Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Bình Thuận
lượt xem 2
download
“Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Bình Thuận” dành cho các bạn học sinh lớp 12 và quý thầy cô tham khảo giúp các bạn học sinh có thêm tài liệu chuẩn bị ôn tập cho kì thi sắp tới được tốt hơn cũng như giúp quý thầy cô nâng cao kỹ năng biên soạn đề thi của mình. Mời các thầy cô và các bạn tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Bình Thuận
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI THÀNH LẬP ĐỘI TUYỂN HỌC SINH GIỎI BÌNH THUẬN LỚP 12 THPT DỰ THI QUỐC GIA NĂM HỌC 2018 – 2019 ĐỀ CHÍNH THỨC Ngày thi: 19/10/2018 (Đề này có 01 trang) Môn: Toán Thời gian làm bài: 180 phút (không kể thời gian giao đề) Bài 1. (5 điểm) Giải phương trình nghiệm nguyên: x 3 y 3 x 2 y xy 2 4 x 2 xy y 2 1. Bài 2. (5 điểm) Cho x, y 0; . Chứng minh rằng: 2 1 1 1 9 2 . sin x sin y 1 sin x cos y 1 cos x 1 2 sin x sin 2 y sin 2 x sin y sin 2 x cos y 2 2 2 2 2 Bài 3. (5 điểm) Cho tam giác ABC có AB AC và nội tiếp đường tròn O . Phân giác trong góc cắt O tại điểm D khác A , lấy E đối xứng B qua AD , đường thẳng BE cắt O BAC tại F khác B . Lấy điểm G di chuyển trên cạnh AC ( G khác A, C ), đường thẳng BG cắt O tại H khác B. Đường thẳng qua C song song AH cắt FD tại I . Đường tròn ngoại tiếp tam giác BCG cắt EI tại hai điểm phân biệt K , L . Chứng minh rằng đường trung trực đoạn thẳng KL luôn đi qua một điểm cố định. Bài 4. (5 điểm) Cho 2018 tập hợp mà mỗi tập chứa đúng 45 phần tử. Biết rằng hai tập tùy ý trong các tập này đều có đúng một phần tử chung. Chứng minh rằng tồn tại phần tử thuộc tất cả 2018 tập hợp đã cho. ------------ HẾT ------------- (Cán bộ coi thi không được giải thích gì thêm.) Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . Số báo danh: . . . . . . . . . .
- ĐÁP ÁN KỲ THI THÀNH LẬP ĐỘI TUYỂN HSG LỚP 12 THPT DỰ THI QUỐC GIA – Năm học 2018 – 2019 LỜI GIẢI TÓM TẮT ĐIỂM Bài 1. (5 điểm) Giải phương trình nghiệm nguyên: x 3 y 3 x 2 y xy 2 4 x 2 xy y 2 1. Nhận xét: x y 0,5 2 x 2 y 2 4 xy 1 0,5 x 3 y 3 x 2 y xy 2 4 x 2 xy y 2 1 x 2 y 2 x y 4 4 xy 1 0,5 2 4 xy 1 2 x 2 y 2 x y 4 4 xy 1 x y 4 1,5 2 x y 4 x y 3;4;5 0,5 x y 3 không thỏa 0,5 x y 4 không thỏa 0,5 x y 5 tìm được x 1; y 4 hoặc x 4; y 1 0,5 Bài 2. (5 điểm) Cho x, y 0; . Chứng minh rằng: 2 1 1 1 9 . sin x sin y 1 sin x cos y 1 cos x 1 2 sin x sin 2 y sin 2 x sin y sin 2 x cos y 2 2 2 2 2 2 Đặt a sin x sin y, b sin x cos y, c cos x thì a, b, c 0 và a 2 b 2 c 2 1 1,0 Ta cần chứng minh 1 1 1 9 0,5 2 2 2 . a 1 b 1 c 1 4 ab ac bc Thật vậy, 21 21 21 1 1 1 1,0 a 1 b 1 c 1 a b a c b c b a c a c b 2 a b c a b a c b c Mà a b a c b c a b c ab ac bc abc 1 8 1,0 a b c ab ac bc a b c ab ac bc a b c ab ac bc 9 9 1 1 1 9 1,0 Nên 2 2 2 . a 1 b 1 c 1 4 ab ac bc
- Đẳng thức xảy ra khi và chỉ khi 0,5 1 1 1 abc abc x arccos ,y 3 3 3 4 Bài 3. (5 điểm) Cho tam giác ABC có AB AC và nội tiếp đường tròn O . Phân giác trong góc cắt O tại điểm D khác A , lấy E đối xứng B qua AD , đường thẳng BE BAC cắt O tại F khác B . Lấy điểm G di chuyển trên cạnh AC ( G khác A, C ), đường thẳng BG cắt O tại H khác B. Đường thẳng qua C song song AH cắt FD tại I . Đường tròn ngoại tiếp tam giác BCG cắt EI tại hai điểm phân biệt K , L . Chứng minh rằng đường trung trực đoạn thẳng KL luôn đi qua một điểm cố định. Gọi giao điểm của đường thẳng EI và BC là J . 0,5 DF là trục đối xứng của EC 1,0 ECI CEJ HAC HBC nên tứ giác BGEJ nội tiếp 1,5 Phép nghịch đảo NCk CE .CG CJ .CB biến đường tròn ( BCG ) thành đường thẳng EJ 1,0 nên biến K , L thành chính nó. Do đó CK 2 CL2 k hay đường trung trực đoạn thẳng KL luôn đi qua điểm C 1,0 cố định. Bài 4. (5 điểm) Cho 2018 tập hợp mà mỗi tập chứa đúng 45 phần tử. Biết rằng hai tập tùy ý trong các tập này đều có đúng một phần tử chung. Chứng minh rằng tồn tại phần tử thuộc tất cả 2018 tập hợp đã cho. Lấy tập A tùy ý, trong A sẽ có phần tử a thuộc ít nhất 45 tập hợp khác. Nếu 1,0 không, số tập hợp không quá 45x44 + 1 = 1981. Suy ra a thuộc 46 tập A, A1 ,..., A45 . 1,0 Với tập B bất kì, nếu a không thuộc B thì với mỗi tập Ai 1 i 45 đều có phần 1,0 tử ai chung với B mà ai a . Thành ra B không có phần tử chung với A, nếu có thì phần tử chung đó phải thuộc 1,0 tập Ai 1 i 45 nào đó nên A và Ai 1 i 45 có 2 phần tử chung. (Vô lí) Nên a thuộc B, do đó a thuộc 2018 tập đã cho. 1,0
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi chọn đội tuyển dự thi HSG cấp tỉnh môn Tiếng Anh 9 năm 2018-2019 có đáp án - Phòng GD&ĐT Ngọc Lặc
7 p | 1024 | 60
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2017 môn Hóa học - Sở GD&ĐT Kiên Giang (Đề số 1)
7 p | 304 | 53
-
Đề thi Chọn đội tuyển dự thi HSG cấp Thành phố năm học 2009 - 2010 môn Toán lớp 9
1 p | 466 | 34
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2017 môn Hóa học - Sở GD&ĐT Kiên Giang (Đề số 2)
6 p | 217 | 28
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2017 môn Vật lí - Sở GD&ĐT Kiên Giang (Đề số 2)
4 p | 147 | 9
-
Đề thi chọn đội tuyển dự thi học sinh giỏi cấp Tỉnh năm học 2008 - 2009 môn Toán
2 p | 180 | 8
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2020 - Sở GD&ĐT Cao Bằng
1 p | 85 | 4
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Quảng Bình
13 p | 109 | 3
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Hà Tĩnh
10 p | 85 | 3
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2020 có đáp án - Sở GD&ĐT Khánh Hòa
8 p | 72 | 3
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2020 - Sở GD&ĐT Bến Tre
1 p | 73 | 2
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT tỉnh Kon Tum
7 p | 86 | 2
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT tỉnh Đồng Tháp
5 p | 65 | 2
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Phú Thọ
11 p | 53 | 2
-
Đề thi chọn đội tuyển dự thi HSG Quốc gia môn Toán 12 năm 2018-2019 có đáp án - Sở GD&ĐT Lạng Sơn (Vòng 1)
4 p | 102 | 2
-
Đề thi chọn đội tuyển dự thi HSG cấp tỉnh môn Toán 12 năm 2019-2020 - Trường THPT chuyên Lê Quý Đôn
4 p | 128 | 2
-
Đề thi chọn đội tuyển dự thi học sinh giỏi môn Toán lớp 12 năm 2020-2021 - Sở GD&ĐT Phú Thọ
1 p | 22 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn