![](images/graphics/blank.gif)
Đề tài "Non-quasi-projective moduli spaces "
48
lượt xem 8
download
lượt xem 8
download
![](https://tailieu.vn/static/b2013az/templates/version1/default/images/down16x21.png)
We show that every smooth toric variety (and many other algebraic spaces as well) can be realized as a moduli space for smooth, projective, polarized varieties. Some of these are not quasi-projective. This contradicts a recent paper (Quasi-projectivity of moduli spaces of polarized varieties, Ann. of Math. 159 (2004) 597–639.). A polarized variety is a pair (X, H) consisting of a smooth projective variety X and a linear equivalence class of ample divisors H on X. For simplicity, we look at the case when X is smooth, numerical and linear equivalence coincide for divisors on X, H is very...
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
![](images/graphics/blank.gif)
CÓ THỂ BẠN MUỐN DOWNLOAD