Đề ôn thi đại học môn toán - Đề số 5
lượt xem 13
download
Tham khảo tài liệu 'đề ôn thi đại học môn toán - đề số 5', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề ôn thi đại học môn toán - Đề số 5
- bé gi¸o dôc vµ ®µo t¹o kú thi tèt nghiÖp trung häc phæ th«ng n¨m 2007 M«n thi: to¸n – Trung häc phæ th«ng ph©n ban ®Ò thi chÝnh thøc H−íng dÉn chÊm thi B¶n h−íng dÉn chÊm gåm 04 trang I. H−íng dÉn chung 1) NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× cho ®ñ ®iÓm tõng phÇn nh− h−íng dÉn quy ®Þnh. 2) ViÖc chi tiÕt ho¸ thang ®iÓm (nÕu cã) so víi thang ®iÓm trong h−íng dÉn chÊm ph¶i ®¶m b¶o kh«ng sai lÖch víi h−íng dÉn chÊm vµ ®−îc thèng nhÊt thùc hiÖn trong Héi ®ång chÊm thi. 3) Sau khi céng ®iÓm toµn bµi, lµm trßn ®Õn 0,5 ®iÓm (lÎ 0,25 lµm trßn thµnh 0,5; lÎ 0,75 lµm trßn thµnh 1,0 ®iÓm). II. §¸p ¸n vµ thang ®iÓm C©u §¸p ¸n §iÓm C©u 1 1. (2,5 ®iÓm) 0,25 1) TËp x¸c ®Þnh: R (3,5 ®iÓm) 2) Sù biÕn thiªn: • ChiÒu biÕn thiªn: Ta cã: y ' = 4 x 3 − 4 x = 4 x( x 2 − 1) ; y ' = 0 ⇔ x = 0, x = ± 1. 0,50 Trªn c¸c kho¶ng (− 1; 0 ) vµ (1; + ∞ ) , y’ > 0 nªn hµm sè ®ång biÕn. Trªn c¸c kho¶ng (− ∞; − 1) vµ (0;1) , y’ < 0 nªn hµm sè nghÞch biÕn. • Cùc trÞ: Tõ c¸c kÕt qu¶ trªn suy ra: Hµm sè cã hai cùc tiÓu t¹i x = ± 1; yCT = y( ± 1) = 0. Hµm sè cã mét cùc ®¹i t¹i x = 0; yC§ = y(0) = 1. 0,75 • Giíi h¹n ë v« cùc: lim y = + ∞ ; lim y = + ∞ . x→−∞ x→+∞ • B¶ng biÕn thiªn: −1 −∞ +∞ x 0 1 y’ - 0 + 0 - 0 + 0,50 +∞ +∞ 1 y 0 0 1
- 3) §å thÞ: Hµm sè ®· cho lµ ch½n, do ®ã ®å thÞ nhËn trôc Oy lµm trôc ®èi xøng. §å thÞ c¾t trôc tung t¹i ®iÓm (0; 1). §iÓm kh¸c cña ®å thÞ: (± 2;9 ) . y 9 0,50 1 O1 2 x -2 -1 2. (1,0 ®iÓm) - HÖ sè gãc cña tiÕp tuyÕn t¹i ®iÓm cùc ®¹i (0; 1) cña ®å thÞ ®· cho lµ 1,00 y’(0) = 0. - Ph−¬ng tr×nh tiÕp tuyÕn cña (C) t¹i ®iÓm cùc ®¹i lµ y = 1. §iÒu kiÖn x¸c ®Þnh cña ph−¬ng tr×nh lµ x > 0. C©u 2 Ph−¬ng tr×nh ®· cho t−¬ng ®−¬ng víi (1,5 ®iÓm) 0,75 1 log 2 x + log 2 4 + log 2 x = 5 2 3 ⇔ log 2 x = 3 2 0,75 ⇔ log 2 x = 2 ⇔ x = 4 (tho¶ m·n ®iÒu kiÖn). VËy ph−¬ng tr×nh ®· cho cã nghiÖm x = 4. C©u 3 Ta cã: ∆' = − 3 = 3i 2 . 0,50 (1,5 ®iÓm) Ph−¬ng tr×nh cã hai nghiÖm ph©n biÖt lµ: x = 2 − 3i vµ x = 2 + 3i . 1,00 Gi¶ thiÕt SA vu«ng gãc víi ®¸y suy ra ®−êng cao cña h×nh chãp lµ C©u 4 (1,5 ®iÓm) 1 SA = a. §¸y lµ tam gi¸c vu«ng (®Ønh B), cã diÖn tÝch lµ a 2 . 2 VËy thÓ tÝch khèi chãp S.ABC lµ: S 11 1 V = . a 2 .a = a 3 (®vtt). 32 6 1,50 a C A a a B 2
- 1. (1,0 ®iÓm) C©u 5a §Æt x 2 + 1 = t ⇒ 2xdx = dt. (2,0 ®iÓm) 0,50 Víi x = 1 th× t = 2; víi x = 2 th× t = 5. 5 −1 1 5 ∫ = 2.t 2 = 2 ( 5 − 2 ) . Do ®ã J = t 2 dt 0,50 2 2 2. (1,0 ®iÓm) - Ta cã f ' ( x) = 3 x 2 − 16 x + 16 . 4 - XÐt trªn ®o¹n [1; 3] ta cã f ' ( x) = 0 ⇔ x = . 3 1,00 ⎛ 4 ⎞ 13 - Ta cã f(1) = 0, f ⎜ ⎟ = , f(3) = - 6. ⎝ 3 ⎠ 27 ⎛ 4 ⎞ 13 , min f ( x) = f (3) = −6 . VËy max f ( x) = f ⎜ ⎟ = ⎝ 3 ⎠ 27 [1; 3] [1; 3] C©u 5b 1. (1,0®iÓm) (2,0 ®iÓm) 0,50 V× mÆt ph¼ng (Q) song song víi mÆt ph¼ng (P) nªn ph−¬ng tr×nh mÆt ph¼ng (Q) cã d¹ng x + y – 2z + m = 0 (m ≠ - 4). MÆt ph¼ng (Q) ®i qua ®iÓm M(-1; -1; 0) ⇔ – 1 – 1 + m = 0 0,50 ⇔ m = 2. VËy ph−¬ng tr×nh mÆt ph¼ng (Q) lµ: x + y – 2z + 2 = 0. 2. (1,0®iÓm) - V× ®−êng th¼ng (d) vu«ng gãc víi mÆt ph¼ng (P) nªn vÐct¬ ph¸p tuyÕn n = (1;1; − 2) cña mÆt ph¼ng (P) còng lµ vÐct¬ chØ ph−¬ng cña ®−êng th¼ng (d). - §−êng th¼ng (d) ®i qua ®iÓm M(-1; -1; 0) nhËn n = (1;1; − 2) lµm 0,50 ⎧ x = −1 + t ⎪ vÐct¬ chØ ph−¬ng nªn cã ph−¬ng tr×nh tham sè lµ: ⎨ y = −1 + t ⎪ z = − 2t. ⎩ - To¹ ®é H(x; y; z) tho¶ m·n hÖ: ⎧ x = −1 + t ⎧t = 1 ⎪ y = −1 + t ⎪x = 0 ⎪ ⎪ ⇔⎨ ⎨ ⎪ z = − 2t ⎪y = 0 0,50 ⎪x + y − 2z − 4 = 0 ⎪ z = − 2. ⎩ ⎩ VËy H(0; 0; - 2). 1. (1,0 ®iÓm) C©u 6a 1 §Æt u = lnx vµ dv = 2xdx; ta cã du = dx vµ v = x 2 . (2,0 ®iÓm) x 3 33 Do ®ã K = ∫ 2 x ln xdx = ( x 2 ln x) − ∫ xdx 1,00 1 1 1 x2 3 3 = ( x 2 ln x) − = 9 ln 3 − 4 . 1 21 3
- 2. (1,0 ®iÓm) - Ta cã f ' ( x) = 3 x 2 − 3 . - XÐt trªn ®o¹n [0; 2] ta cã f’(x) = 0 ⇔ x = 1. 1,00 - Ta cã f(0) = 1, f(1) = -1, f(2) = 3. VËy max f ( x) = f (2) = 3 , min f ( x) = f (1) = −1 . [0; 2] [0; 2] 1. (1,0 ®iÓm) C©u 6b - MÆt cÇu (S) cã t©m lµ gèc to¹ ®é O vµ tiÕp xóc víi mÆt ph¼ng ( α ) (2,0 ®iÓm) nªn b¸n kÝnh mÆt cÇu b»ng kho¶ng c¸ch tõ O ®Õn ( α ). 0,50 0+0−0+6 d(O; ( α )) = = 2. 2 + 2 2 + (−2) 2 1 MÆt cÇu (S) cã t©m lµ gèc to¹ ®é O vµ b¸n kÝnh b»ng 2 cã ph−¬ng 0,50 tr×nh lµ: x 2 + y 2 + z 2 = 4 . 2. (1,0 ®iÓm) V× ®−êng th¼ng ( ∆ ) vu«ng gãc víi mÆt ph¼ng ( α ) nªn vÐct¬ ph¸p tuyÕn n = (1; 2; − 2) cña mÆt ph¼ng ( α ) còng lµ vÐct¬ chØ ph−¬ng cña ®−êng th¼ng ( ∆ ). 1,00 §−êng th¼ng ( ∆ ) ®i qua ®iÓm E(1; 2; 3) nhËn n = (1;2;−2) lµm vÐct¬ ⎧x = 1 + t ⎪ chØ ph−¬ng cã ph−¬ng tr×nh tham sè lµ: ⎨ y = 2 + 2t ⎪ z = 3 − 2t. ⎩ ……….HÕt………. 4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Chuyên đề ôn thi Đại học môn Hóa - Nitơ và Photpho
8 p | 517 | 115
-
Chuyên đề ôn thi Đại học môn Hóa - Axit cacboxylic
11 p | 464 | 96
-
Chuyên đề ôn thi Đại học môn Hóa: Este
12 p | 515 | 92
-
Chuyên đề ôn thi Đại học môn Hóa - Rượu
9 p | 314 | 66
-
Chuyên đề ôn thi Đại học môn Hóa: Ankin
8 p | 168 | 45
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 1
1 p | 85 | 4
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 12
1 p | 37 | 2
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 13
1 p | 40 | 2
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 3
1 p | 57 | 2
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 4
1 p | 38 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 2
1 p | 55 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 11
1 p | 47 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 10
1 p | 49 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 9
1 p | 39 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 8
1 p | 43 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 7
1 p | 64 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 6
1 p | 47 | 1
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 5
1 p | 46 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn