Đề thi tuyển sinh vào lớp 10 năm học 2012 - 2013 trường THPT chuyên Hoàng Văn Thụ môn toán - Sở giáo dục và đào tạo Hòa Bình
lượt xem 38
download
Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi tuyển sinh vào lớp 10 năm học 2012 - 2013 trường THPT chuyên Hoàng Văn Thụ môn toán - Sở giáo dục và đào tạo Hòa Bình để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi tuyển sinh vào lớp 10 năm học 2012 - 2013 trường THPT chuyên Hoàng Văn Thụ môn toán - Sở giáo dục và đào tạo Hòa Bình
- SỞ GD & ĐT HÒA BÌNH KỲ THI TUYỂN SINH VÀO LỚP 10 NĂM HỌC 2012- 2013 TRƯỜNG THPT CHUYÊN HOÀNG VĂN THỤ ĐỀ CHÍNH THỨC ĐỀ THI MÔN TOÁN (CHUNG) Ngày thi: 29 tháng 6 năm 2012 Thời gian làm bài: 120 phút (không kể thời gian giao đề) Đề thi gồm có 01 trang --------------------------------------------------------------------------------------------------------- PHẦN I. TRẮC NGHIỆM(2 Diểm) (Thí sinh không cần giải thích và không phải chép lại đề bài, hãy viết kết quả các bài toán sau vào tờ giấy thi) 1. Biểu thức A = 2 x 1 có nghĩa với các giá trị của x là… 2. Giá trị m để 2 đường thẳng (d1): y = 3x – 2 và (d2): y = mx + 3m – 1 cắt nhau tại 1 điểm trên trục tung là.... 3. Các nghiệm của phương trình 3 x 5 1 là... 4. Giá trị của m để phương trình x2 – (m+1)x - 2 = 0 có 2 nghiệm x1, x2 thỏa mãn x12x2 + x1x22 = 4 là... PHẦN II. TỰ LUẬN (8 điểm) Bài 1. (2 điểm) 1 1 x y 5 a) Giải hệ phương trình 2 3 5 x y b) Cho tam giác ABC vuông tại A (AB > AC). Đường phân giác AD chia cạnh huyền BC thành 2 đoạn 3 theo tỷ lệ và BC = 20cm. Tính độ dài hai cạnh góc vuông. 4 Bài 2. (2 điểm) Tìm một số có hai chữ số, biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 5 và nếu đem số đó chia cho tổng các chữ số của nó thì được thương là 7 và dư là 6. Bài 3.(3 điểm) Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Các đường cao AD, BE, CF của tám giác cắt nhau tại H. Chứng minh rằng: a) Tứ giác BCEF nội tiếp được. b) EF vuông góc với AO. c) Bán kính đường tròn ngoại tiếp tam giác BHC bằng R. Bài 4. (1 điểm) Trên các cạnh của một hình chữ nhật đặt lần lượt 4 điểm tùy ý. Bốn điểm này tạo thành một tứ giác có độ dài các cạnh lần lượt là x, y, z , t. Chứng minh rằng 25 x2 + y2 + z2 + t2 50. Biết rằng hình chữ nhật có chiều dài và chiều rộng là 4 và 3.
- ĐÁP ÁN PHẦN I. TRẮC NGHIỆM(2 Điểm) 1 1. Biểu thức A = 2 x 1 có nghĩa với các giá trị của x là: x 2 2. Giá trị m để 2 đường thẳng (d1): y = 3x – 2 và (d2): y = mx + 3m – 1 cắt nhau tại 1 điểm trên trục tung là 1 m . 3 4 3. Các nghiệm của phương trình 3 x 5 1 là: x = 2; x = . 3 4. Giá trị của m để phương trình x2 – (m+1)x - 2 = 0 có 2 nghiệm x1, x2 thỏa mãn 2 2 x1 x2 + x1x2 = 4 là m = -3. PHẦN II. TỰ LUẬN(8 điểm) Bài 1. (2 điểm) 1 1 x y 5 (1) a) Giải hệ phương trình: 2 3 5 (2) x y Điều kiện: x, y 0. 3 2 2x Lấy (1) cộng (2) theo vế, ta được: 0 3 y 2 x y , thế vào (1) ta có pt: x y 3 1 3 5 1 5 5 2 x 1 x (thỏa mãn đk x 0 ) x 2x 2x 2 1 1 Với x y (thỏa mãn đk y 0 ) 2 3 1 1 Vậy hệ phương trình đã cho có 1 nghiệm ( x; y ) ( ; ) 2 3 b) Đặt độ dài cạnh AB = x (cm) và AC = y (cm); đk: x > y > 0 Theo tính chất đường phân giác và định lý pitago ta có: 3 y 3 y 4 x 3 C y x x 4 4 x 2 y 2 20 2 9 2 x 2 x 20 2 x 2 16 2 D 16 3 y x y 12 A B 4 x 16 x 16 Vậy độ dài cạnh AB = 16 (cm) ; AC = 14 (cm) Bài 2. (2 điểm) Gọi số cần tìm có 2 chữ số là ab , với a , b {0,1, 2,3,4,5,6,7,8,9}, a 0 . Theo giả thiết ta có hệ phương trình:
- a b 5 a b 5 a b 5 a b 5 a 8 (t/m đk) 10a b 7( a b) 6 3a 6b 6 a 2b 2 a 2b 2 b 3 Vậy số cần tìm là: 83 Bài 3.(3 điểm) a) Vì BE, CF là đường cao của tam giác ABC BE AC; CF AB BEC CFB 900 E, F thuộc đường tròn đường kính BC Tứ giác BCEF nội tiếp. b) EF vuông góc với AO. Xét AOB ta có: 1 1 OAB 900 AOB 900 sđ AB 900 ACB (1) 2 2 Do BCEF nội tiếp nên AFE ACB (2) Từ (1) và (2) suy ra: OAB 900 AFE OAB AFE 900 OA EF (đpcm) c) Bán kính đường tròn ngoại tiếp BHC bằng R. Gọi H ' AH (O ) . Ta có: HBC 900 ACB HAC H ' AC H ' BC (3) HCB 900 ABC HAB H ' AB H ' CB (4) Từ (3) và (4) BHC BH ' C ( g .c.g ) Mà BH'C nội tiếp đường tròn tâm O, bán kính R BHC cũng nội tiếp đường tròn có bán kính R, tức là bán kính đường tròn ngoại tiếp BHC bằng R. Bài 4. (1 điểm) Giả sử hình chữ nhật có độ dài các cạnh được đặt như hình vẽ. Với: 0 a, b, e, f 4 và a+b = e+f = 4; 0 c, d, g, h 3 và c+d = g+h = 3. Ta có: x 2 h 2 a 2 ; y 2 b2 c 2 ; z 2 d 2 e2 ; t 2 f 2 g 2 x 2 y 2 z 2 t 2 (a 2 b 2 ) (c 2 d 2 ) (e 2 f 2 ) ( g 2 h 2 ) (*) 2 2 2 2 Chứng minh: x y z t 50 . 2 2 2 2 2 2 2 2 2 Vì a, b 0 nên a b (a b) 16 . Tương tự: c d 9; e f 16; g h 9 . 2 2 2 2 Từ (*) x y z t 16 9 16 9 50 (1) 2 2 2 2 Chứng minh: x y z t 25 . Áp dụng bất đẳng thức Bu - nhi - a- cốp – xki , ta có: ( a b) 2 16 (12 12 )( a 2 b 2 ) (1.a 1.b ) 2 a 2 b 2 2 2 2 2 9 2 2 16 2 9 Tương tự: c d ; e f ; g h2 . 2 2 2
- 2 2 2 216 9 16 9 Từ (*) x y z t 25 (2) 2 2 2 2 2 2 2 2 Từ (1) và (2) 25 x y z t 50 (đpcm) “Bề dày thời gian tồn tại – Chất lượng giáo viên, lòng nhiệt tình - Số lượng lớn học sinh theo học và đạt thành tích cao- Số lượng tài liệu khổng lồ được học sinh, giáo viên, phụ huynh sử dụng CHÍNH LÀ NIỀM TỰ HÀO, SỰ KHẲNG ĐỊNH CỦA TT GIA SƯ – TT LUYỆN THI TẦM CAO MỚI” - Các em học sinh trên địa bàn Đông Hà (Quảng Trị) và các huyện lân cận (Cam Lộ, Triệu Phong, Gio Linh,…) hoàn toàn có thể đăng kí và học tại nhà, để được hướng dẫn cụ thể các em hãy gọi theo số máy trung tâm. Ngoài ra các em có thể học tại trung tâm hoặc học tại nhà các giáo viên của trung tâm. - Các em có thế đăng kí học các môn: Toán, Lý, Hóa, Sinh, Anh, Văn (các khối 9-12, Luyện thi đại học cấp tốc, luyện thi vào lớp 10 cấp tốc, luyện thi tốt nghiệp 12 cấp tốc). Riêng các lớp học từ khối 8 trở xuống, phụ huynh hay học sinh nào yêu cầu trung tâm sẽ cho giáo viên phù hợp về dạy kèm các em - Đối với giáo viên muôn tham gia trung tâm hãy điện thoại để biết thêm chi tiết cụ thể MỌI CHI TIẾT XIN LIÊN HỆ 01662 843 844 – 0533 564384 – 0536 513844 – 0944323844
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 có đáp án
66 p | 1860 | 112
-
Đề thi tuyển sinh vào lớp 10 năm 2017-2018 môn tiếng Anh - Sở GD&ĐT Kiên Giang
5 p | 692 | 76
-
Bộ đề thi tuyển sinh vào lớp 10 năm 2019-2020 có đáp án
146 p | 570 | 46
-
Đề thi tuyển sinh vào lớp 10 năm 2015-2016 môn tiếng Anh - Sở GD&ĐT Kiên Giang
6 p | 331 | 41
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Tiếng Anh có đáp án - Sở GD&ĐT Phú Thọ
8 p | 283 | 20
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2015-2016 - Sở GD&ĐT Bà rịa, Vũng Tàu
1 p | 282 | 14
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 - Sở GD&ĐT Hà Nội
1 p | 211 | 14
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 có đáp án - Sở GD&ĐT Cao Bằng
3 p | 208 | 13
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2017-2018 có đáp án - Sở GD&ĐT TP Hồ Chí Minh
5 p | 156 | 11
-
Đề thi tuyển sinh vào lớp 10 năm 2016-2017 môn Toán - Sở GD&ĐT Kiên Giang
5 p | 95 | 10
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hải Phòng
11 p | 119 | 8
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hưng Yên (Đề chung)
5 p | 87 | 5
-
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2018-2019 có đáp án - Sở GD&ĐT Ninh Bình
4 p | 145 | 4
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hải Dương
6 p | 85 | 4
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hà Nội
5 p | 66 | 3
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Hà Nam
5 p | 79 | 3
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Ngữ văn có đáp án - Sở GD&ĐT Nam Định
8 p | 152 | 3
-
Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán có đáp án - Sở GD&ĐT Quảng Ngãi
6 p | 59 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn