Đề tài: TỔNG HỢP POLYANILINE THEO PHƯƠNG PHÁP TRÙNG HỢP NHŨ TƯƠNG ĐẢO
lượt xem 57
download
Ngày nay cùng với sự phát triển của mình con người ngày càng sử dụng nhiều tài nguyên. Tuy nhiên, nguồn tài nguyên này đang trở nên khan hiếm. Trước thực trạng đó sự xuất hiện của polyme dẫn và vật liệu hữu cơ chính là chìa khóa cho sự phát triển ổn định trong tương lai. Bắt đầu xuất hiện vào cuối thập kỷ 80 của thế kỷ trước, polyme dẫn là đối tượng nghiên cứu của nhiều quốc gia trên thế giới, đặc biệt là các nước phát triển có nền công nghệ tiên tiến. Do tính chất ưu việt của nó về...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề tài: TỔNG HỢP POLYANILINE THEO PHƯƠNG PHÁP TRÙNG HỢP NHŨ TƯƠNG ĐẢO
- LỜI MỞ ĐẦU Ngày nay cùng với sự phát triển của mình con người ngày càng sử dụng nhiều tài nguyên. Tuy nhiên, nguồn tài nguyên này đang trở nên khan hiếm. Trước thực trạng đó sự xuất hiện của polyme dẫn và vật liệu hữu cơ chính là chìa khóa cho sự phát triển ổn định trong tương lai. Bắt đầu xuất hiện vào cuối thập kỷ 80 của thế kỷ tr ước, polyme dẫn là đối tượng nghiên cứu của nhiều quốc gia trên thế giới, đặc biệt là các nước phát triển có nền công nghệ tiên tiến. Do tính chất ưu việt của nó về mặt vật lí, hóa học, quang học và đặc biệt thân thiện với môi trường. Ngày nay loại vật liệu này ngày càng được sử rộng rãi trong các lĩnh vực của cuộc sống như: trong công nghệ điện tử có rất nhiều sản phẩm được chế tạo trên cơ sở polymer dẫn như transitor, màn hình hiển thị hữu cơ (OLED-organic light emitting diode); trong công nghệ cảm biến sinh học, hóa học như cảm biến glucose trong máu trên cơ sở polypyrrole, cảm biến NH3 trên cơ sở polyaniline; trong lĩnh vực dự trữ năng lượng bao gồm nguồn điện, siêu tụ điện hóa và trong lĩnh vực ăn mòn bảo vệ kim loại,... Vật liệu polyme dẫn điện là một trong những loại vật liệu polyme chức năng đang thu hút được sự quan tâm nghiên cứu của các nhà khoa học trong và ngoài nước do chúng có tiềm năng ứng dụng to lớn trong một số nghành công nghệ cao như chế tạo các linh kiện quang điện tử. Polyaniline (PANi) được đánh giá là loại vật liệu polyme dẫn điện đã được chế tạo và ứng dụng rộng rãi do PANi có giá thành chế tạo thấp, bền với môi trường, có khả năng chịu nhiệt độ cao và có độ dẫn điện khá tốt. Tùy theo chất doping, độ dẫn điện của PANi có thể đạt tới 100 S/cm. Trong bài báo cáo này nhóm tiến hành tổng hợp Polyaniline từ bài báo “TỔNG HỢP POLYANILINE THEO PHƯƠNG PHÁP TRÙNG HỢP NHŨ TƯƠNG ĐẢO“ của Phan Thế Anh, Nguyễn Đình Lâm Trường Đại học Bách khoa, Đại học Đà Nẵng trên TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 3(44).2011. CHƯƠNG I – TỔNG QUANG 1.1 Giới thiệu về polyme và polyme dẫn Polyme Polyme là những mạch phân tử gồm hàng nghìn, chục nghìn phân tử đơn vị (monome) kết hợp lại giống như những mắc xích. Mỗi phân tử đơn vị là một mắc xích. Một đặc tính quan trọng của polime là không dẫn điện. Polyme thường dùng làm vật liệu cách điện hữu hiệu, chẳng hạn PVC, PE đueọc dùng bọc lõi dây cách đi ện và nhiều polyme khác được sử dụng vì tính cách điện. Polyme dẫn Đầu thập niên 80 của thế kỷ trước ý tưởng về polyme dẫn là chủ đề chính của nhiều cuộc tranh cãi. Tuy nhiên, các sự kiện xảy ra vào cuối năm 1970 đã dẫn tới những báo cáo đầu tiên về vật liệu polyme có tính dẫn. Trong suốt hai mươi năm sau đó nhiều nỗ lực để tạo ra polyme dẫn với đ ộ dẫn điện cao và kết quả của những nỗ lực đó đã đưa các nhà khoa học tới polyme dẫn điện
- đầu tiên trên thế giới là polyacetylen. Trước năm 1977 bằng các phương pháp khác nhau người ta chỉ tạo ra được loại vật liệu thô đen giống như carbon đen. Tuy nhiên trong cùng thời gian đó một vài kỹ sư Nhật đã nhận thấy rằng màng polyacetylen có thể được tạo ra bởi quá trình polyme hoá của khí acetylen trên bề mặt của thùng phản ứng trong điều kiện có xúc tác của hợp chất cơ kim của thuỷ ngân. Những màng này có độ dẫn điện khá lớn so với các polyme khác tuy nhiên nó vẫn chỉ là chất bán dẫn. Sau đó bằng sự cộng tác của các chuyên gia Nhật và trường đại học Persylvania đã tạo ra những khuyết tật trong chuỗi polyme và sản phẩm polyme dẫn điện đầu tiên đã ra đời. Cấu trúc của một số polymer dẫn Người ta nhận thấy rằng việc xử lý màng acetylen trong chất cho mạnh (strong donor), hoặc chất nhận mạnh (strong aceptor) dẫn tới tạo thành chất bán dẫn hay vật liệu có tính chất của kim loại. Các polymer dẫn điện rất khác với các chất bán dẫn thông thường, đó là tính chất bất đẳng hướng cao và cấu trúc một chiều “cấu trúc chuỗi”. Polyacetylen là vật liệu điển hình và được nghiên cứu rộng rãi trong hệ polyme dẫn điện. Polyacetylen là polyme dẫn điện đầu tiên được tìm thấy nhưng khả năng dẫn
- điện hạn chế của nó nên không được áp dụng vào công nghệ. Vì vậy các nhà khoa học đã nghiên cứu và tìm ra nhiều loại polyme có khả năng dẫn điện khác như polyphenyline, polypyrrole, polyazuline, polyaniline hoặc các copolyme như copolyme chứa pyrrole, thiophene, poly 2-5 dithienyl pyride. Khả năng dẫn điện của các polyme và các copolyme có được là do trong chuỗi polyme có hệ liên kết π liên hợp nằm dọc theo toàn bộ chuỗi polyme do đó nó tạo ra đám mây điện tử π linh động nên điện tử có thể chuyển động từ đầu chuỗi đến cuối chuỗi polyme dễ dàng. Tuy nhiên, việc chuyển dịch điện tử từ chuỗi polyme này sang chuỗi khác gặp phải khó khăn. Các nguyên tử ở hai chuỗi phải xen phủ với nhau thì việc chuyển điện tử từ chuỗi này sang chuỗi khác mới có thể được thực hiện. Do vậy, các polyme đơn thuần hoặc các copolymer có độ dẫn điện không lớn và để tạo ra vật liệu có độ dẫn điện cao (high conductive polymer) từ các polyme người ta thêm các tạp (dopant) vào màng để tạo ra vật liệu có đ ộ dẫn điện cao hơn. Các phụ gia pha tạp cũng rất đa dạng và phong phú đồng thời tuỳ thuộc vào từng loại màng mà ta cần cho quá trình pha tạp. Chẳng hạn với màng polyacetylen ta có thể dùng các muối halogen của kim loại chuyển tiếp. Ví dụ: TiCl4, ZnCl4, HgCl4, NbCl5, TaCl5, TaBr5, MoCl5, WCl3 và các muối halogen của các kim loại không chuyển tiếp: TeCl 4, TeCl5, TeI4, SnCl4 làm các chất pha tạp. Còn với poly (p-phenylen) ta có thể dùng AuCl3-CuCl2 làm chất pha tạp. Trong khi đó với polypyrole việc tổng hợp của polyrrole trong muối amoni của dạng R4NX trong đó R là alkyl, aryl, radical và X có thể là Cl -, Br-, I-, ClO-4, BF-4, PF-6 hoặc các muối của kim loại dạng MX trong đó M có thể là: Li, Na, As và X là BF-4,ClO- , PF-6, CF3SO43-, AsF63-, CH3C6H4SO3- và màng polypyrrole thu được trong các muối trên 2 sẽ cho độ dẫn điện lớn nhất do sự cộng kết của các anion của các muối này lên trên màng Polypyrrole. Tuy nhiên, một phương pháp để làm tăng độ dẫn điện của các polyme dẫn điện mà hiện nay đang được nghiên cứu, ứng dụng và được xem xét kỹ trong nghiên cứu này đó là phương pháp cài các phân tử có kích thước nanomet của kim loại hay oxít của kim loại vào màng polyme dẫn để tạo ra vật liệu mới có độ dẫn điện vượt trội. Các hạt nano được cài vào trong màng polyme thường là kim loại chuyển tiếp hoặc oxít của kim loại chuyển tiếp, khi đó nó có chức năng như những cầu nối để dẫn điện tử từ chuỗi polyme này sang chuỗi polymer khác. Trong thực tế người ta đã cài rất nhiều hạt nano vào màng polymer như nanocluster của Niken vào màng polyaniline, hoặc tạo ra vật liệu composite PAN/Au, composite PANI/Fe3O4, polypyrrole/ V2O5 composite, … Khả năng áp dụng của polyme dẫn gồm 6 phạm vi: - Sử dụng tính kim loại. - Sử dụng như bán dẫn. - Lợi dụng tính chuyển hóa dẫn hoặc cách điện. - Lợi dụng tính thuận nghịch. - Lợi dụng tính thu sóng vùng viba, tia hồng ngoại, ánh sáng nhìn thấy, tia t ử ngoại. - Lợi dụng tính chất của nối liên hợp.
- Cụ thể những trang dụng cụ làm vật liệu polime dẫn là: chất dẫn điện, điện trở ,tụ điện, linh kiện điện tử, linh kiện phát quang, pin, vật đổi màu, bộ cảm ứng, vật liệu chắn sóng điện từ, vật liệu tàng hình, vật liệu chống tĩnh điện, vật liệu làm điện cực, vật phát nhiệt, cơ bắp nhân tạo, ... Ngoài ra các nhà khoa học có một tham vọng thiết kế loại polime cần dùng trong công nghệ cao như vi điện tử, quang điện tử, pin mặt trời, nên tiềm năng áp dụng polime dẫn là rất lớn và bao gồm cả những ảnh hưởng đến đời sống của con người. Thật ra 30 năm trước các nhà khoa học đã tổng hợp polime và làm cho nó dẫn điện. Năm 2000 viện Hàn lâm viện khoa học Thụy Điển đã trao giải Nobel Hoá học cho Surakaxa, Macdiarmid và Huger cho sự khám phá và phát triển polime dẫn điện năm 1975 một phát hiện có tầm mức thời đại xảy ra một cách âm thầm tại tr ường đ ại học Đông Kinh công nghiệp Nhật Bản. Tiến sĩ Shirakawa Hideki giảng viên của trường, là một chuyên gia về tổng hợp polyacetylen (PA) theo phương pháp thổi khí qua một chất xúc tác. Acetilen là một chất khí để hàn gió đá. Phương pháp dùng thể khí đ ể tổng hợp ra một thể rắn, hình thành PE và polypropylen nên chúng được tổng hợp bằng cách thổi khí C2H4 hoặc C3H6 vào chất xúc tác Ziegel – natta được dùng bao nhựa, ống nhựa. Một sự kiện tình cờ gây ra bởi một sinh viên Hàn Quốc trong quá trình tổng hợp PA quên lời dặn của ông dùng chất xúc tác tăng 1000 lần so với quay định nên PA không phải d ạng bình thường mà là dạng phim màu bạc (khác màu đen bình thường) có thể kéo dãn và mang tính đàn hồi. Tuy nhiên PA dạng phim đã tạo ra một bước đột phá rất ngoạn mục. Sự kiện này có lúc bị bỏ quên cho đến năm 1976 giáo sư Alan macdiarmid (đại học Pennyloania) thăm phòng thí nghiệm Shirakawa, ông ngắm nghía tấm phim lạ lùng này và sau đó mời Shirakawa sang Pensylvania cộng tác một năm. Trong khoảng thời gian này, sản phẩm lạ lung gây ra bởi sự vô ý được đem ra khảo nghiệm trở lại. Cùng với sự cộng sự của giáo sư Vật lí Huger, phim PA được tiếp xúc với khí Iodien đ ược h ấp th ụ vào PA dưới dạng ion làm tăng tính dẫn điện PA lên 1 tỉ lần, quá trình tiếp xúc v ới iodine gọi là doping và iodine là dopant của PA nên sau bước nhảy 1 tỷ lần PA t ừ tr ạng thái vật cách điện trở thành vật dẫn điện. Polimer dẫn điện ra đời. Ưu điểm: Xoá mờ ranh giới phân biệt chất dẫn điện kim loại , bán dẫn (silocon), và cách điện (polime thông thường) vì từ nống độ iodien, người ta điều chỉnh độ dẫn điện từ chất cách điện đến dẫn điện một cách dễ dàng. Vậy những nguyên nhân gây ra sự dẫn điện là do đâu ? Có phải do các hạt mang điện giống nh ư kim loại không? Câu trả lời là “không”, mà là do khi I sẽ kết hợp với PA dưới dạng ion I đ ể trung hoà âm tính của anion iodine, cacbon của PA sẽ xuất hiện dưới điện tích dương đây là quá trình tự nhiên. Khi một vật trung tính bị một vật mang điện xâm nhập, trong điều kiện thuận lợi sẽ tự phản ứng bằng cách sản xuất điện đối nghịch để bảo tồn cái trung tính vốn có của nó hay trong quá trình tiếp xúc giữa PA và I2, I2 đã nhận một điện tử trong hai điện tử của P (Pi) từ PA trở thành I gây ra một lỗ trống mang điện tích dương và một điện tử P còn lại kí hiệu là (•) trên mạch PA, l ỗ tr ống (+) và đi ện t ử (•) xuật hiện trong mạch PA là polaron trong vật lí 1 cặp polaron (++) gọi là bipolaron. Như vậy polaron và bipolaron là hạt tải điện do sự truyền trong polimer dẫn điện. Với phương pháp điện hoá, phim polimer được hình thành trong bình điện giải đơn giản, trong đó chất dẫn điện giải là monome (ví dụ: pyrrole, anilin, hay thiophene)
- và dopant được hoà tan trong nước hay trong dung môi thích hợp. Tại c ực dương monome bị oxi hóa kết hợp do dopant và đồng thời trùng hợp thành màng. Trong phương pháp hoá học mônme, dopant và chất oxi hoá. Ví dụ: FeCl 3 đựơc hoà tan trong dung môi, phản ứng trùng hợp xảy ra do polime ở dạng bột. Nhược điểm: Polime dẫn điện ít hoà tan trong dung môi và nước, hơn nữa tránh ô nhiễm môi trường các polime phải hoà tan phim polyprrole tan trong các dung môi không mang độc tính. Khắc phục: gắn những nhóm biện thích nước hay dung môi vào monome tạo ra những polime dẫn xuất. Độ âm điện của polime không những phụ thuộc vào nồng độ của polarol, bipolaron mà còn phụ thuộc vào khối lượng di động trong mạch polime, giữa những mạch polime và giữa những mạng do nhiều polime tạo nên. Nói một cách định lượng,độ dẫn điện σ được diễn đạt: σ = nµe n: nồng độ của hạt tải điện µ: độ di động e: điện lượng của điện tử 1,602.10-19 C Năm 1987, tiến sĩ Naaroman (công ty BABF) kéo phim PA dài gần 7 lần mẫu phim cũ làm tăng độ dẫn điện lên 1,7 .105 (s/cm độ dẫn điện của đồng là 106 s/cm). Ứng dụng: Dùng làm trong tụ điện. Kể từ năm 1991 công ty Nhật Bản như NFC, Masusita Eledtric Industriy Nippoou Denki đã sản xuất một loại tụ điện dùng cho máy vi tính như laptop, notebook, điện thoại di động, máy ảnh kỹ thuật số. Pin nạp điện: Có thể dùng nhiều lần bằng cách nạp điện. Năm 1987 cộng tác 2 công ty Nhật Bản,beidesgetone và Sợko đã sản xuất và bán ra thị trưưòng pin nạp điện nhỏ bằng đồng xu, dùng cực họp kim lithium/nhôm và Pan, có cấu tạo là Li-Al (cực âm)/LiBF4 – PC- chất điện giải với điện áp khả năng nạp điện 1000 lần. Dùng chống ăn mòn điện hoá. Chế tạo dụng cụ cảm ứng. + Mái nhà sẽ được phủ polime dẫ điện để chuyển hoá năng lượng mặt trời thành điện. + Tường nhà sẽ được phủ một lớp polime dẫn điện làm ấm nhà bằng bơm nhiệt điện. + Sợi hoặc vani chống tĩnh điện tránh bụi bám. + Cửa sổ thông minh. + Màn hình Tivi vừa to, nhẹ, mỏng có thể dán tường. + Ăngten nhận tín hiệu từ vệ tinh. + Tơ sợi phát nhiệt (mền, chăn trải giường). + Đèn điot phát quang cho các bộ cảm ứng trong nhà. 1.2 Phân loại Polyme dẫn 1.2.1 Polyme oxy hóa khử (Redox polymer) Polyme oxy hoá khử là loại polyme dẫn điện có chứa các nhóm có hoạt tính oxy hóa - khử liên kết với mạch polyme không hoạt động điện hoá.
- Vinylferrocene Vinylferrocene Điện tử dịch chuyển từ tâm oxy hoá khử này sang tâm oxy hoá khử khác theo cơ chế electron hoping. PANi thuộc loại polyme dẫn này. Polyme dẫn điện tử (electronically conducting polymers) hay kim loại 1.2.2 hữu cơ (Organic metals) Polyme dẫn điện tử tồn tại mạch các bon có các nối đôi liên hợp nằm dọc theo chuỗi polyme và quá trình dẫn điện ở đây là điện tử có thể chuyển động dọc theo chuỗi polyme nhờ tính linh động của điện tử π, hoặc điện tử có thể chuyển từ chuỗi polyme này sang chuỗi polyme khác theo cơ chế electron hopping. Một số polyme loại này như: (- CH = CH - CH = CH -)n Polyacetylen Polyme dẫn điện tử Polyme trao đổi ion (ion - exchange polymers) 1.2.3 Polyme trao đổi ion là polyme chứa các cấu tử có hoạt tính oxy hoá khử liên kết với màng polyme dẫn ion, trong trường hợp này cấu tử có hoạt tính có điện tích trái dấu với màng PLM. Polyme trao đổi ion (poly 4-Vilynpyridine với Fe(CN)63-) Để tăng thêm tính năng của các polyme ta kết hợp các polyme với nhau đ ể tạo polyme có hoạt tính cao hơn.
- Trong polyme dẫn điện tử ta thường cài các tâm hoạt tính lên polyme dẫn điện và khi đặt các tâm hoạt tính với một nguyên tử trong chuỗi polyme và nó trở thành cầu nối của điện tử do sự xen phủ của các obital. 1.3 Quá trình Doping Khái niệm: Quá trìng doping là quá trình đưa thêm một số tạp chất hay tạo ra một số sai hỏng làm thay đổi đặc tính dẫn điện của các polyme và tạo ra bán dẫn lo ại N hoặc P tuỳ thuộc vào loại phụ gia ta đưa vào. Tùy vào loại điện tích dopant mà phân ra hai loại: - Anion đi vào Polyme: pha tạp loại P. Ví dụ: Cation đi vào Polyme: pha tạp loại N. - Ví dụ: Ví dụ: Emeraldine base Doping với Bonsted axit Vậy quá trình doping ở đây có tác dụng bù điện tích cho chuỗi polyme và duy trì polyme ở trạng thái cân bằng và ở trạng thái oxy hoá cân bằng này nó dẫn điện tốt. Doping với Lewis axit
- Độ dẫn trung bình của PANi hydrochlories và PANi base ở 20oC Ta thấy rằng ở trạng thái dẫn điện và trạng thái cân bằng (thường không dẫn điện) có cấu trúc khác nhau: Xét màng polyaniline: Người ta cho rằng ở trạng thái năng lượng cao xảy ra đồng thời sự chuyển điện tử và thay đổi cấu trúc từ dạng aromatic sang dạng quinoid và khi dạng bipolaron tăng mạnh thì các polyme có thể dẫn điện như các kim loại. Trong đó với aniline sự thay đổi cấu trúc xảy ra như sau. N N N N N N Leucoemeradine N N N N N N H Emeraldine N N H + N N N + N H H Emeraldine hydro cloride 1.4 Polyaniline
- Aniline và Polyaniline 1.4.1 Cấu trúc Aniline: Công thức gốc chức C6H5NH2, aniline có cấu trúc hình chóp. Góc tạo liên kết C-N và đường phân giác của góc H-N-H là 142,5o. Cấu trúc phân tử aniline Hiệu ứng cộng hưởng của nhóm –NH2 vào vòng benzen góp phần làm tăng độ phân cực của aniline. Aniline là chất lỏng không màu, có tính kiềm yếu và rất độc, chỉ hòa tan một phần rất nhỏ trong nước, nhưng tan tốt trong dung môi hữu cơ: ete, etanol, benzen,… Polyaniline Polyaniline được phát hiện năm 1983 và được dùng như thuốc nhuộm đen cho bông (cotton) với tên gọi “black aniline“. Nghiên cứu về hợp chất này nhằm đ ề xuất cấu trúc polymer và phát hiện các dạng oxy hóa khác nhau của PANi đã đ ược biết đ ến từ thế kỷ 20. Mãi cho đến gần đây, khả năng dẫn điện của PANi mới đ ược phát hiện. Cũng giống như polyme dẫn điện khác nó cũng có trạng thái oxy hoá khử, tuy nhiên trạng thái oxy hoá của nó bền hơn polypynide và có độ dẫn điện lớn hơn polyacetylen. Dạng cơ bản của aniline ứng với trạng thái oxy hoá của nó là emeraldine và được coi là chất cách điện, độ dẫn điện của nó là σ = 10-10 δ/cm. Khi xử lý trong dung dịch HCl ta thu được dạng muối tương ứng hydrocloric emeraldine là một loại doping của polyme, polyme không thay đổi trong suốt quá trình proton hoá, dạng emeraldine hydrocloric được coi là có dạng chuyển vị và có dạng dẫn polaron, mà chủ yếu là dạng tích điện dương ở nguyên tử N. 1.4.2 Cấu trúc của Polyaniline Hiện nay, các nhà khoa học chấp nhận cấu trúc PANi và được môt tả như sau :
- Cấu trúc của Polyaniline (Trong đó y thuộc N và 0 ≤ y ≤ 1) y = 0: Pernigraniline Base (PAB) y = 0.5: Emeraldine Base (EB) y = 1: Lecoemeraldine Base (LEB) Trong nhóm polymer dẫn, PANi là polymer duy nhất có hai dạng kích hoạt biến đổi thuận nghịch nhưng chỉ hình thành một dạng dẫn: Emeraldine salt (ES). Oxy hóa hóa học hay điện hóa dạng khử hoàn toàn LEB đều dẫn đến hình thành dạng dẫn ES, trong khi dạng proton hóa hoàn toàn của EB bằng axit cũng dẫn đến hình thành dạng dẫn. Sự liên hệ giữa các dạn oxy hóa – khử khác nhau của aniline được trình bày như sau:
- Sự Sự chuyển hóa qua lại theo pH các dạng oxy hóa khử của PANi PANi là polymer dẫn tồn tại ba dạng oxy hóa ổn định. Những dạng oxy hóa này nói chung cũng bị ảnh hưởng bởi pH của môi trường. Năm dạng tồn tại chuyển hóa lẫn nhau thông qua vòng oxy hóa thay đổi theo pH. Sự thay đổi của các dạng polymer này được nhận dạng bằng sự thay đổi màu sắc. Với Lecoemeraldine Base (LEB) có màu vàng, Emeraldine salt (ES) có màu xanh lá cây, Emeraldine Base (EB) màu xanh da tr ời
- đậm, Pernigraniline Base (PAB) có màu tím và Pernigraniline Salt (PAS) có màu xanh da trời. Khác với các loại polyme dẫn khác, PANi có 3 trạng thái oxi hoá: Trạng thái khử cao nhất (x = n = 1, m = 0) là leucoemeraldine (LE) - màu - trắng. Trạng thái oxi hoá một nửa (x = m = n =0.5) là emeraldine (EM)- màu xanh - lá cây. Là hình thức chủ yếu của polyanilin, ở 1 trong 2 dạng trung tính hay pha tạp với liên kết imine các nitrogen của một axit. Trạng thái oxi hoá hoàn toàn (x = n =0, m =1) là pernigranilin (PE)–màu xanh - tím. Dạng cơ bản của anilin ứng với trạng thái oxy hoá của nó là emeraldine và được coi là chất cách điện, độ dẫn của nó là , khi xử lý trong dung dịch HCl thu đ ược dạng muối tương ứng emeraldine clorua hay còn gọi là muối emeraldin. Đây cũng là quá trình proton hoá và cấu trúc chuỗi polyme là không thay đổi trong suốt quá trình ptoton hoá. Dạng muối emeraldin được coi là dạng chuyển vị và hạt dẫn của nó là polaron và chủ yếu là dạng tích điện dương tại nguyên tử N. Dạng emeraldine của PANi có thể tồn tại ở dạng tinh thể hoặc vô định hình phụ thuộc vào điều kiện điều chế.
- Ảnh hưởng của điện thế tới các dạng thù hình của PANi Thành phần của PANi PANi không tan trong hầu hết các dung môi hữu cơ thường và nước. Lần đ ầu tiên Green và Woodhead đã đưa ra khả năng tan của PANi trong dung dịch hỗn hợp gồm 80% axit acetic, 60% axit formic, pyrydine và axit sulphuric. Những nghiện cứu sau này đã tiềm ra khả năng tan của EB trong NMP ( N(1)-methylpyrrolidinone), DMF ( N,N- dimethylformamide), benzen và cleroform. Tuy nhiên, dạng kích hoạt của ES với axit giống chất hoạt động bề mặt như HCSA (10-camphorsulfonic acid) hay dodecybenzen sulfonic axit (DBSA) hình thành ES tan trong m-cresol, NMP, DMSO và xylene. Nhừn dù sao, khả năng khó hòa tan trong dung môi của PANi đã hạn chế rất nhiều việc sử dụng PANi. Một trong những cách khắc phục điểm yếu này là gắn các nhóm thế lên vòng benzen của mạch polymer hoặc gắn lên nguyên tử N trong mạch. Những nhóm thế thường găp là: alkoxy, ankyl hay nhóm thế phân cực như trong hình. Việc này giúp PANi tan được trong dung môi hữu cơ và môi trường nước. Những nhóm thế gắn lên polymer được hình thành bằng hai cách: nhóm thế có sẳn trong monome hoặc gắn sau khi tạo thành mạch polymer.
- Cấu trúc một số nhóm thế vòng của PANi Cấu trúc một số nhóm thế N của PANi 1.4.3 Tính chất của Polyaniline 1.4.3.1 Tính chất hóa học
- Một số nghiên cứu đã chỉ ra rằng tính chất hóa học mạnh nhất của polyaniline là thuộc tính trao đổi anion và là tính khác biệt với những polyme trao đ ổi ion thông thường. Lý do có thể do sự phân tán điện tích trên polyaniline. Ảnh hưởng của cấu hình điện tích cũng đã được chỉ ra trong các nghiên cứu khi xảy ra tương tác axit amin lên polyaniline. Ví dụ cho thấy trong hai axit amin với mật độ điện tích tương tự, nhưng các cấu hình phân tử khác nhau, khả năng tương tác với polyaniline khác nhau rõ ràng. Các nghiên cứu đến sắc ký đã cho thấy rằng polyaniline có khả năng hút nước lớn hơn so với polypyrol dẫn tới tăng mật độ điện tích. Sự kết hợp của các xúc tác sinh học vào polyaniline là không dễ dàng đạt được vì polyme hoạt động điện hóa thường phải được tiến hành tại pH thấp. Tuy nhiên, lớp màng mỏng chứa enzym đã được tổng hợp từ các dung dịch đệm (pH = 7). Tatsuma và đồng nghiệp đã cố định peroxidase (enzym trong củ cải) lên màng hợp thành của một polyaniline sulfonat và poly(L-lysine) hoặc polyetylenimin. Trong các công trình khác , xúc tác enzyme-polyme đã được sử dụng để sản xuất PANi với DNA là tạp chất. Một số tạp chất cũng đã được hợp nhất polyaniline vào đ ể tăng cường tính chất xúc tác điện hóa của các polyme. Ví dụ, Ogura và các đồng nghiệp thêm trioxit vonfram vào điện cực polyanilin-polyvinylsunphat và được sử dụng nó để thuận lợi cho khử CO2 thành axit lactic, axit formic, etanol và metano. 1.4.3.2 Tính chất quang học Polyaniline có đặc tính điện sắc vì màu của nó thay đổi do phản ứng oxy hoá khử của màng. Người ta đã chứng minh rằng PANi thể hiện nhiều màu từ vàng nhạt đ ến xanh lá cây, xanh sẫm và tím đen tùy vào phản ứng oxy hoá khử ở các thế khác nhau. 1.4.3.3 Tính chất cơ Thuộc tính cơ học của PANi phụ thuộc nhiều vào điều kiện tổng hợp. PANi tổng hợp điện hóa cho độ xốp cao, độ dài phân tử ngắn, độ bền cơ học kém. Phương pháp hóa học thì ít xốp hơn và được sử dụng phổ biến, PANi tồn tại dạng màng, sợi hay phân tán hạt. Màng PANi tổng hợp theo phương pháp điện hóa có cơ tính phụ thuộc nhiều vào điện thế tổng hợp. Ở điện thế 0,65 V (so với Ag /Ag+) màng PANi có khả năng kéo dãn tốt tới 40%. Trong khoảng 0,8 ÷ 1V màng giòn, dễ vỡ, khả năng kéo giãn kém. PANi tổng hợp bằng oxi hóa hóa học, cơ tính phụ thuộc vào phân tử lượng chất. Phân tử lượng càng lớn cơ tính càng cao, phân tử lượng nhỏ cơ tính kém. Hầu hết các sợi và các màng PANi đã được tạo ra từ quá trình chuyển đổi t ừ dạng emeraldin sang muối axit emeraldin bởi quá trình pha tạp. Sự lựa chọn chất pha tạp có một ảnh hưởng lớn đến tính chất cơ học. Trong thực tế, MacDiarmid đã chỉ ra rằng các tính chất cơ học phụ thuộc một cách phức tạp vào chất pha tạp. Những ảnh hưởng cụ thể tác động của cấu trúc polyme về tính chất cơ học vẫn chưa được nghiên cứu rõ dàng. 1.4.3.4 Tính dẫn điện Polyalinin có thể tồn tại cả ở trạng thái cách điện và cả ở trạng thái dẫn điện. Trong đó trạng thái muối emeraldin có độ dẫn điện cao nhất và ổn định nhất. S ự chuyển từ trạng thái cách điện sang trạng thái dẫn điện thông qua sơ đồ hình 1.7:
- Hình 1.7: Sơ đồ chuyển trạng thái oxi hóa của PANi Tính dẫn của các muối emeraldin PANi.HA phụ thuộc vào nhiệt độ, độ ẩm cũng như là phụ thuộc vào cả dung môi. Ngoài ra, điều kiện tổng hợp có ảnh hưởng đến việc hình thành sai lệch hình thái cấu trúc polyme. Vì vậy làm thay đ ổi tính dẫn đi ện của vật liệu. Tuy nhiên tính dẫn của PANi phụ thuộc nhiều nhất vào mức độ pha tạp proton. Chât pha tạp có vai trò quan trong để điêu khiên tinh chât dân cua polyme dân. Xet hai ́ ̣ ̀ ̉́ ́ ̃ ̉ ̃ ́ chât doping đó là phtaloxyamin và DBSA anh hưởng cua DBSA đên độ dân cua PANi là ́ ̉ ̉ ́ ̃ ̉ không đang kể so với anh hưởng cua phtaloxyanin. Do đó trong mâu có thể coi vai trò ́ ̉ ̉ ̃ doping chủ yêu là dophaloxynin, măt khac khi ta cho thay đôi ham lượng chât doping ́ ̣ ́ ̉ ̀ ́ phtaloxyanin từ 10-50% thì thây độ dân cua polyaniline đat cực đai khi ham lượng cua ́ ̃ ̉ ̣ ̣ ̀ ̉ chât doping nay băng khoang 15%, khi ham lượng cua chât doping lớn hơn 15% thì độ ́ ̀ ̀ ̉ ̀ ̉ ́ dân cua polyme san phâm giam nhanh. Điêu nay được giai thich bởi độ dân cua ̃ ̉ ̉ ̉ ̉ ̀ ̀ ̉ ́ ̃ ̉ polyaniline phụ thuôc vao độ hoan thiên cua câu truc mang tinh thê. Mang tinh thể cang ̣ ̀ ̀ ̣ ̉ ́ ́ ̣ ̉ ̣ ̀ hoan thiên thì độ dân cang nâng cao, khi ham lượng chât doping tăng lam tăng số khuyêt ̀ ̣ ̃ ̀ ̀ ́ ̀ ́ tât cua mang tinh thể polyaniline, những khuyêt tât nay đong vai trò như những chiêc bây ̣̉ ̣ ̣́̀ ́ ́ ̃ dâp tăt sự truyên điên tử (polarol) trong tinh thê, từ đó lam giam độ dân. ̣́ ̀ ̣ ̉ ̀ ̉ ̃ 1.4.3.5 Tính chất điện hóa và cơ chế dẫn điện Đường CV của PANi trong dung dịch HCl 1M và sự thay đổi màu của PANi ở các giai đoạn oxy hoá khác nhau ở tốc độ quét thế 50 V/s Quá trình oxy hoá PANi quan sát được bằng cách quét thế tuần hoàn trong dung dịch axit cho thấy rõ hai sóng: sóng đầu tiên (Ox1) bắt đầu ở thế khoảng 0 V, đ ạt pic khoảng 0,2V và không nhạy với pH. Sóng thứ hai (Ox2) nằm trong khoảng 0,2 ÷ 0,8 V và phụ thuộc mạnh vào pH. Ứng với các sóng oxy hoá sóng khử Red1 và Red2 cũng có
- đặc trưng gần như vậy. Red2 nằm trong khoảng thế 0,2 ÷ 0,8V, phụ thuộc vào pH giống như Ox2. Red2 diễn ra ở khoảng thế 0,1 V và không phụ thuộc vào pH. Red1 và Red2 là quá trình ngược lại của hai quá trình Ox1 và Ox2. Khi pH cao hay trong dung môi không có nước, quá trình oxy hoá emeraldin quan sát đ ược ở điện thế 1,2V. Đặc tính điện hoá của PANi phụ thuộc vào pH. Ở pH cao không có quá trình proton hoá xảy ra và PANi ở trạng thái cách điện. Nếu chất điện ly đủ tính axit thì xảy ra quá trình proton hoá tạo thành dạng nigraniline và PANi có độ dẫn điện nhất định. Sau đó một phần của PANi gắn với bề mặt điện cực sẽ tham gia vào phản ứng oxy háo khử điện hoá và đóng vai trò vật dẫn electron đến phần còn lại của PANi. Hirai và cộng sự đã nghiên cứu các đặc tính điện hoá của PANi trong dung dịch axit yếu (như pH = 4). Các tác giả đã đưa ra cơ chế phản ứng oxy hoá khử và sự giảm hoạt tính của PANi. Màng PANi bị khử có cấu trúc giống như leocoemeraldin vì các chất điện ly không có mặt trong polyme đã bị khử. Quá trình oxy hoá ở thế anot cao hơn là nguyên nhân gây nên sự giảm hoạt tính của màng. Sự oxy hoá trong dung dịch axit yếu không kèm theo sự phân huỷ mạch polyme và sự oxy hoá đường như là kết quả của sự tăng cấu trúc quinondiimin trong polyme. Sự giảm hoạt tính của màng còn do tốc độ phản ứng proton hoá không theo kịp phản ứng khử proton trong chu trình oxy hoá khử. Tuy nhiên hoạt tính điện hoá có thể được hồi phục bằng cách ngâm màng trong axit mạnh. Từ các kết quả nghiên cứu đã được trình bày ở trên chúng ta thấy rằng PANi thể hiện hoạt tính điện hoá rất mạnh trong môi trướng axit, và phần l ớn ứng dụng c ủa nó dựa trên đặc tính này. Cơ chế dẫn điện của PANi có thể được mô tả:
- Cơ chế dẫn điện của PANi Các vật liệu kim loại dẫn điện nhờ sự di chuyển của các điện tử trong cấu trúc mạng tinh thể của chúng. Đối với các polyme dẫn điện, quá trình dẫn điện xảy ra hơi khác một chút. Đám mây điện tử di chuyển trong một tiểu phân. Giữa các tiểu phân có một đường hầm lượng tử từ tiểu phân này tới tiểu phân khác. Trong phân tử có sự liên hợp giữa các liên kết π trong vòng benzoid và quinoid với electron trên nhóm NH khi được pha tạp. Quá trình pha tạp tạo nên sự khác biệt về độ dẫn điện giữa dạng emeraldin và muối emeraldin. Những tiểu phân PANi được tạo thành từ những phân tử có kích thước cơ bản khoảng 3,5 nm. Do cấu tạo của các tiểu phân có kích thước 10 nm có chứa lõi 8 nm được tạo thành theo tập hợp từ 15 đến 20 phân tử có kích thước 3,5 nm. Chính lõi này có tính chất “kim loại”, là cơ sở để PANi dẫn điện. Những phần tử có kích thước 10 nm tập hợp lại để thành phần tử lớn hơn có kích thước khoảng 30 nm. Những phần tử có kích thước 30 nm hợp lại thành phần tử lớn hơn 50÷100 nm. Ở dạng muối emeraldin, nhờ có sự tạo muối của axit với nhóm -NH- trong mạch phân t ử PANi làm cho nó có khả năng định hình (tạo tinh thể).
- Hình thái cấu trúc của PANi a - Dạng không dẫn điện có hình thái không trật tự (random) b - Dạng dẫn điện có hình thái định hình (trật tự - Ordered) Phương pháp tổng hợp Polyaniline 1.4.4 Có hai phương pháp tổng hợp chủ yếu polymer là trùng hợp và trùng ngưng. So sánh giữa phản ứng trùng hợp và trùng ngưng: Phản ứng trùng hợp Phản ứng trùng ngưng Monome có liên kết đôi hay vòng không Monome có 2 nhóm chức có khả năng bền phản ứng với nhau hay monome có 2 nhóm chức giống nhau phản ứng với monome khác có 2 nhóm chức khác. Quá trình không tạo hợp chất thấp phân Quá trình có tạo hợp chất thấp phân tử. tử Monome và polime có cùng thành phần Monome và polime có thành phần nguyên nguyên tố tố khác nhau, thành phần nguyên tố của polime thấp hơn của monome. Quá trình thường không thuận nghịch Quá trình thường thuận nghịch và cân bằng Polyaniline được tổng hợp từ sự trùng ngưng oxy hóa monome aniline nhờ những chất cung cấp điện tử. Có nhiều cách tổng hợp PANi như: trùng ngưng hóa học, trùng ngưng điện hóa, trùng hợp và một số phương pháp khác. Ở đây nhóm được giáo viên hướng dẫn tổng hợp Polyaniline bằng phương pháp trùng hợp nhũ tương đảo. 1.4.4.1 Trùng ngưng hóa học Trùng ngưng hóa học là phương pháp sủ dụng các chất oxy hóa như (NH 4)S2O8, Na2S2O8, FeCl3, KMnO4, K2Cr2O7, H2O2,…trong môi trường axit, vừa oxy hóa monome vừa cung cấp ion kích hoạt.
- Trong các chất oxy hóa trên thì amonopesufate (NH4)S2O8 được sử dụng nhiều nhất vì thế oxy hóa – khử của nó cao: 2,01 V (so với điện cực hidro tiêu chuẩn) và PANi tổng hợp theo cách này có khả năng dẫn điện cao, (NH 4)S2O8 oxy hóa aniline trong môi trường axit như HCl 1M, hoặc H2SO4 1M ở nhiệt độ -50C ÷ 50C trong 3 ÷ 5 giờ theo phương trình tổng hợp: Theo một số nhà khao học, thế oxy hóa của aniline khoảng 0,7 V (so với điện cực calomen bão hòa). Như vậy, chỉ cần chất oxy hóa có thế oxy hóa trong khoảng này dùng để trùng ngưng aniline. Polymer dẫn điện tổng hợp theo cách này đã được dùng trong công nghiệp như DMS, …Oxy hóa hóa học cung cấp polymer dẫn dạng bột. Nói chung, polymer dạng bột dẫn điện kém hơn polymer trùng ngưng điện hóa. Nguyên nhân là khi trùng ngưng hóa học người ta khó điều khiển điện thế trong hỗn hợp phản ứng,nên nó dẫn đến quá oxy hóa polymer. Khi cho ES vào dung dịch bazo ta được deproton EB theo phương trình: Khi ion đối A- trong ES là gốc vô cơ thì độ ổn định polymer thấp hơn ion hữu cơ. Những ion hữu cơ thường dùng: dodecyl benzene sulfonic axit (DBSA), p-toluene sulfonic axit,… Ta tạo ra dạng hoạt hóa bởi các ion hữu cơ tổng hợp được khi trộn EB với các axits hữu cơ. Ví dụ: trộn EB với DBSA trong môi trường cloroform và m-cresol (1:3) trong một ngày, ta có PANi được hoạt hóa bằng ion hữu cơ.
CÓ THỂ BẠN MUỐN DOWNLOAD
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn