SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC GIANG CỤM LẠNG GIANG ĐỀ THI HỌC SINH GIỎI CẤP CỤM MÔN THI: TOÁN 10 Năm học: 2015 - 2016 Thời gian: 180 phút (Không kể thời gian giao đề) Câu 1 (4 điểm) Cho hàm số y x 2 2 m 1 x m 1 (m là tham số thực) có đồ thị là P . a) Tìm điều kiện của tham số m để đường thẳng : y mx m2 1 cắt đồ thị hàm số P tại hai điểm nằm về hai phía đối với trục tung Oy. b) Tìm điều kiện của tham số m để đồ thị hàm số luôn nằm trên trục hoành Ox. Câu 2 (6 điểm) a) Giải phương trình sau: x 2 2 x3 1 3 x 1 3 x 2 x 1 4 0 b) Giải hệ phương trình sau: 2 x 2 4 xy 5 y 2 5 2 2 x 1 2 y y 0 Câu 3 (6 điểm) a) Cho tam giác ABC. M là trung điểm của AC, điểm N thuộc đoạn thẳng BM thỏa mãn BN=3MN , điểm P nằm trên cạnh BC thỏa mãn 2PB+3PC=0 . Chứng minh rằng ba điểm A, N, P thẳng hàng. b) Cho tam giác ABC cân tại A. M là trung điểm của BC, H là hình chiếu vuông góc của M lên đường thẳng AC, E là trung điểm của MH. Chứng minh rằng AE vuông góc với BH. Câu 4 (2 điểm ) Cho tam giác ABC có BC = a, AB = c, AC = b thỏa mãn điều kiện: a c 1 a b b c sin A 2sin B.cosC Chứng minh rằng tam giác ABC là tam giác đều. Câu 5 (2 điểm) Cho a, b, c là các số thực dương thỏa mãn a b c 1 . Chứng minh rằng: a b c 3 b c a 3 c a b 3 27 8 --------------- Hết ------------Cán bộ coi thi không giải thích gì thêm Họ tên thí sinh …………………………………… Số báo danh:…………………….