û ( ) x ( x + 1) - 1 £ 0 Û x ( x + 1) - 1 = 0 Û x ( x + 1) = 1  é -1 + 5  ê x = Û x ( x + 1) = 1 Û x 2  + x - 1 = 0 Û ê 2  ê -1 - 5  0,25  êx = ë  2  5 - 1  Kết hợp điều kiện  x > 0  ta được nghiệm của phương trình đã cho là  x =  0,25  2  4  1 1  (1,0 điểm)  2 2  Ta có  I = ò (8x 3 - 2x).e x dx= ò (4x 2 - 1).e x  .2xdx .  0,25  0 0  Đặt  t = x 2  Þ dt = 2xdx  và  x = 0 Þ t = 0; x = 1 Þ t = 1 .  1  0,25  Ta được  I = ò  t - 1).et dt.  (4 0  ìu = 4t - 1 ì du = 4d  t  Đặt  í t Þí t  î dv = e dt î  = e v 0,25  1  1 1  Þ I = (4t - 1).e t - ò  t .4 dt = 3e + 1 - 4e t  = 5 - e. e 0,25  0 0  0  5  (1,0 điểm)  S  N  K  A  G  D  M  I  0  60  J O  B  C  Gọi O là giao điểm của  AC  và BD  Þ SO ^ ( ABCD)  Gọi  I , J  lần lượt là trung điểm của  AB, CD ;  G  là trọng tâm  D  .  SAC ìSJ ^ CD  Ta có  í Þ CD ^ ( SIJ )  î  ^ CD IJ 0,25  0  0  ÐSJI < 90  Þ Góc giữa mặt bên ( SCD )  và  mặt đáy ( ABCD )  là  ÐSJI ÞÐSJI = 60  Ta thấy  A, G, M  thuộc ( P ) ;  A, G, M  thuộc ( SAC )  Þ  A, G, M thẳng hàng và  M  là trung  điểm của  SC .  SG  2  G  là trọng tâm  D  . Þ SAC =  ;  SO là trung tuyến tam giác  SBD Þ G  cũng là trọng tâm  SO 3 
  5. www.VNMATH.com tam giác  SBD .  Lập luận tượng tự ta cũng có  Þ B, G , N thẳng hàng và  N  là trung điểm của  SD .  Gọi  K  là trung điểm của  MN  Þ  K cũng là trung điểm của  SJ  .  SJI đều cạnh  a  ; G  cũng là trọng tâm D  D  SJI nên  IK ^  SJ ;  0,25  Dễ thấy  SJ ^ MN nên SJ ^ (ABMN)  1  Thể tích khối chóp  S . ABMN  là :  V =  SK .  ABMN  S 3  0,25  a 3  a  SJI đều cạnh  a  Þ IK = D  ; SK =  2 2  1 1 æ a ö a 3 3 3a2 1 a 3 3a2 a  3  3  SABMN  = ( AB + MN)IK = ç a + ÷ = ÞV = . .  = 2 2 è 2 ø  2 8 32 8 16  0,25  (Học sinh có  thể dùng phương pháp  tỉ số thể tích)  6  2  Ta có a 2 + b2 + c 2 = 5 ( a + b + c ) - 2ab Û ( a + b ) + c 2  = 5 ( a + b + c )  (1,0 điểm)  Áp dụng bất đẳng thức Bunhiacopxki ta có 2 1 2 1  2  ( a + b ) + c 2  ³ ( a + b + c ) Þ ( a + b + c ) £ 5 ( a + b + c ) Þ 0 < a + b + c £ 10  0,25  2 2  Áp dụng bất đẳng thức Cauchy ta lại có 3 1 a + 10 1 a + 10 1 æ a + 10 ö a + 22 3 12  = ; = . .4 £ ç + 4 ÷ = Þ ³ a + 10 a + 10 3 2 3 4è 3 ø 12 a + 10  a + 22  3  1 1 b + c + 8 + 8 b + c + 16 1 12  3  b + c = 3  ( b + c ) .8.8 £ .  = Þ 3  ³ 0,25  4 4 3 12 b + c b + c + 16  æ 1 1  ö Þ P ³ a = b + c + 48.12 ç + ÷ è a + 22 b + c + 16 ø  Áp dụng bất đẳng thức Cauchy­Schwarz ta được  1 1 4 2304  0,25  + ³ Þ P ³ a + b + c + a + 22 b + c + 16 a + b + c + 38 a + b + c + 38  2304  2304  ]  Đặt t = a + b + c Þ t Î ( 0;10  Þ P ³ t + . Xét hàm  f (t ) = t + ]  trên ( 0;10  t + 38  t + 38  2304  ( t - 10 ) .( t + 86 ) Þ f '(t ) £ 0 "t Î 0;10  Ta có f '(t ) = 1 - 2 = ( ]  ( t + 38 ) ( t + 38 )2  Þ  f (t ) nghịch biến trên ( 0;10 ] Þ f (t ) ³ f (10), "t Î ( 0;10 ]  f (10) = 58 Þ P ³ 58  ; ìa + b + c = 10  ïa + b = c  ìa = 2  ï ï ï í a + 10  Û íb = 3  Dấu bằng xảy ra khi và chỉ khi  ï = 4  ïc = 5  3  î ï ïb + c = 8  î  ì a = 2  ï Vậy  min P = 58 , đạt được khi  íb = 3  0,25 ïc = 5  î 
  6. www.VNMATH.com 7a  ì2 x - 3 y + 1 = 0 ì x = 1  (1,0 điểm)  Tọa độ của A là nghiệm của hệ í Ûí Þ A (1;1  )  î4 x + y - 5 = 0 î y = 1  0,25  æ 2t + 1 ö 0,25  B Î d1  Þ B ç t ;  ÷ . Điểm C Î d 2  Þ C ( s;5 - 4  )  s è 3  ø  ì t + s + 1  ï 3  = 3  ï G  là trọng tâm tam giác  ABC  Û í 2t + 1  0,25  ï 3  + 5 - 4 s + 1  ï = 5  î  3  ì 61  ì 61 43  ït  = ï B  7 ; 7  )  ( ï 7  ï Giải hệ này ta được  í Þí là đáp số bài toán  ïs = -5  -5 55  ïC ( ; )  0,25  ï î  7  ï 7 7  î  r  8a  Đường thẳng  d  đi qua điểm M ( 0; -  )  và có véc tơ chỉ phương u = (1; 2; 0 ) .  1;1  (1,0 điểm)  r  Gọi n = ( a; b; c ) ( a 2 + b 2 + c 2  ¹ 0 )  là véc tơ pháp tuyến  của (P).  r r  Do ( P ) chứa  d  nên:  u.n = 0 Û a + 2b = 0 Û a = -2  b Phương trình (P) có dạng: a ( x - 0 ) + b ( y + 1) + c ( z - 1) = 0 Û ax + by + cz + b - c = 0  0,25 - a + 3b + 2  c  5b + 2  c  d ( A, ( P  ) = 3 Û ) = 3 . Mà  a = -  b Þ 2  = 3 Û 5b + 2c = 3 5  2 + c 2  b 2 a + b + c 2 2  2 5  + c b 2  0,25 2  Û 4b 2 - 4bc + c 2  = 0 Û ( 2b - c )  = 0 Û c = 2  b 0,25  ìa = 2  Chọn  b = -1 Þ í . Ta được  phương trình (P) là:  2 x - y - 2 z + 1 = 0 .  0,25  c î  = -2  9a  ì x x  ï4 - 2 + 1 > 0  (1,0 điểm)  Ta thấy  í "x Î R.  x x  ï2.16 - 2.4 + 1 > 0  î  Do vậy 4 x - 2 x  + 1  log 2  x 2.16 - 2.4 + 1  x  ( = 2 x 2.8 x - 3.2 x  + 1  ) ( ) ( ) ( ) ( Û log 2 4 x - 2 x + 1 - log 2  2.16 x - 2.4 x + 1 = 2.16 x - 2.4 x + 1 - 4 x - 2 x  + 1  ) 0,25  Û log 2 (4 x - 2x + 1) + ( 4 - 2 + 1) = log ( 2.16 - 2.4 + 1) + ( 2.16 - 2.4 + 1) ( 2  x x 2  x x x x )  Xét hàm  f (t ) = log 2  t + t trên ( 0; +¥ )  1  0,25  Ta có  f '(t ) = + 1 Þ f '(t ) > 0 "t  > 0  Þ  f (t )  đồng biến trên ( 0; +¥ )  t.ln 2  Do vậy ( 2 ) Û f (4 x - 2 x + 1) = f (2.16 x - 2.4 x + 1) Û 4 x - 2 x + 1 = 2.16 x - 2.4 x + 1 Û 2.16 x - 3.4 x + 2 x  = 0  0,25
  7. www.VNMATH.com é 2 x  = 0  ê x  ê 2 = 1  é x = 0  ê Û ê 2  = -1 - 3  Û ê x  ê x = log  3 - 1  ê 2  ê 2  ê ë 2  ê 2  = x  -1 + 3  ê ë  2  3 - 1  0,25  Vậy phương trình đã cho có hai nghiệm  x = 0; x = log  2  .  2  7b  (1,0 điểm)  + Tam giác ABC  vuông tại  A  nên  I  là trung điểm của  BC .  0,25 + C Î d Þ C ( 2t + 1; t )  ;  I  là trung điểm của BC Þ B (1 - 2t ;3 - t )  uuu r uuur AB = ( -2 - 2t ;1 - t ) ; AC = ( 2t - 2; t - 2 ) uuu uuur  r ét  = 2  AB ^ AC Û AB. AC = 0 Û ( -2 - 2t ) . ( 2t - 2 ) + (1 - t ) . ( t - 2 ) = 0 Û ê -2  êt = 0,25  ë 5  ì B ( -1; 2 ) ï +Với t  = 1 Þ í .  0,25  ïC ( 3;1  î  )  ì æ 9 17 ö ì æ 9 17 ö ï B ç ; ÷ ì B ( -1; 2 ) ï B ç 5 ; 5  ÷ -2  ï è 5 5  ø ï ï è ø +Với  t  = Þí . Vậy í hoặc  í 5  ïC ;æ 1 -2 ö ïC ( 3;1  î  )  ïC æ 1 ; -2 ö ï ç 5 5  ÷ î  è ø ï ç 5 5  ÷ î  è ø 0,25 8b  ( Q )  đi qua gốc toạ độ nên ( Q )  có phương trình dạng :  Ax + By + Cz = 0 ( A 2 + B + C ¹ 0 ) .  2 2  (1,0 điểm)  ì A + B + C  = 0  ì( P ) ^ ( Q ) ï ï 0.25  Từ giả  thiết ta có : í Û í A + 2 B - C  ï d ( M , ( Q ) ) = 2  ï î 2 2 2  = 2  î  A + B + C ì A = - B - C  ï Ûí B - 2  C  ï = 2 (*)  2 2  0,25  î  2 B + 2C + 2  BC (*) Û  B = 0  hoặc  3B + 8C = 0 .  Nếu  B = 0  thì  A = -  . Chọn  C = -1 Þ A = 1  C 0,25  Ta được phương trình mặt phẳng ( Q )  là :  x - z = 0  Nếu  3 B + 8C = 0  ta chọn  C = 3; B = -8; A = 5  ta được phương trình ( Q )  là  5 x - 8 y + 3 z = 0  0,25  Vậy có hai mặt phẳng thoă mãn bài toán, có phương trình  là :  x - z = 0  ;  5 x - 8 y + 3 z = 0  9b  Xét  hàm  f ( x ) = 24 - x  - x + 1 .  (1,0 điểm)  Ta thấy f '( x) = -24 - x .ln 2 - 1 Þ f ' ( x ) < 0 "x ΠR Þ  f ( x) nghịch biến trên  R .  0.25 Mà  f (3) = 0 . Do vậy f(x)  ³ 0 Û x £ 3 ;  f(x)  £ 0 Û x ³ 3 . 
  8. www.VNMATH.com é ì f ( x  ³ 0  ï ) êí ( I )  2 4 - x  - x + 1  êïlog 2  ( x  - 3) > 0  î ³ 0 Û ê log 2  x  - 3  ê ì f ( x  £ 0  ï ) 0,25 ê log ( x - 3) < 0 ( II )  í ë ï 2  î ì x £ 3  ìx £ 3 ï ì x £ 3  ï ï ( I ) Û í Ûí Û í é x > 4  Û x < -4  ï x - 3 > 1 ï x  > 4  ï ê î î 0,25 î  x < -4  ë ìx ³ 3 ï ì x ³ 3  ï ì x ³ 3  ( II ) Û í Ûí Ûí Û 3 < x < 4  ï0 < x - 3 < 1 ï3 < x  < 4  î3 < x < 4  î î  0,25  Tập nghiệm của bất phương trình đã cho là  (-¥; -4) È (3; 4)
  9. www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO  KHẢO SÁT CHẤT LƯỢNG LẦN THỨ  II  Trường THPT Chuyên Vĩnh Phúc  NĂM HỌC 2013 – 2014  (Đề có 01 trang)  Môn : Toán 12­ Khối D  Thời gian: 180  phút (Không kể giao đề)  A.  PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)  - x + 1  Câu I (2,0 điểm). Cho hàm số  y = .  2x + 1 1)  Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.  2)  Viết phương trình tiếp tuyến của đồ thị hàm số (C) sao cho tiếp tuyến đi qua giao điểm của  đường tiệm cận và trục Ox.  Câu II (2,0 điểm) 1) Giải phương trình: 3 ( sin 2x + s inx ) + cos2x - cos x =  2 .  x  2)  Giải phương trình: e = 1 + ln ( 1 + x ) .  2  2 + x  Câu III (1,0 điểm). Tính tích phân  :  I = ò  dx  0  1 + 2x Câu IV (1,0 điểm).  Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D,  0  AB = AD= 2a, CD = a , góc giữa hai mặt phẳng (SBC) là (ABCD) bằng  60  . Gọi I là trung điểm của  cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích  khối chóp S.ABCD.  Câu V (1,0 điểm). Cho  a, b, c  là các số dương thoả mãn  ab + bc + ca = 3 . Tìm giá trị nhỏ nhất của  1 4  biểu thức:  M  = + .  abc ( a + b )(b + c)(c + a )  B. PHẦN RIÊNG (3 điểm). Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc 2)  1.Theo chương trình Chuẩn  Câu VIA (2,0 điểm)  1)  Trong  mặt  phẳng  Oxy,  cho  đường  tròn ( C ) : ( x - 1) 2 + ( y + 1) 2  = 4  .  Gọi ( C '  là  đường  tròn  có  tâm  )  thuộc đường thẳng ( d ) : 3x - y = 0  và tiếp xúc với trục Oy đồng thời tiếp xúc ngoài với đường tròn (C).  Viết phương trình đường tròn ( C '  .  )  2) Trong không gian tọa độ Oxyz, viết phương trình đường thẳng ( D ) đi qua A ( 3; -2; -  ) ,  song song  4 ì x = 2 + 3t  với mặt phẳng (P) :  3x - 2 y - 3z - 7 = 0 và  cắt đường thẳng (d) :  ï y = -4 - 2t  í ï z = 1 + 2t î x -1 2  e + tan( x - 1) - 1  .CâuVIIA (1,0điểm).Tính giới hạn  lim  x ®1  .  x - 1  3  2.Theo chương trình nâng cao.  Câu VI B (2,0 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ( C ) : ( x - 1)2 + ( y + 2)2  = 12 .  Viết phương trình đường tròn (C’) có  tâm M (5;1) biết (C’) cắt (C) tại hai điểm A, B sao cho  AB = 2 3 .  2) Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(­2; 2; ­2), B(0; 1; ­2) và C(2; 2;­1). Viết  phương trình mặt phẳng ( P ) đi qua A, song song với BC và cắt các trục Oy, Oz theo thứ tự tại M, N  khác với gốc tọa độ O sao cho OM = 3ON.  CâuVII B (1,0 điểm). Một chiếc hộp đựng 6 cái bút màu xanh, 6 cái bút màu đen, 5 cái bút màu tím  và 3 cái bút màu đỏ được đánh số từ 1 đến 20. Lấy ngẫu nhiên ra 4 cái bút. Tính xác suất để lấy được  ít nhất 2 bút cùng màu.  ­­­­­­­­­­ HẾT ­­­­­­­­­­ 
  10. www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO  ĐÁP ÁN KHẢO SÁT CHẤT LƯỢNG LẦN THỨ  II  Trường THPT Chuyên Vĩnh Phúc  NĂM HỌC 2013 – 2014  (Đáp án có 05 trang)  Môn : Toán 12­ Khối D  Thời gian: 180  phút (Không kể giao đề)  HƯỚNG DẪN CHẤM THI  (Văn bản này gồm 05 trang)  I) Hướng dẫn chung:  1) Nếu thí sinh làm bài không theo cách nêu trong đáp án nhưng vẫn đúng thì cho đủ số điểm từng  phần như thang điểm quy định.  2) Việc chi tiết hoá thang điểm (nếu có) trong hướng dẫn chấm phải đảm bảo không làm sai lệch  hướng dẫn chấm và phải được thống nhất thực hiện trong các giáo viên chấm thi.  3) Điểm toàn bài tính đến 0,25 điểm. Sau khi cộng điểm toàn bài, giữ nguyên kết quả.  II) Đáp án và thang điểm:  Câu  Đáp án  Điểm  - x + 1  Cho hàm số  y  = 2x + 1 1,0 đ  1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.  ì -1 ü Tập xác định:  D = R /  í ý î 2 þ  -3  Sự biến thiên:  y'  = ( 2x + 1 )2  0,25  Hàm số luôn nghịch biến trên từng khoảng xác định  CâuI.1  Đồ thị hàm số không có cực trị  -1  -1  -1  0,25  lim  y =  ;  lim  y =  . Đồ thị hàm số có  tiệm cận ngang  y =  .  x ®-¥ 2  x ®+¥ 2  2  -1  lim  y = -¥  ;  lim  y = +¥  Đồ thị hàm số có  tiệm cận đứng  x =  .  x  ®- 1  - x ®- 1  + 2  2  2  Bảng biến thiên:  x  –µ  -  1  +µ  2 y’  ­  ||  –  y  -  1  +µ  1,0 đ  2 0.25  ||  –µ  -  1  2 Đồ thị hàm số có  tâm đối xứng  I æ -1 ; -1 ö ç ÷ è 2 2  ø  Đồ thị  hàm số cắt trục tung tại A ( 0;1  , cắt trục hoành tại  B (1;0)  0.25  )  Viết phương trình tiếp tuyến của đồ thị hàm số (C) sao cho tiếp tuyến đi qua giao điểm  1,0  của đường tiệm cận và trục Ox  -3  - x  + 1  0.25  Phương trình tiếp tuyến tại M ( x0 ; y  ) có dạng  y = 0  ( x - x  ) + 0  0  (2 x0 + 1) 2 x0  + 1  CâuI.2  1,0 đ  Giao điểm của tiệm cận của đồ thị hàm số với trục Ox là  N ( - 1 ; 0)  2  -1  -3 -1  - x  + 1  Tiếp tuyến đi qua  N ( ; 0) Û  ( - x  ) + 0  0  = 0  0.25 2  (2 x0 + 1) 2 2 x0  + 1 
  11. www.VNMATH.com Giải phương trình được  x0  =  5  0,25  2  Phương trình tiếp tuyến tại  M ( 5 ; - 1  là  y = - 1 x -  1  )  0.25  2 4  12 24  1) Giải phương trình: 3 ( sin 2x + s inx ) + cos2x - cos x = 2 .  Phương trình đã cho tương đương với : CâuII  2 3 sin x cos x + cos 2 x - sin 2 x + 3 s inx - cos x = 2 ( cos 2 x + sin 2  x )  0.25  2  é 3 s inx - cos x = 0  2,0 đ ( 3 sin x - cos x ) -( 3 s inx - cos x = 0 Û ê )  ê 3 s inx - cos x = 1 0.25 ë  é p é æ pö ê x = 6  + k p ê sin ç x - 6 ÷ = 0  ê ê è ø p Û Û ê x = + k 2 p                ( k Î Z )  ê æ p ö 1  ê 3  0.5  ê sin ç x - ÷ = ê ë è 6ø 2 ê x = p + k 2 p ê ë  KL: Vậy phương trình có ba họ nghiệm:  2)Giải phương trình: e x  = 1 + ln ( 1 + x ) .  1,0  Đ/K  x > -  .  1 x  Phương trình đã cho tương đương e - ln ( 1 + x ) - 1 = 0 .  0.25 x  Xét hàm số f ( x ) = e - ln ( 1 + x ) - 1, x Î D = ( -1; +¥ )  1  f ' ( x ) = e x  - , x Î D  x +1 1  0.25  f " ( x ) = e x  + 2  , f " ( x ) > 0  "x Î D  ( x + 1) Suy ra f ' ( x )  là hàm đồng biến trên  D  0.25  Nhận thấy f ' ( 0 ) = 0 nên phương trình f ' ( x ) = 0 có đúng một nghiệm  x = 0 Ta có bảng biến thiên  X  –1  0  +µ  y’  ­  0         +  Y -¥  +µ  0.25  0  Từ bảng biến thiên ta có  phương trình có một nghiệm duy nhất  x = 0 2  2 + x  Tính tích phân   :  I = ò  dx  1,0đ  0  1 + 2x 2 2  2+ x 1 2 + 2x  CâuIII  I = ò dx = ò  dx  0.25  0 1 + 2x 2 1+ 0  2x Đặt  t = 2x Þ t 2  = 2x Þ dx = td x = 0 Þ t = 0  1,0đ  Đổi cận:  0.25 x = 2 Þ t = 2
  12. www.VNMATH.com 2 2  1 ( 2 + t )tdt 1 1  ÞI= ò 1 + t = 2 ò ( 1 + t - 1 + t  )dt  0.25  20 0  2  1 t 2  1  = ( + t - ln | t + 1|) = ( 4 - ln 3 )  2 2  2 0.25  0  KL  Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD= 2a,  0  CD = a , góc giữa hai mặt phẳng (SBC) là (ABCD) bằng 60  . Gọi I là trung điểm của  CâuIV  1,0đ  cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD).  Tính thể tích khối chóp S.ABCD.  1,0đ  0.25  Nhận xét : SI ^ ABCD  Gọi H là hình chiếu của I lên BC.  0.25  Chỉ ra  ÐSHI = 60 0  3a 5  Tính được  S ABCD  = 3a 2 ; IH  =  0.25  5 3a 15 3a 3  15  Suy ra  SI = ;V  .ABCD  =  S (đvtt)  5 5 0.25  Cho  a, b, c  là  các  số  dương  thoả  mãn  ab + bc + ca = 3 .  Tìm  giá  trị  nhỏ  nhất  của  biểu  CÂU V  thức:  1 4  1,0đ  M  = + abc ( a + b )(b + c)(c + a )  Áp dụng bất đẳng thức côsi ta có:  1 1 4 1  0.25  M  = + + ³ 3 3  2 2 2  2 abc 2 abc (a + b)(b + c)(c + a ) a b c ( a + b )(b + c)(c + a )  2(ab + bc + ca  )  Có  3 abc( a + b)(b + c)(c + a) = 3  ( ac + bc)(ba + ca )(cb + ab) £ = 2  (1)  0.25  3  3 ab + bc + ca  a 2 b 2 c 2  = 3  ab.bc.ca £ = 1  (2)  0.25  3  3  Từ (1) và (2) suy ra  M ³  2  Dấu bằng xảy ra khi  a = b = c = 1  3  0.25 Vậy giá trị nhỏ nhất của M bằng  khi  a = b = c = 1  2 
  13. www.VNMATH.com 1) Trong mặt phẳng Oxy, cho đường tròn ( C ) : ( x - 1) 2 + ( y + 1) 2  = 4  . Gọi ( C '  là đường  )  Câu  tròn có tâm thuộc đường thẳng d : 3x - y = 0  và tiếp xúc với trục Oy đồng thời tiếp xúc  ( ) 1,0đ  VI A.1  ngoài với đường tròn (C).  Viết phương trình đường tròn ( C '  .  )  Đường tròn ( C )  có tâm I (1; -  ) , bán kính R=2  1  1,0 đ  Đường tròn ( C '  có tâm I ' ( a;3  ) , bán kính R’  )  a  0.25  Do đường tròn ( C '  tiếp xúc Oy nên R’=|a|  )  Do đường tròn ( C '  tiếp xúc ngoài với đường tròn (C) nên  II ' = R '+ 2  )  0.25  Û ( a - 1) 2 + (3a + 1) 2 = (| a | +  2  2)  (1)  2  -4 - 34  Giải phương trình (1) được  a =  hoặc  a =  0.25  3  9  2 2 2  2  Vậy : Phương trình đường tròn cần tìm là :  ( x - ) + ( y - 2)  =  3 9  2 2  0,25  æ 4 + 34 ö æ 4 + 34 ö 50 + 8 34  hoặc  ç x + ÷ +ç y + ÷ = ç 9 ÷ ç 3 ÷ 81  è ø è ø  2)  Trong không gian tọa độ Oxyz, viết phương trình đường thẳng ( D ) đi qua A ( 3; -2; -  ) ,  song song với mặt phẳng (P) :  3x - 2 y - 3z - 7 = 0 và  cắt đường  4 ì x = 2 + 3t  1,0đ  thẳng (d) :  ï y = -4 - 2t  í ï z = 1 + 2t î  uuuu r  Giả sử ( D ) cắt (d) tại M ( 2 + 3t; -4 - 2t;1 + 2t ) Þ AM = ( 3t - 1; -2t - 2;2t + 5 )  0.25  r Câu  Mặt phẳng (P) có vtpt n = ( 3; -2; -3 )  r uuuu r  0.25  VI A.2  ( D ) //(P)  n.AM = 0 Û 3 ( 3t - 1) - 2 ( -2t - 2 ) - 3 ( 2t + 5 ) = 0 Û t = 2 1,0 đ uuuur  0.25  Khi đó AM = ( 5; -6;9 )  uuuu r  Đường thẳng ( D ) đi qua A ( 3; -2; -  ) có vtcp AM = ( 5; -6;9 )  4 ì x = 3 + 5t  0,25  Suy ra phương trình ( D ) là:  ï y = -2 - 6t  í ï z = -4 + 9t î  x -1 2  e + tan( x  - 1) - 1  Tính giới hạn  lim  x ®1  1,0  ( x - 1)( x + 1)  3  x -1 e + tan( x - 1) - 1 2 æ e -1 tan( x  - 1)  ö x -1 2  Câu  limx ®1 = lim ç + x ®1  ÷ 0,25  ( x - 1)( x + 1) 3 è ( x - 1)( x + 1) ( x - 1)( x + 1) ø  3 3  æ e - 1 x + x + 1 tan( x - 1) ( x + 1)( x + x + 1) ö x -1 3 2 3 2 3 2  3  VII A  = lim ç ç x -1 . + .  ÷ ÷ 2  è x ®1  x +1 x  - 1  x + 1  ø  0,5  3 9  = + 3 =  0,25  2 2 Câu  1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ( C ) : ( x - 1) 2 + ( y + 2) 2  = 12 . Viết  1,0 đ VI B  phương trình đường tròn (C’) có  tâm M (5;1) biết (C’) cắt (C) tại hai điểm A, B sao cho  AB = 2 3 2,0 đ 
  14. www.VNMATH.com Đường tròn (C) có tâm I (1; -  ) , bán kính  R = 2 3 2 Do (C) cắt (C’) tại A, B nên  AB ^  IM Gọi E là trung điểm AB.  D IAB đều  Þ IE = 3 ,  IM = 5 0,25  Nếu E nằm giữa I và M  Þ EM = 2,EA = 3 Þ MA =  7 Phương trình đường tròn cần lập là: ( C ' ) : ( x - 5) 2 + ( y - 1) 2  = 7  0,25  Nếu E nằm giữa I và M  Þ EM = 8,EA = 3 Þ MA =  67 Phương trình đường tròn cần lập là: ( C ' ) : ( x - 5) 2 + ( y - 1) 2  = 67  0,25  KL : Có hai đường tròn thỏa mãn ( C ' ) : ( x - 5) 2 + ( y - 1) 2  = 7  0,25  hoặc ( C ' ) : ( x - 5) 2 + ( y - 1) 2  = 67  2)  Trong không gian với hệ tọa độ Oxyz, cho ba điểm A ( -2; 2; -  ) , B ( 0;1; -  )  và 2 2 C ( 2;2; -  ) . Viết phương trình mặt phẳng ( P ) đi qua A, song song với BC và cắt các  1 1,0 đ  tia Oy, Oz theo thứ tự tại M, N khác với gốc tọa độ O sao cho OM = 3ON.  uuuu r ur  Từ giả thiết ta có M ( 0;m;0 )  và N ( 0;0;n )  trong đó  mn ¹ 0 và  m = ±  Þ MN = m.u 3n r  r  0,25  với u ( 0; -1;3 )  hoặc u (0; -1; -3 )  r uuur r r  ìn ^ BC  ï Giả sử ( P ) có vtpt  n ¹ 0 . Do ( P ) đi qua M, N và song song với BC nên  í r r  suy  ïn ^ u î 0,25  r  uuu r  r ra  n // é BC , u ù ë û r uuu r  r r  với u ( 0; -1;3 ) Þ é BC , u ù = ( -4;6; 2 ) , chọn n = ( 2; -3; -1) Þ (P): 2x - 3y - z + 8 = 0  ë û 0,25  r uuu r  r r  với u (0; -1; -3 )  Þ é BC , u ù = ( 2; -6; 2 ) , chọn n = (1; -3;1) Þ (P): x -3y + z +10 = 0  ë û 0,25  KL :  Một chiếc hộp đựng 6 cái bút màu xanh, 6 cái bút màu đen, 5 cái bút màu tím và 3 cái  Câu  bút màu đỏ được đánh số từ 1 đến 20. Lấy ngẫu nhiên ra 4 cái bút. Tính xác suất để lấy  1,0  được ít nhất  2 bút cùng màu.  7B  Số cách lấy bốn chiếc bút bất kì từ 20 chiếc bút đã cho là: n ( W ) = C20  = 4845 4  0,25  1,0 đ  Gọi A là biến cố lấy được ít nhất hai bút cùng màu  Số cách lấy được 4 bút trong đó không có hai cái nào cùng màu là: 0,25  ( )  n A = C6 .C61 .C5 .C3  = 540 1 1 1  ( )  Số cách lấy được 4 bút mà có ít nhất hai bút cùng màu là: n ( A) = n ( W ) - n A = 4305 0,25  Xác suất  lấy được 4 bút trong đó có ít nhất hai bút cùng màu là: n ( A  4305 287  )= 0,25  P ( A ) = = n ( W )  4845 323
  15. WWW.VNMATH.COM SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN THỨ NHẤT TRƯỜNG THPT TỐNG DUY TÂN NĂM HỌC 2013 – 2014 ****** Môn: Toán 12 – Khối A, B, D Thời gian làm bài: 180 phút ****** I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x  4 Câu 1 (2,0 điểm). Cho hàm số: y  1 x 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của đồ thị hàm số (1). 2. Viết phương trình tiếp tuyến của (C) tại điểm M nằm trên (C) có hoành độ lớn hơn 1; biết rằng tiếp   tuyến cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B sao cho: 3MA  2MB . 2cos x  2sin 2x  2sin x  1 Câu 2 (1,0 điểm). Giải phương trình: cos 2 x  3 1  sin x   . 2cos x  1  3 3 2  x  y  6 y  2  x  7 y   12 Câu 3 (1,0 điểm). Giải hệ phương trình:  2 2  3  x  y  3  x  y  10 x  5 y  22  ln 1  sin x  Câu 4 (1,0 điểm). Tính giới hạn: L  lim ex 1 x 0 Câu 5 (1,0 điểm). Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D; SA vuông góc với mặt đáy (ABCD); AB  2a ; AD  CD  a . Góc giữa mặt phẳng (SBC) và mặt đáy (ABCD) là 60 0. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB cắt các cạnh SA, SB lần lượt tại M, N. Tính thể tích khối chóp S.CDMN theo a. Câu 6 (1,0 điểm). Cho a, b, c là các số dương thỏa mãn 2  a 2  b 2  c 2   ab  bc  ca  3 . Tìm giá trị 1 lớn nhất của: S  a 2  b 2  c 2  . abc3 II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần riêng (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu 7.a (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A 1; 2  , B  3; 4  và đỉnh C nằm trên đường thẳng d : 2 x  y  4  0 . Viết phương trình đường tròn ngoại tiếp tam giác ABC biết đỉnh C có tung độ dương và diện tích tam giác ABC bằng 2. Câu 8.a (1,0 điểm). Trong không gian Oxyz, cho hai điểm A 1; 2; 1 và B  2;1;3 . Tìm tọa độ điểm C trên trục Ox sao cho tam giác ABC vuông tại C. n 1 Câu 9.a (1,0 điểm). Cho n là số nguyên dương thỏa mãn 6Cn 1  An  160 . Tìm hệ số của x 7 trong khai 2 n triển 1  2 x3   2  x  . B. Theo chương trình Nâng cao x2 y 2 Câu 7.b (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho elip  E  :   1 với hai tiêu điểm F1 , F2 9 5  (hoành độ của F1 âm). Tìm tọa độ điểm M thuộc elip (E) sao cho góc MF1F2  600 . Câu 8.b (1,0 điểm). Trong không gian Oxyz, cho bốn điểm A 1; 2;1 , B  2;1;3 , C  2; 1;1 , D  0;3;1 . Chứng minh A, B, C, D là bốn đỉnh của một tứ diện. Tính thể tich khối tứ diện đó. 33 x  3x  2 y  9 x  y  7  Câu 9.b (1,0 điểm). Giải hệ phương trình:  .  2 x  4 y  log 3 10  81  x y  --------------------HẾT--------------------
  16. WWW.VNMATH.COM SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA ĐÁP ÁN ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LỚP 12 TRƯỜNG THPT TỐNG DUY TÂN LẦN THỨ NHẤT ******** NĂM HỌC 2013 – 2014 Môn: Toán 12 – Khối A, B, D Thời gian làm bài: 180 phút ******* Câu Nội dung Điểm 1 1. Khảo sát sự biến thiên ….. * Tập xác định: 0.25 * Sự biến thiên của hàm số điểm - Giới hạn của hàm số tại vô cực và giới hạn vô cực 2x  4 lim y  lim 2 x  x  x  1 Đồ thị hàm số có tiệm cận ngang là đường thẳng: y  2 2x  4 2x  4 lim   ; lim    x 1 x 1 x 1 x 1 Đồ thị hàm số có tiệm cận đứng là đường thẳng: x  1 - Bảng biến thiên 0.25 2 điểm y'  2  0, x  1  x  1 x  1  y' + +  2 y 2  Hàm số đồng biến trên các khoảng  ;1 và 1;   . 0.25 điểm Hàm số không có cực trị. * Đồ thị 0.25 6 điểm 5 4 3 2 1 -6 -4 -2 2 4 6 -1 -2 2. Viết phương trình tiếp tuyến của đồ thị …..
  17. WWW.VNMATH.COM  2x  4  0.25 Gọi M  x0 ; 0  với x0  1 . điểm  x0  1  2 2 x0  4 Phương trình tiếp tuyến của (C) tại M là: y  2  x  x0    x0  1 x0  1 Tiếp tuyến cắt trục hoành Ox tại A   x0  4 x0  2;0  , cắt trục tung Oy tại 2 0.25 điểm  2 x0 2x  4  B  0;   0   2  x0  1 x0  1      2 2 x  4    2 x0  0.25 Ta có: MA    x0  3 x0  2;  0  ; MB    x0 ;  2  điểm  x0  1    x0  1    3   x0  3x0  2   2   x0  2     Nên 3MA  2MB    2 x  4   2 x0   x0  3 3  0   2     x  1 2    x0  1    0  Từ đó: M  3;1 0.25 điểm 1 1 Phương trình tiếp tuyến cần lập: y  x 2 2 2 2 cos x  2sin 2x  2sin x  1 Giải phương trình: cos 2 x  3 1  sin x   . 2 cos x  1 Điều kiện: 2 cos x  1  0 0.25 Phương trình đã cho tương đương với: điểm  2 cos x  1 2sin x  1 cos 2 x  3 1  sin x   2 cos x  1  cos 2 x  3 1  sin x   2sin x  1 0.25 điểm   1  sin x  2sin x  3  0 sin x  1  sin x  3   2  0.25 sin x  1  x    k 2 , k  Z điểm 2   3  x  3  k 2 sin x   k  Z  2  x  2  k 2   3 Đối chiếu điều kiện, ta có các nghiệm của phương trình đã cho là: 0.25  2 điểm x    k 2 và x   k 2 (với k  Z ) 2 3 3  x3  y 3  6 y 2  2  x  7 y   12 (1)  Giải hệ phương trình:  2 2  3  x  y  3  x  y  10 x  5 y  22   2
  18. WWW.VNMATH.COM x  3 0.25 Điều kiện:  điểm y  3 Ta có: 3 1  x 3  2 x   y  2   2  y  2   3 Xét hàm số: f  t   t 3  2t có f '  t   3t 2  2  0, t  R 0.25 điểm Nên hàm số đồng biến trên R Bởi vậy:  3  f  x   f  y  2   x  y  2  y  x  2  4 Thay (4) vào (2): 0.25 2 3  x  x  1  x 2   x  2   10 x  5  x  2   22 điểm  3  x  x  1  2 x 2  11x  16 2  x  x  2     2 x  7  x  2  3  x 1 x 1 1 x  2  0  5 0.25 điểm   1 1    2x  7  6  3  x 1  x 1  1  5  x  2  y  4 1 1 6  7  2x    0 3  x 1 x 1  1 1 Vì x  3 nên 7  2 x  1 và 1 3  x 1  1  1 Từ đó  7  2 x     0 . Hay (6) vô nghiệm.  3  x  1 x 1 1 x  2 Vậy hệ đã cho có nghiệm duy nhất  y  4 4 ln 1  sin x  Tính giới hạn: L  lim x 0 ex 1 ln 1  sin x  ln 1  sin x  sin x x 0.25 Ta có: x    điểm e 1 sin x x ex 1 ln 1  sin x  sin x x 0.5 lim  1 ; lim  1 và lim x 1 điểm x 0 sin x x 0 x x 0 e  1 ln 1  sin x  0.25 Nên: L  lim =1 điểm x 0 ex 1 5 Tính thể tích khối chóp S.CDMN 1 1 0.25 Đặt V  VS . ABCD , ta có: VS .CDA  VS . ABCD ; VS . ABC  VS . ABCD 3 3 điểm Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB, cắt các cạnh SA, SD lần 0.25 SM SN 2 điểm lượt tại M, N, khi đó MN / / AB và   SA SB 3 Ta có: VS .CDM SC SD SM 2 2 2      VS .CDM  VS .CDA  V VS .CDA SC SD SA 3 3 9
  19. WWW.VNMATH.COM 2 VS .MNC SM SN SC  2  4 8        VS .MNC  VS . ABC  V VS . ABC SA SB SC  3  9 27 Bởi vậy: 0.25 2 8 14 điểm VS .CDMN  VS .CDM  VS .MNC  V  V  V 9 27 27 Vì ABCD là hình thang vuông tại A và D, AB  2a ; AD  CD  a nên BC  AC    Mặt khác SA  mp  ABCD  nên  mp  SBC  ; mp  ABCD     SC ; AC   SCA  Từ đó ta có: SCA  600 Trong tam giác SAC vuông tại A, có AC  a 2 và 0.25  điểm SA  AC tan SCA  a 2 tan 600  a 6 1 1  AB  CD  AD 1 a3 6 V  S ABCD .SA    SA    2a  a  .a.a 6  3 3 2 6 2 Vậy: 14 a 3 6 7 6 3 VS .CDMN    a 27 2 27 S M G N A B D C 6 Tìm giá trị lớn nhất … Với a, b, c là các số dương ta có: 0.25 a  b  c 2 điểm a 2  b2  c2   3 ab  bc  ca   a  b  c 2 3 Bởi vậy: 2 2 a  b  c  a  b  c 2  3  a  b  c 2  9    3 3
  20. WWW.VNMATH.COM Từ đó: 0  a bc 3 Ta có: 0.25 a  b  c 2 điểm 2  a 2  b 2  c 2   ab  bc  ca  3  ab  bc  ca  3 3 Nên: 2 a  b  c 3 a 2 b c2 2   6  2 Bởi vậy: 2 2 S  a b c  2 1 2  a  b  c  1 3 1   t2  1  3 a bc3 6 abc3 2 6 t 3 2 1 2 1 3 0.25 Xét hàm số f  t   t   với 0  t  3 6 t3 2 điểm 1 1 f ' t   t   0, t   0;3 3  t  3 2 Nên hàm số đồng biến trên  0;3 Bởi vậy: f  t   f  3 , t   0;3 17 Hay f  t   6 17 Suy ra: S  6 Dấu “=” xảy ra khi a  b  c  1 17 Vậy: max S  khi a  b  c  1 . 6 7.a Viết phương trình đường tròn ngoại tiếp …   Ta có: AB   2; 2  và AB  2 2 0.25 điểm Phương trình đường thẳng AB: x  y  1  0 Đỉnh C nằm trên đường thẳng d : 2 x  y  4  0 nên C  t ; 2t  4  và t  2 0.25 điểm t   2t  4   1 t 3 d  C ; AB    2 2 1 1 t 3 SABC  AB.d  C ; AB    2 2   t 3 2 2 2 Bởi vậy: 0.25 SABC  2  t  3  2  t  1 điểm Nên C  1; 2  Gọi phương trình đường tròn ngoại tiếp tam giác ABC là: 0.25 x 2  y 2  2 ax  2by  c  0 điểm Thay tọa độ A, B, C vào phương trình, ta có:  2a  4b  c  5 a  0   6a  8b  c  25  b  5  2 a  4b  c  5 c  15   Vậy, phương trình đường tròn ngoại tiếp tam giác ABC là:
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2