YOMEDIA
ADSENSE
FGenHUSM: Một thuật toán hiệu quả khai thác các chuỗi sinh phổ biến lợi ích cao
25
lượt xem 1
download
lượt xem 1
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Bài viết đề xuất khái niệm tập FGHUS các chuỗi sinh phổ biến lợi ích cao, là một biểu diễn súc tích của FHUS, và một thuật toán mới hiệu quả để khai thác nó. Dựa vào hai chặn trên của độ đo lợi ích, hai chiến lược tỉa theo chiều rộng và sâu được thiết kế để loại bỏ nhanh các chuỗi ít phổ biến hoặc lợi ích thấp.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: FGenHUSM: Một thuật toán hiệu quả khai thác các chuỗi sinh phổ biến lợi ích cao
- Các công trình nghiên cứu phát triển Công nghệ Thông tin và Truyền thông FGenHUSM: Một thuật toán hiệu quả khai thác các chuỗi sinh phổ biến lợi ích cao Trương Chí Tín1 , Trần Ngọc Anh1 , Dương Văn Hải1,2 , Lê Hoài Bắc2 1 Khoa Toán – Tin học, Trường Đại học Đà Lạt 2 Khoa Công nghệ Thông tin, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Tp. Hồ Chí Minh Tác giả liên hệ: Trần Ngọc Anh, anhtn@dlu.edu.vn Ngày nhận bài: 15/07/2019, ngày sửa chữa: 09/10/2019, ngày duyệt đăng: 28/10/2019 Định danh DOI: 10.32913/mic-ict-research-vn.v2019.n2.872 Biên tập lĩnh vực điều phối phản biện và quyết định nhận đăng: PGS.TS. Lê Hoàng Sơn Tóm tắt: Khai thác các chuỗi phổ biến và các chuỗi lợi ích cao có mức độ quan trọng khác nhau trong các ứng dụng thực tế. Gần đây, các nghiên cứu tập trung giải quyết bài toán tổng quát hơn, là khai thác tập FHUS chuỗi phổ biến lợi ích cao. Tuy nhiên, thời gian và bộ nhớ dùng để khai thác FHUS vẫn còn quá lớn. Bài báo đề xuất khái niệm tập FGHUS các chuỗi sinh phổ biến lợi ích cao, là một biểu diễn súc tích của FHUS, và một thuật toán mới hiệu quả để khai thác nó. Dựa vào hai chặn trên của độ đo lợi ích, hai chiến lược tỉa theo chiều rộng và sâu được thiết kế để loại bỏ nhanh các chuỗi ít phổ biến hoặc lợi ích thấp. Sử dụng một chặn dưới mới của lợi ích, một chiến lược tỉa địa phương mới được đề xuất để loại bỏ sớm các chuỗi không là chuỗi sinh phổ biến lợi ích cao. Dựa vào các chiến lược này, một thuật toán mới 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 được thiết kế để khai thác FGHUS mà tính hiệu quả của nó được thể hiện qua các thử nghiệm trên các cơ sở dữ liệu lớn. Từ khóa: Chuỗi lợi ích cao, khai thác chuỗi sinh phổ biến lợi ích cao, chặn trên và chặn dưới của độ đo lợi ích. Title: FGenHUSM: An Efficient Algorithm For Mining Frequent Generator High Utility Sequences Abstract: Mining the set of all frequent high utility sequences (FHUS) in quantitative sequential databases (QSDBs) plays an important role in many real-life applications. However, for huge QSDBs and low minimum support and utility thresholds, algorithms for discovering FHUS often exhibit poor performance in terms of runtime and memory consumption due to the enormous cardinality of the FHUS set. To address this issue, this paper introduces a novel set of all frequent generator high utility sequences (FGHUS). This set is a concise representation of FHUS having a cardinality that is often much less than that of FHUS. Thus, it is more convenient for users to analyze the information provided by the FGHUS set. This paper proposes a novel algorithm named 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 to efficiently mine FGHUS. The algorithm adopts the depth and width pruning strategies to quickly eliminate infrequent or low utility sequences. In addition, it also uses a novel local pruning strategy to prune non-frequent generator high utility sequences early, which is based on a new lower bound on the utility measure. Experimental results on large QSDBs show that the proposed algorithm is efficient in terms of runtime for mining FGHUS, and that the pruning strategies can greatly reduce the search space. Keywords: High utility sequence, frequent generator high utility sequence, upper and lower bounds on utility measure. I. GIỚI THIỆU HUSM tổng quát hơn FSM và có nhiều ứng dụng như phân tích hành vi duyệt web [1], dữ liệu thương mại di Khi khai thác tập các chuỗi phổ biến (FSM: Frequent động [2], hiệu chỉnh gen [3], v.v. Ta xét một ứng dụng điển Sequence Mining) trên các cơ sở dữ liệu chuỗi tuần tự hình của HUSM là phân tích dữ liệu mua hàng. Xét cơ sở (SDB: Sequential Datadase), ta có thể đánh mất nhiều chuỗi dữ liệu chuỗi biểu diễn các đơn mua hàng của khách hàng lợi ích cao (HU: High Utility) quan trọng trong nhiều ứng trong một cửa hàng bán lẻ. Khi đó một chuỗi chứa các mặt dụng thực tế khi chúng ít phổ biến. Chẳng hạn, lợi ích của hàng được mua bởi một khách hàng ở các thời điểm khác các mặt hàng bán được là thông tin rất hữu ích khi ra các nhau. Chi tiết hơn, nó là một danh sách có thứ tự của các quyết định trong kinh doanh. Vì vậy, bài toán khai thác các tập mặt hàng, mỗi tập mặt hàng chứa các mặt hàng được chuỗi HU (HUSM: High Utility Sequence Mining) trên các mua cùng nhau. Lấy ví dụ, ta có chuỗi h{kem đánh răng, SDB lượng hóa (QSDB: Quantitative SDB) ra đời sau đó bàn chải đánh răng}, {bánh Kinh đô, phô mai}, {nhang}i. như một nhu cầu bức thiết. Chuỗi mặt hàng có thể được mua bởi một phụ nữ. Người 57
- Các công trình nghiên cứu phát triển Công nghệ Thông tin và Truyền thông này mua kem đánh răng và bàn chải đánh răng cùng nhau, hơn, là FHUSM: Khai thác tập FHUS các chuỗi phổ biến sau đó mua bánh Kinh đô với phô mai, cuối cùng mua lợi ích cao (FHU: Frequent High Utility), đối với độ đo lợi nhang. Mỗi mặt hàng có một giá bán ra. Khi đó, ta có thể ích 𝑢 min . Theo cách tiếp cận trên, nhóm tác giả trong [13] xác định được giá trị của một tập các mặt hàng được mua đã đề xuất các thuật toán hiệu quả nhằm khai thác hai biểu cùng nhau cũng như giá trị của một danh sách con các tập diễn súc tích của FHUS, bao gồm các chuỗi phổ biến tối mặt hàng trong chuỗi mua hàng của một khách hàng nào đại lợi ích cao (FMaxHU) và tập FCHUS các chuỗi phổ đó. Khi khai thác trên một tập rất lớn các đơn mua hàng, biến đóng lợi ích cao (FCHU). Tuy nhiên, chiều dài các ta có thể biết được các thông tin như: (i) các mặt hàng nào chuỗi FMaxHU và FCHU thường khá lớn. Vì vậy, bài báo thường được mua cùng nhau, (ii) lợi ích đem lại của một đề xuất một biểu diễn súc tích khác FGHUS của FHUS. chuỗi các tập mặt hàng nào đó, v.v. Các thông tin này rất Trước đây, đã xuất hiện nhiều công trình nhằm khai thác có ích cho việc ra các quyết định kinh doanh của cửa hàng. các tập (tập thuộc tính) sinh phổ biến có/không có lợi ích Cho Ψ0 là một QSDB chứa các chuỗi đầu vào, trong mỗi cao [14–16]. Các chuỗi (danh sách có thứ tự các tập thuộc chuỗi có các sự kiện, trong mỗi sự kiện có các thuộc tính, tính) đóng/tối đại/sinh phổ biến cũng đã là đối tượng của mỗi thuộc tính gắn với một số lượng và một giá trị lợi ích. nhiều nghiên cứu gần đây [12, 17, 18]. Tập chứa các chuỗi Do mỗi chuỗi 𝛼 có thể xuất hiện ở các vị trí khác nhau (với sinh phổ biến lợi ích cao (FGHUS) là mở rộng tự nhiên của các lợi ích khác nhau) trong Ψ0, nên lợi ích của 𝛼 trong chuỗi sinh phổ biến truyền thống. Một chuỗi FHU được gọi Ψ0 có thể được tính dưới dạng tổng [4], giá trị lớn nhất là chuỗi sinh phổ biến lợi ích cao (FGHU) nếu không tồn 𝑢 max (𝛼) [5, 6] hoặc giá trị nhỏ nhất 𝑢 min (𝛼) [7, 8] (theo tại chuỗi con FHU nào có cùng độ hỗ trợ. nghĩa an toàn và ít rủi ro cho việc phát triển các chiến lược Vì các chuỗi FGHU có chiều dài thường bé hơn nhiều kinh doanh hay ra quyết định). Khi đó, lợi ích của 𝛼 là so với các chuỗi FMaxHU và FCHU, nên chúng có các ưu tổng lợi ích trên tất cả các chuỗi Ψ0 chứa 𝛼. Nếu lợi ích điểm sau. Thứ nhất, ta có thể xem nó như một biểu diễn của 𝛼 lớn hơn hoặc bằng một ngưỡng lợi ích tối thiểu 𝑚𝑢, nén của FHUS. Điều này cũng rất phù hợp với nguyên nó được gọi là chuỗi HU, ngược lại 𝛼 được gọi là chuỗi lợi lý chiều dài mô tả bé nhất (MDL: Minimum Description ích thấp (LU: Low Utility). Mục đích của HUSM là khai Length) [19]. Thứ hai, nó cho độ chính xác cao trong các thác tập chuỗi lợi ích cao (HUS) chứa các chuỗi HU trên nhiệm vụ chọn mô hình (so với FHUS hay tập FCHUS). một QSDB. Ngoài ra, khai thác các mẫu sinh (với chiều dài tối thiểu) Thuận lợi chính khi giải FSM là tính ‘a priori’, còn gọi là còn là một bước quan trọng trong việc tìm các luật tuần tính đơn điệu giảm (anti-monotonic) hay DCP (Downward- tự quan trọng, chẳng hạn, các luật với ít giả thiết (vế trái) Closure Property), của độ đo hỗ trợ: Mọi chuỗi cha của nhưng dẫn ra nhiều kết luận (vế phải), hoặc các luật không một chuỗi ít phổ biến (LF: Low Frequent) cũng LF [5, 9]. dư thừa [20]. Khi đó, các mẫu sinh chính là vế trái, vế Đặc tính này cho phép rút gọn đáng kể không gian tìm phải có thể là các mẫu đóng hoặc không. Do đó, các mẫu kiếm khi tiến hành khai thác các chuỗi lớn dần trên cây sinh trong FGHUS thường được ưa thích hơn đối với người tiền tố. Đáng tiếc là trong HUSM, độ đo lợi ích không có dùng khi cần phân tích tập kết quả, vì số lượng và chiều dài tính DCP. Để khắc phục, các chặn trên (UB: Upper Bound) của chúng khá bé so với FHUS. Tập FHUS thường được lợi ích được thiết kế để thu hẹp phạm vi tìm kiếm. sử dụng khi lực lượng của chúng khá bé, chẳng hạn khi Chặn trên SWU [5] (thỏa DCP nhưng giá trị lớn) và các ngưỡng hỗ trợ (𝑚𝑠) và ngưỡng lợi ích tối thiểu (𝑚𝑢) khá chặn trên khác chặt hơn (có giá trị nhỏ và gần với lợi ích cao. Ngược lại, khi các ngưỡng này khá thấp và đặc biệt hơn) lần lượt được thiết kế và sử dụng (mặc dù chỉ thỏa trên các tập dữ liệu lớn, để vượt qua khó khăn trong việc sử mãn các tính chất tựa DCP). Với 𝑢 max (𝛼), có thể kể ra SPU dụng cũng như phân tích tập kết quả FHUS với kích thước và SRU (2013), PEU và RSU (2016), gần đây là MEU [6] quá lớn, tập FGHUS sẽ là một lựa chọn phù hợp hơn với và SEU [10]. Với 𝑢 min (𝛼), các tác giả trong [7] đã đề xuất người dùng. hai chặn trên, RBU và LRU, thiết kế hai chiến lược tỉa theo Mục tiêu của bài báo này là khai thác tập FGHUS. Để chiều sâu (DPS: Depth Pruning Strategy) và rộng (WPS: khai thác hiệu quả nó, do FGHUS ⊆ FHUS, nên một chuỗi Width Pruning Strategy), và tích hợp chúng vào thuật toán LU hoặc LF sẽ không là FGHU. Do đó, tính chất DCP của EHUSM để khai thác hiệu quả HUS. Mặc dù EHUSM có độ hỗ trợ và hai chiến lược WPS và DPS dựa vào RBU và thể khai thác nhanh HUS, lực lượng tập kết quả thường rất LRU [7, 8] có thể được sử dụng để tỉa hiệu quả các chuỗi lớn, việc quản lý và phân tích chúng gây khó khăn đối với LF hoặc LU không những từ FHUS mà cả FGHUS. Tuy người sử dụng. Một tiếp cận thường được dùng trong FSM nhiên, vì FGHUS không là tập con của tập tất cả các chuỗi là khai thác các biểu diễn súc tích của chúng, chẳng hạn sinh phổ biến (FGS), nên ta không thể áp dụng trực tiếp như các chuỗi tối đại, đóng và sinh [11, 12]. Chú ý rằng, các điều kiện tỉa 3E trong [12] để loại bỏ các chuỗi không bằng việc tích hợp FSM và HUSM, ta xét bài toán tổng quát là chuỗi sinh lợi ích cao (GHU). 58
- Tập 2019, Số 2, Tháng 12 Bài báo có một số đóng góp sau đây: (i) đề xuất chặn Kích thước của 𝑞-chuỗi 𝛼 0, ký hiệu là size (𝛼 0), là số các dưới SF của 𝑢 min ; (ii) dựa vào điều kiện tỉa sớm tổng quát 𝑞-sự kiện (𝑝) của nó. 𝐺𝐸 𝑃 [13] và SF, chiến lược tỉa địa phương (LPG) được Từ đây về sau, ta xét hai 𝑞-chuỗi bất kỳ 𝛼 0 = 𝐴10 → thiết kế để loại bỏ sớm các ứng viên (và các mở rộng của 𝐴20 → · · · → 𝐴 0𝑝 và 𝛽 = 𝐵10 → 𝐵20 → · · · → 𝐵𝑞0 cùng chúng) không là GHU; (iii) tích hợp ba chiến lược DPS, hai chuỗi tương ứng 𝛼 = 𝐴1 → 𝐴2 → · · · → 𝐴 𝑝 và WPS và LPG vào thuật toán 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 để khai thác 𝛽 = 𝐵1 → 𝐵2 → · · · → 𝐵 𝑞 . các chuỗi sinh phổ biến lợi ích cao (FGHU); (iv) các thử Định nghĩa 2 ([7]): Xét hai 𝑞-sự kiện 𝐴 0 và 𝐵 0 sau: nghiệm trên hai cơ sở dữ liệu lớn, thực tế và tổng hợp, đã 𝐴 0 = 𝑎 𝑖1 , 𝑞 𝑖1 ), (𝑎 𝑖2 , 𝑞 𝑖2 ), . . . , (𝑎 𝑖𝑚 , 𝑞 𝑖𝑚 ) , chỉ ra tính hiệu quả của 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 (so với thuật toán cơ sở không áp dụng các chiến lược tỉa) về mặt thời gian chạy 𝐵 0 = (𝑎 𝑗1 , 𝑞 𝑗1 ), (𝑎 𝑗2 ), 𝑞 𝑗2 ), . . . , (𝑎 𝑗𝑛 , 𝑞 𝑗𝑛 ) , và lực lượng của FGHUS thường rất bé so với FHUS. Đây là thuật toán đầu tiên khai thác biểu diễn súc tích FGHUS với 𝑚 ≤ 𝑛. 𝐴 0 được gọi là chứa trong 𝐵 0, ký hiệu là 𝐴 0 v 𝐵 0, của FHUS với độ đo lợi ích 𝑢 min . nếu tồn tại các số tự nhiên 1 ≤ 𝑘 1 < · · · < 𝑘 𝑚 ≤ 𝑛 sao cho 𝑎 𝑖𝑙 = 𝑎 𝑗𝑘𝑙 và 𝑞 𝑖𝑙 = 𝑞 𝑗𝑘𝑙 , với mọi 𝑙 = 1, 2, . . . , 𝑚. Phần còn lại của bài báo được tổ chức như sau. Phần II trình bày các khái niệm và kết quả cơ bản. Phần xây dựng Ngoài ra, ta nói 𝛼 0 chứa trong 𝛽 0, ký hiệu là 𝛼 0 v 𝛽 0, nếu chiến lược tỉa địa phương LPG. Phần IV đưa ra thuật toán 𝑝 ≤ 𝑞 và tồn tại 𝑝 số nguyên dương, 1 ≤ 𝑗1 < · · · < 𝑗 𝑝 ≤ 𝑞 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 và các kết quả thử nghiệm. Phần V đưa ra sao cho 𝐴 𝑘0 v 𝐵 0𝑗𝑘 , với mọi 𝑘 = 1, 2, . . . , 𝑝. Đồng thời, các kết luận của bài báo. 𝛼 0 @ 𝛽 0 tương đương với ((𝛼 0 @ 𝛽 0) ∧ (𝛼 0 ≠ 𝛽 0)). Tương tự, ta cũng dùng ký hiệu v để định nghĩa quan II. CÁC KHÁI NIỆM VÀ KẾT QUẢ CƠ BẢN hệ chứa trong trên tập tất cả các chuỗi. Ta nói 𝛼 v 𝛽 hoặc 𝛽 w 𝛼 (𝛽 được gọi là chuỗi cha của 𝛼) nếu tồn tại 𝑝 số 1. Định nghĩa bài toán nguyên dương, 1 ≤ 𝑗 1 < · · · < 𝑗 𝑝 ≤ 𝑞 sao cho 𝐴 𝑘 ⊆ 𝐵 𝑗𝑘 , Mục này giới thiệu vài khái niệm cơ sở liên quan đến với mọi 𝑘 = 1, 2, . . . , 𝑝. Đồng thời, 𝛼 @ 𝛽 tương đương với bài toán HUSM với 𝑢 min trong [7]. ((𝛼 v 𝛽) ∧ (𝛼 ≠ 𝛽)). def Định nghĩa 1 ([7]): Gọi A = {𝑎 1 , 𝑎 2 , . . . , 𝑎 𝑀 } là tập Ta nói 𝛽 0 chứa 𝛼, ký hiệu là 𝛼 v 𝛽 0 (hay 𝛽 0 w 𝛼, 𝛽 0 các thuộc tính phân biệt. Mỗi thuộc tính 𝑎 gắn liền với một được gọi là 𝑞-chuỗi cha của 𝛼) nếu proj(𝛽 0) w 𝛼. số dương P(𝑎) thể hiện giá trị lợi ích đơn vị của nó. Khi đó, Gọi def def ta có véctơ P( 𝐴) = hP(𝑎 1 ), P(𝑎 2 ), . . . , P(𝑎 𝑀 )i. Một thuộc 𝜌(𝛼) = {Ψ0 ∈ D 0 | Ψ0 w 𝛼} tính số lượng/định lượng (𝑞-thuộc tính) là một cặp (𝑎, 𝑞), là tập tất cả các 𝑞-chuỗi đầu vào chứa 𝛼. Độ hỗ trợ của 𝛼 với 𝑎 ∈ A và 𝑞 ∈ 𝑅+ là một số lượng dương. Tập con 𝐴 được định nghĩa là số các 𝑞-chuỗi đầu vào chứa 𝛼, của A, 𝐴 ⊆ A, được gọi là một sự kiện. Không mất tổng def quát, giả sử rằng các thuộc tính trong một sự kiện được supp(𝛼) = |𝜌(𝛼)|. sắp tăng theo thứ tự từ điển ≺. Một sự kiện số lượng (𝑞-sự kiện) ứng với 𝐴 được định nghĩa là Định nghĩa 3 ([7]): Các lợi ích của 𝑞-thuộc tính (𝑎, 𝑞), 𝑞-sự kiện 𝐴 0 = (𝑎 𝑖1 , 𝑞 𝑖1 ), (𝑎 𝑖2 , 𝑞 𝑖2 ), . . . , (𝑎 𝑖𝑚 , 𝑞 𝑖𝑚 ), 𝑞-chuỗi def 𝐴 0 = {(𝑎 𝑖 , 𝑞 𝑖 ) | 𝑎 𝑖 ∈ 𝐴, 𝑞 𝑖 ∈ 𝑅+ }. 𝛼 0 và QSDB D 0 lần lượt được định nghĩa là def 𝐴 được gọi là sự kiện chiếu của 𝐴 0, ký hiệu là 𝐴 = proj( 𝐴 0). 𝑢((𝑎, 𝑞)) = 𝑃(𝑎) ∗ 𝑞, Danh sách các 𝑞-sự kiện 𝐴 𝑘0 , 𝑘 = 1, 2, . . . , 𝑝 ký hiệu là 𝑚 def Õ 𝛼 0 = 𝐴10 → 𝐴20 · · · → 𝐴 0𝑝 , được gọi là một 𝑞-chuỗi. Chuỗi 𝑢( 𝐴 0) = 𝑢((𝑎 𝑖 𝑗 , 𝑞 𝑖 𝑗 )), chiếu 𝛼 của 𝑞-chuỗi 𝛼 0 được định nghĩa là 𝑗=1 𝑝 def Õ def 𝛼 = proj(𝛼 0) = proj( 𝐴10 ) → proj( 𝐴20 ) → · · · → proj( 𝐴 0𝑝 ). 𝑢(𝛼 0) = 𝑢( 𝐴𝑖0), 𝑖=1 def def Để thuận tiện, ta ký hiệu 𝛼 0 [𝑘] = 𝐴 𝑘0 và 𝛼[𝑘] = proj( 𝐴 𝑘0 ). 0 def Õ 𝑢(D ) = 𝑢(Ψ0). Một 𝑞-chuỗi là rỗng () nếu tất cả các sự kiện của nó là Ψ0 ∈D 0 rỗng. Một cơ sở dữ liệu chuỗi lượng hóa (QSDB) D 0 chứa 0 0 hữu hạn các 𝑞-chuỗi đầu vào, D = Ψ𝑖 , 𝑖 = 1, 2, . . . , 𝑁 Để tránh tính toán lặp lại lợi ích 𝑢 của mỗi 𝑞-thuộc tính và 𝑃( 𝐴). Mỗi 𝑞-chuỗi Ψ𝑖0 gắn với một định danh (SID) 𝑖. (𝑎, 𝑞) trong các 𝑞-chuỗi Ψ0 của D 0, ta tính chúng một lần Cơ sở dữ liệu chuỗi (không lượng hóa SDB) D ứng với và thay 𝑞 bởi 𝑢((𝑎, 𝑞)) = P(𝑎) ∗ 𝑞 trong cơ sở dữ liệu. Biểu D 0 được định nghĩa là diễn tương đương này của QSDB D 0 được gọi là QSDB tích hợp của D 0, cũng được ký hiệu vắn tắt là D 0. Từ đây def D = proj(D 0) = proj(Ψ𝑖0 ), 𝑖 = 1, 2, . . . , 𝑁 . về sau ta chỉ xét các QSDB tích hợp. 59
- Các công trình nghiên cứu phát triển Công nghệ Thông tin và Truyền thông Bảng I độ hỗ trợ với nó. Tập tất cả các chuỗi GHU được định nghĩa D 0 − MỘT QSDB MINH HỌA và ký hiệu là def SID Chuỗi GHUS = 𝛾 ∈ HUS | 𝛾 ∗ ∈ HUS : 1 Ψ01 = (𝑎, 9) → (𝑐, 2) (𝑒, 20) → (𝑐, 1) (𝑔, 50) (𝛾 ∗ @ 𝛾) ∧ (supp(𝛾) = supp(𝛾 ∗ )) . → (𝑐, 8) (𝑑, 16) → (𝑐, 8) (𝑑, 16) (𝑒, 35) (𝑔, 60) → (𝑎, 3) (𝑐, 5) (𝑒, 2) Tập các chuỗi sinh phổ biến lợi ích cao, FGHU, được định 2 Ψ02 = (𝑐, 9) ( 𝑓 , 28) → (𝑎, 15) (𝑐, 10) nghĩa và ký hiệu là → (𝑑, 16) (𝑔, 40) (𝑎, 15) (𝑒, 20) → (𝑐, 6) (𝑑, 24) (𝑒, 25) def 3 Ψ03 = (𝑔, 20) → (𝑒, 40) ( 𝑓 , 12) → (𝑏, 45) (𝑐, 1) → (𝑑, 56) FGHUS = 𝛾 ∈ FHUS | 𝛾 ∗ ∈ FHUS : (𝛾 ∗ @ 𝛾) ∧ (supp(𝛾) = supp(𝛾 ∗ )) . 4 Ψ04 = (𝑒, 40) → (𝑐, 2) ( 𝑓 , 20) → (𝑐, 3) Khai thác tập FGHUS là mục tiêu của bài báo này. Ví Xét QSDB minh họa trong Bảng I, sẽ được dùng cho các dụ, xét 𝑚𝑢 = 226 và 𝑚𝑠 = 2. Với chuỗi 𝛾 = 𝑎 → 𝑔 → 𝑐𝑑𝑒, ví dụ trong suốt bài báo. Chuỗi 𝛼 = 𝑒 → 𝑐𝑒 chứa trong Ψ10 , ta có 𝛾2228 ∈ FHUS. Hơn nữa, 𝛾 là một chuỗi FGHU, vì 𝛼 v Ψ10 , vì nó xuất hiện trong Ψ𝑖0 . Lần xuất hiện đầu tiên không tồn tại 𝛾 ∗ ∈ FHUS sao cho 𝛾 ∗ @ 𝛾 và supp(𝛾 ∗ ) = của 𝛼 trong Ψ10 là 𝑞-chuỗi con 𝛼 0 = (𝑒, 20) → (𝑐, 8) (𝑒, 35) supp(𝛾). Đây cũng là chuỗi FGHU duy nhất, tức là FGHUS của Ψ10 . Vậy proj(𝛼 0) = 𝛼 và 𝑢(𝛼 0) = 20+8+35 = 63. Ngoài = {𝛾}. Để ý rằng, lực lượng của FGHUS thường bé hơn ra, do 𝛼 v Ψ20 , nên 𝜌(𝛼) = {Ψ10 , Ψ20 } và supp(𝛼) = 2. SDB rất nhiều so với FHUS, đặc biệt khi 𝑚𝑢 và 𝑚𝑠 bé. Chẳng D ứng với D 0 là hạn, với 𝑚𝑢 = 1 và 𝑚𝑠 = 1, |FHUS| = 5235, trong khi đó |FGHUS| = 105 (khoảng 2% của |FHUS|). D = {Ψ1 = 𝑎 → 𝑐𝑒 → 𝑐𝑔 → 𝑐𝑑𝑒𝑔 → 𝑎𝑐𝑒, Định nghĩa 6 ([7]): Ta định nghĩa 𝑠-mở rộng và 𝑖-mở Ψ2 = 𝑐 𝑓 → 𝑎𝑐 → 𝑑𝑔 → 𝑎𝑒 → 𝑐𝑑𝑒, rộng của 𝛼 và 𝛽 lần lượt là def Ψ3 = 𝑔 → 𝑒 𝑓 → 𝑏𝑐 → 𝑑, 𝛼 𝑠 𝛽 = 𝐴1 → 𝐴2 → · · · → 𝐴 𝑝 → 𝐵 1 → 𝐵 2 → · · · → 𝐵 𝑞 , Ψ4 = 𝑒 → 𝑐 𝑓 → 𝑐}. def 𝛼 𝑖 𝛽 = 𝐴 1 → 𝐴 2 → · · · → ( 𝐴 𝑝 ∪ 𝐵 1 ) → 𝐵 2 → · · · → 𝐵 𝑞 , Định nghĩa 4 ([7]): Giả sử 𝛼 v 𝛽 0. Gọi trong đó 𝑎 ≺ 𝑏 với mọi 𝑎 ∈ 𝐴 𝑝 và 𝑏 ∈ 𝐵1 . Một mở rộng tiến (hay mở rộng) của 𝛼 với 𝛽, ký hiệu là 𝛾 = 𝛼 𝛽, là def O (𝛼, 𝛽 0) = {𝛼 0 | (𝛼 0 v 𝛽 0) ∧ (proj(𝛼 0) = 𝛼} một 𝑖-mở rộng hoặc là 𝑠-mở rộng, tức là 𝛼 𝑖 𝛽 hay 𝛼 𝑠 𝛽. Khi đó, 𝛼 được gọi là một tiền tố của 𝛾 và 𝛽 là một hậu tố là tập tất cả các lần xuất hiện 𝛼 0 của 𝛼 trong 𝛽 0. Lợi ích bé (đối với 𝛼) của 𝛾. Ngoài ra, nếu 𝛿 là tiền tố bé nhất (của nhất (gọi tắt là lợi ích) của 𝛼 trong 𝛽 0 được định nghĩa là 𝛾 với v) chứa 𝛼, ta ký hiệu 𝛿 là pref(𝛾, 𝛼). Hậu tố 𝛽 của def 𝛾 (đối với 𝛿, tức là 𝛾 = 𝛿 𝛽) được ký hiệu là suf (𝛾, 𝛼). 𝑢 min (𝛼, 𝛽 0) = min{𝑢(𝛼 0) | 𝛼 0 ∈ O (𝛼, 𝛽 0)}. Cơ sở dữ liệu chiếu (PDB) của 𝛼 được định nghĩa là Lợi ích của 𝛼 trong D 0 được định nghĩa là def D 𝛼 = {suf(Ψ, 𝛼)|(Ψ ∈ D) ∧ (Ψ w 𝛼)}. def Õ 𝑢 min (𝛼) = 𝑢 min (𝛼, Ψ0)). Ta nói D𝛽 chứa trong D 𝛼 , ký hiệu là D𝛽 v 𝐷 𝛼 , nếu Ψ0 ∈𝜌( 𝛼) 𝜌(𝛽) ⊆ 𝜌(𝛼) và với mọi Ψ ∈ 𝜌(𝛽) ta có suf (Ψ, 𝛽) v Lúc đó, 𝛼 được gọi là chuỗi lợi ích cao (HU) nếu suf(Ψ, 𝛼). Khi D𝛽 v D 𝛼 và D 𝛼 v D𝛽 , ta nói rằng 𝑢 min (𝛼) ≥ 𝑚𝑢. D𝛽 bằng D 𝛼 và ký hiệu D𝛽 = D 𝛼 . Dễ thấy rằng supp(𝛼) = |D 𝛼 |. Từ nay, ta viết gọn 𝛼𝑠𝑢 để diễn tả rằng 𝑢 min (𝛼) = 𝑢 và supp(𝛼) = 𝑠. Lý do của việc sử dụng 𝑢 min có thể tham Ví dụ, với 𝛼 = 𝑒 → 𝑒 @ 𝛽 = 𝑒 → 𝑐𝑒, ta có khảo thêm trong [7, 8, 13]. Lấy ví dụ, xét 𝛼 = 𝑒 → 𝑐𝑒 với 𝜌(𝛼) = 𝜌(𝛽) = {Ψ1 , Ψ2 }, suf (Ψ1 , 𝛼) = _𝑔 → 𝑎𝑐𝑒 và 𝜌(𝛼) = {Ψ10 , Ψ20 } và supp(𝛼) = 2. Dễ thấy rằng, suf(Ψ2 , 𝛼) =. Do đó, PDB của 𝛼 là D 𝛼 = {_𝑔 → 𝑎𝑐𝑒, }. Tương tự, ta có D𝛽 = D 𝛼 . O (𝛼, Ψ40 ) = {(𝑒, 20) → (𝑐, 8) (𝑒, 35), (𝑒, 20) → Không gian tìm kiếm chuỗi lời giải được biểu diễn bởi (𝑐, 5) (𝑒, 20), (𝑒, 35) → (𝑐, 5) (𝑒, 20)}. một cây tiền tố với gốc là chuỗi rỗng, mỗi nút biểu diễn một chuỗi ứng viên, mỗi nút con biểu diễn một chuỗi mở Do đó, 𝑢 min (𝛼, Ψ10 ) = min{63, 45, 60} = 45 và tương tự, rộng. Ta ký hiệu branch(𝛼) là nhánh có gốc tại nút biểu 𝑢 min (𝛼, Ψ10 ) = 51. Vì vậy, ta có 𝛼296 . diễn 𝛼, nó chứa 𝛼 và các mở rộng của nó. Với một tiền tố Định nghĩa 5: Một chuỗi HU 𝛾 được gọi là chuỗi sinh khác rỗng 𝛼, 𝛽 = 𝛼 𝑦, chuỗi 𝛾 = 𝛼 𝜀 𝑦 mà 𝛾 w 𝛽 được lợi ích cao, GHU, nếu không tồn tại chuỗi con HU có cùng gọi là một mở rộng lùi (BE) của 𝛽 bởi 𝜀, với 𝑦 là thuộc 60
- Tập 2019, Số 2, Tháng 12 tính cuối của 𝛽, ký hiệu là lastItem(𝛽). Chẳng hạn, với Vì vậy 𝛼 = 𝑐𝑑 thì branch(𝛼) chứa các chuỗi: 𝑐𝑑 → 𝜀, 𝑐𝑑𝑒 → 𝜀 𝑢𝑏 rem (𝛽, Ψ10 ) = 17 + 123 = 140. và 𝑐𝑑𝑒𝑔 → 𝜀, với mọi 𝜀, kể cả . Cho 𝛽 = 𝑐𝑒, các chuỗi 𝑐𝑑𝑒 và 𝑐 → 𝑐𝑔 → 𝑐𝑑𝑒 là các BE của 𝛽. Tuy nhiên, Một độ đo 𝑢𝑏 được gọi là một chặn trên của 𝑢 min nếu 𝑐𝑒 → 𝑐𝑔 → 𝑒 là BE của 𝑐 → 𝑒, nhưng không là BE của 𝛽. 𝑢 min (𝛼) ≤ 𝑢𝑏(𝛼), với mọi 𝛼. Ngoài chặn trên truyền thống def Í SWU(𝛼) = Ψ0 ∈𝜌( 𝛼) 𝑢(Ψ0) [5], ta còn có các chặn trên Thách thức chính của HUSM là 𝑢 min không đơn điệu chặt hơn sau đây. tăng cũng không đơn điệu giảm, tức là Định nghĩa 7 ([7]): Xét 𝑦 ∈ A và 𝛼 khác rỗng. Ta định ∃𝛽, 𝛼, 𝛾, 𝛿 : (𝛽 A 𝛼) ∧ (𝛾 @ 𝛿) nghĩa các chặn trên sau đây: (𝑢 min (𝛽) > 𝑢 min (𝛼)) ∧ (𝑢 min (𝛾) > 𝑢 min (𝛿)). def Õ RBU(𝛼) = 𝑢𝑏 rem (𝛼, Ψ0), Nói cách khác, 𝑢 min không thỏa mãn DCP (tính chất của Ψ0 ∈𝜌( 𝛼) def Õ supp được sử dụng trong FSM). Thật vậy, với 𝛼 = 𝑐𝑑, LRU(𝛼 𝑦) = 𝑢𝑏 rem (𝛼, Ψ0), 𝛽 = 𝑐𝑑𝑔, và 𝛿 = 𝑐 → 𝑐 → 𝑐𝑑, dễ thấy rằng 𝛿 A 𝛼 @ 𝛽 Ψ0 ∈𝜌( 𝛼𝑦) và 𝑢 min (𝛽) = 84 > 𝑢 min (𝛼) = 54 > 𝑢 min (𝛿) = 27. Để def LRU(𝑦) = SWU(𝑦). khắc phục, các chặn trên 𝑢 min thỏa mãn các tính chất tựa đơn điệu giảm (có thể yếu hơn DCP) được đề xuất trong Với hai chặn trên 𝑢𝑏 1 và 𝑢𝑏 2 , 𝑢𝑏 1 được gọi là chặt hơn mục tiếp theo. 𝑢𝑏 2 , ký hiệu là 𝑢𝑏 1 𝑢𝑏 2 , nếu 𝑢𝑏 1 (𝛼) ≤ 𝑢𝑏 2 (𝛼) với mọi 𝛼. Theo [7, Định lý 1], ta có 2. Hai chiến lược tỉa các chuỗi LU và LF theo chiều 𝑢 min RBU LRU SWU . sâu và chiều rộng Ví dụ, xét chuỗi 𝛽 = 𝑐 → 𝑐𝑑, 𝜌(𝛽) = {Ψ10 , Ψ20 }. Khi đó Giả sử 𝛼 0 v Ψ0, 𝛼 = proj(𝛼 0) v Ψ0, với Ψ0 = 𝐵10 → 𝑢 min (𝛽, Ψ10 ) = 25, 𝑢 min (𝛽, Ψ20 ) = 39, 𝐵20 → · · · → 𝐵𝑞0 ∈ D 0, tức là tồn tại 𝑝 số nguyên, 1 ≤ 𝑖1 < 𝑖 2 < · · · < 𝑖 𝑝 ≤ 𝑞 sao cho 𝐴 𝑘0 v 𝐵𝑖0𝑘 và 𝐴 𝑘 = proj( 𝐴 𝑘0 ) ⊆ FEnd(𝛽, Ψ10 ) = 4, 𝑢(𝛽, Ψ10 , 4) = 25, proj(𝐵𝑖0𝑘 ), với mọi 𝑘 = 1, 2, . . . , 𝑝. Chỉ số cuối 𝑖 𝑝 được gọi 𝑢(rem(𝛽, Ψ10 , 4)) = 123. là điểm cuối của 𝛼 (hay 𝛼 0) trong Ψ0, ký hiệu là end(𝛼, Ψ0) Vì vậy (hay end(𝛼 0, Ψ0)). Thuộc tính cuối của 𝛼 trong 𝐵𝑖0𝑝 được gọi là thuộc tính cuối ứng với 𝑖 𝑝 , ký hiệu là 𝑒 𝑖 𝑝 . Khi đó, 𝑞-chuỗi 𝑢 min (𝛽) = 𝑢 min (𝛽, Ψ10 ) + 𝑢 min (𝛽, Ψ20 ) = 64, còn lại của 𝛼 trong Ψ0 (đối với 𝑖 𝑝 ) là phần còn lại của Ψ0 𝑢𝑏 rem (𝛽, Ψ10 ) = 150, 𝑢𝑏 rem (𝛽, Ψ20 ) = 64, def sau 𝑒 𝑖 𝑝 , ký hiệu là rem(𝛼, Ψ0, 𝑖 𝑝 ). Gọi 𝑖 ∗𝑝 = FEnd(𝛼, Ψ0) RBU(𝛽) = 𝑢𝑏 rem (𝛽, Ψ10 ) + 𝑢𝑏 rem (𝛽, Ψ20 ) = 212. là điểm cuối đầu tiên của 𝛼 trong Ψ0. Cơ sở dữ liệu chiếu lượng hóa (PQDB) D 𝛼0 của 𝛼 chứa tất cả các chuỗi còn lại Ngoài ra, với 𝛼 = 𝑐 → 𝑐, ta dễ thấy rằng 𝛽 = 𝛼 𝑖 𝑑 và def rem(𝛼, Ψ0, 𝑖 ∗𝑝 ), với Ψ0 ∈ D 0. Nếu 𝛼 =, ta quy ước 𝑖 ∗𝑝 = LRU(𝛽) = 𝑈𝐵rem (𝛼, Ψ10 ) + 𝑢𝑏 rem (𝛼, Ψ20 ) def 0 def FEnd(, Ψ0) = 0, D và = D0 rem(, Ψ0, 𝑖 ∗𝑝 ) = Ψ0. = 200 + 165 = 365, Với mỗi điểm cuối 𝑖 𝑝 = end(𝛼, Ψ0), ta định nghĩa SWU(𝛽) = 𝑢(Ψ10 ) + 𝑢(Ψ20 ) = 229 + 208 = 437. def 𝑢(𝛼, Ψ0, 𝑖 𝑝 ) = min{𝑢(𝛼 0) | 𝛼 0 ∈ O (𝛼, Ψ0) ∧ end(𝛼 0, Ψ0) = 𝑖 𝑝 }. Vì vậy ta có Chặn trên dựa vào lợi ích còn lại của 𝑢 min (𝛼, Ψ0) được định 𝑢 min (𝛽) < RBU(𝛽) < LRU(𝛽) < SWU(𝛽). nghĩa và ký hiệu: ( Để loại nhanh các chuỗi có lợi ích thấp hoặc ít phổ biến, def 𝑢(𝛼, Ψ0, 𝑖 ∗𝑝 ) + 𝑢(rem(𝛼, Ψ0, 𝑖 ∗𝑝 )), 𝛼 ≠, 𝑢𝑏 rem (𝛼, Ψ0) = dựa vào [7, Định lý 2], ta thiết kế hai chiến lược DPS và 𝑢(Ψ0), 𝛼 = . WPS nhằm thu hẹp hiệu quả không gian tìm kiếm. Trước hết, ta có chiến lược tỉa theo chiều sâu dựa vào RBU, viết Ví dụ, xét 𝛽 = 𝑐 → 𝑑. Do lần xuất hiện đầu tiên của 𝛽 là DPS(RBU), như sau: “Nếu RBU(𝛼) < 𝑚𝑢 thì branch(𝛼) trong Ψ10 là 𝑞-chuỗi con 𝛽 0 = (𝑐, 2) → (𝑑, 16) v Ψ10 , nên có thể được tỉa”. def 𝑖 ∗𝑝 = FEnd(𝛽, Ψ10 ) = 4, Gọi hai tập thuộc tính ứng viên cho các 𝑖− và 𝑠-mở rộng lần lượt là: rem(𝛽, Ψ10 , 𝑖 ∗𝑝 ) = (𝑒, 35) (𝑔, 60) → (𝑎, 3) (𝑐, 5) (𝑒, 20), def 𝑢(rem(𝛽, Ψ10 , 𝑖 ∗𝑝 )) = 123, 𝐼LRU (𝛼) = {𝑧 | (LRU(𝛼 𝑖 𝑧) ≥ 𝑚𝑢) ∧ (supp(𝛼 𝑖 𝑧) ≥ 𝑚𝑠)}, def 𝑢(𝛽, Ψ10 , 𝑖 ∗𝑝 ) = min{𝑢(𝛽 0), 𝑢((𝑐, 1) → (𝑑, 16))} = 17. 𝑆LRU (𝛼) = {𝑧 | (LRU(𝛼 𝑠 𝑧) ≥ 𝑚𝑢) ∧ (supp(𝛼 𝑠 𝑧) ≥ 𝑚𝑠)}. 61
- Các công trình nghiên cứu phát triển Công nghệ Thông tin và Truyền thông Nếu 𝑢 min (𝛼 𝑖 𝑧) ≥ 𝑚𝑢 và supp(𝛼 𝑖 𝑧) ≥ 𝑚𝑠, thì III. CHIẾN LƯỢC LPG TỈA SỚM CÁC CHUỖI KHÔNG LÀ SINH LỢI ÍCH CAO LRU(𝛼 𝑖 𝑧) ≥ 𝑢 min (𝛼 𝑖 𝑧) ≥ 𝑚𝑢, 1. Điều kiện tỉa sớm tổng quát tức là 𝑧 ∈ 𝐼LRU (𝛼). Vì LRU(𝛼 𝑖 𝑦 𝑖 𝑧) ≤ LRU(𝛼 𝑖 𝑧), Trước hết, chúng tôi nhắc lại hai độ đo SE, SLIP và điều max{LRU(𝛾) | 𝛾 ∈ {𝛼 𝑖 𝑦 𝑠 𝑧, 𝛼 𝑠 𝑦 𝑖 𝑧, 𝛼 𝑠 𝑦 𝑠 𝑧}} kiện tỉa sớm tổng quát đã được dùng để tỉa các chuỗi phổ ≤ LRU(𝛼 𝑠 𝑧), biến đóng và các chuỗi phổ biến đóng có lợi ích cao [13], supp(𝛼 𝑦 𝑧) ≤ supp(𝛼 𝑧), với 𝛼 𝑦 𝑧 w 𝛼 𝑧. hoặc các chuỗi sinh phổ biến [12]. Cho nên ta có Định nghĩa 8 ([12]): Tổng các sự kiện còn lại trong một PDB D 𝛼 được định nghĩa và ký hiệu là: 𝐼LRU (𝛼 𝑖 𝑦) ⊆ 𝐼LRU (𝛼), def Õ (𝑆LRU (𝛼 𝑖 𝑦) ∪ 𝑆LRU (𝛼 𝑖 𝑦)) ⊆ 𝑆LRU (𝛼). SE(𝛼) = size(Ψ) − size(pref(Ψ, 𝛼)) + 1 . Ψ∈D: suf (Ψ, 𝛼) ∈D 𝛼 Từ đó, ta có chiến lược tỉa theo chiều rộng dựa vào LRU, viết là WPS(LRU), như sau: “Nếu LRU(𝛼 𝑦) < 𝑚𝑢, ta Với chuỗi 𝛼, gọi 𝛿 là tiền tố bé nhất của Ψ chứa 𝛼, không cần xét tất cả các mở rộng tiến của 𝛼 𝑦, tức là Ψ ∈ 𝜌(𝛼). Đặt 𝑓 𝑖(𝛼, Ψ) là chỉ số (trong Ψ) của sự kiện branch(𝛼 𝑦), và các mở rộng lùi của nó. cuối của 𝛿 và lastEvent(𝛼) là sự kiện cuối của 𝛼. Gọi Lấy ví dụ, với 𝑚𝑢 = 230 và 𝑚𝑠 = 2, ta có supp(𝑏) < 𝑚𝑠 LP(𝛼, Ψ) là danh sách các vị trí thứ 𝑖 khác nhau trong Ψ và LRU(𝑏) = 174 < 𝑚𝑢. Các giá trị LRU của các thuộc mà lastEvent(𝛼) ⊆ Ψ[𝑖] và 𝑓 𝑖(𝛼, Ψ) ≤ 𝑖 ≤ size(Ψ). Không tính còn lại, trong tập chứa các thuộc tính ứng viên cho mất tổng quát, giả sử rằng các chỉ số trong LP(𝛼, Ψ) được các mở rộng, 𝐼LRU () = 𝑆LRU () = {𝑎, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔}, sắp tăng. Khi đó, đều lớn hơn hay bằng mu (chẳng hạn LRU(𝑎) = 447). Khi def slip(𝛼, Ψ) = | LP(𝛼, Ψ)| đó, do WPS(LRU), ta có thể loại thuộc tính 𝑏 khỏi D 0. Để minh họa tác dụng tỉa theo chiều sâu của RBU, xét là số các vị trí xuất hiện của sự kiện cuối của 𝛿 trong Ψ. hai giá trị RBU(𝑎𝑐) = 199 và RBU(𝑎 → 𝑐) = 229 đều bé Định nghĩa 9 ([13]): Số đo SLIP của PDB D 𝛼 được hơn 𝑚𝑢. Sử dụng DPS(RBU), toàn bộ nhánh branch(𝑎𝑐) định nghĩa và ký hiệu là và branch(𝑎 → 𝑐) bị tỉa. Dễ thấy rằng, sử dụng supp, def Õ 𝐼LRU (𝑎) = {𝑐, 𝑒} và 𝑆LRU (𝑎) = {𝑎, 𝑐, 𝑑, 𝑒, 𝑔}(⊆ 𝑆LRU ( SLIP(𝛼) = slip(𝛼, Ψ). Ψ∈𝜌( 𝛼) )). Vì 𝑆LRU (𝑎 → 𝑐) ⊆ 𝑆LRU (𝑎) và với bất kỳ 𝑥 ∈ 𝑆LRU (𝑎), RBU(𝑎 → 𝑐 → 𝑥) < LRU(𝑎 → 𝑐 → 𝑥) = 229 < 𝑚𝑢 hay Ví dụ, xét 𝛼 = 𝑒 → 𝑒. Vì D 𝛼 = {_𝑔 → 𝑎𝑐𝑒, }, nên supp(𝑎 → 𝑐 → 𝑥) = 1 < 𝑚𝑠, 𝑆LRU (𝑎 → 𝑐) = ∅. Do đó, bởi SE(𝛼) = 3. Ta có 𝜌(𝛼) = {Ψ1 , Ψ2 }. Vì sự kiện cuối 𝑒 DPS(RBU), ta chỉ có thể tỉa nhánh branch(𝑎 → 𝑐 → 𝑥), xuất hiện hai lần trong Ψ1 tại vị trí thứ 4 và thứ 5, nên với mọi 𝑥 ∈ {𝑎, 𝑐, 𝑑, 𝑒, 𝑔}. LP(𝛼, Ψ1 ) = {4, 5}. Tương tự, LP(𝛼, Ψ2 ) = {5}. Vì vậy, Tuy nhiên, sử dụng WPS(LRU), ta vẫn có thể loại bỏ tất SLIP(𝛼) = 3. Từ SE và SLIP, ta có điều kiện tỉa sớm tổng cả các nhánh mở rộng lùi của branch(𝑎 → 𝑐 → 𝑥), ví dụ quát (GEP) trong Định lý 1 sau đây. như branch(𝑎 → 𝑐 → 𝑔 → 𝑑), branch(𝑎 → 𝑐𝑒 → 𝑐𝑔 → Định lý 1 (Điều kiện tỉa sớm tổng quát [13]): Xét hai 𝑐𝑑) (của branch(𝑎 → 𝑐 → 𝑑)), v.v. Thật vậy, lý do là chuỗi 𝛼 và 𝛽 thỏa mãn 𝛼 v 𝛽. Khi đó: 𝐼LRU (𝑎 → 𝑐𝑒 → 𝑐𝑔 → 𝑐) ⊆ 𝑆LRU (𝑎 → 𝑐𝑒) ⊆ 𝑆LRU (𝑎 → a) Nếu SE(𝛼) = SE(𝛽), thì supp(𝛼) = supp(𝛽) và D𝛾 = 𝑐) = ∅. Ngoài ra, mặc dù chặt hơn LRU, nhưng RBU không D𝜆 với mọi 𝑠-mở rộng 𝛾 của 𝛼 và 𝜆 của 𝛽 với cùng một có tác dụng tỉa theo chiều rộng. Nếu dùng RBU để tỉa theo chuỗi khác rỗng; chiều rộng, ta có thể tỉa nhầm một số lời giải. Thật vậy, b) Nếu SE(𝛼) = SE(𝛽) và SLIP(𝛼) = SLIP(𝛽), thì với 𝑚𝑢 = 225 và 𝑚𝑠 = 2, vì 𝐼RBU (𝑎 → 𝑔 → 𝑒 → 𝑐) (⊆ supp(𝛼) = supp(𝛽) và D𝛾 = D𝜆 với tất cả mở rộng 𝛾 𝑆RBU (𝑎 → 𝑔 → 𝑒) = {𝑐}), nên 𝐼RBU (𝑎 → 𝑔 → 𝑒 → 𝑐) = của 𝛼 và 𝜆 của 𝛽 với cùng một chuỗi khác rỗng. ∅. Tuy nhiên, 𝑎 → 𝑔 → 𝑒 → 𝑐𝑒 225 2 ∈ FHUS. Có thể kết luận rằng, mặc dù LRU lỏng hơn RBU, tác dụng tỉa của WPS thật sự mạnh hơn DPS. 2. Chiến lược LPG Vì vậy, DPS và WPS được dùng để tỉa các nhánh LU Dựa vào GEP và chặn dưới SF sau đây của 𝑢 min , chiến (và LF) trên cây tìm kiếm tiền tố, có hiệu quả với các giá lược LPG tỉa sớm các chuỗi non-GHU được đề xuất. trị 𝑚𝑢 cao [7]. Tuy nhiên, nhiều chuỗi HU có thể không Định nghĩa 10: Cho chuỗi phổ biến 𝛼, tức là supp(𝛼) ≥ là các chuỗi sinh HU (non-GHU). Do đó, trong phần tiếp def 𝑘, với 𝑘 = 𝑚𝑠. Sau khi sắp xếp tăng dần dãy theo, chiến lược LPG tỉa các ứng viên non-GHU sẽ được đề def xuất. Để ý rằng, LPG sẽ hiệu quả với các giá trị 𝑚𝑢 thấp. U (𝛼) = {𝑢 min (𝛼, Ψ0) | Ψ0 ∈ 𝜌(𝛼)}, 62
- Tập 2019, Số 2, Tháng 12 ta thu được dãy {𝑢 𝑖 , 1 ≤ 𝑖 ≤ 𝑛} với 𝑛 ≥ 𝑘. Chặn dưới SF của nếu SLIP(𝛼) = SLIP(𝑖 new ), thì toàn bộ nhánh non-GHU 𝑢 min được định nghĩa là tổng 𝑘 giá trị bé nhất của U (𝛼), branch(𝑖new ) cũng được tỉa; def Õ (ii) Nếu SE(path(𝑢)) = SE(𝑖new ) và SF(path(𝑢)) ≥ 𝑚𝑢 , SF(𝛼) = 𝑢𝑖 . thì non-GHU s-child branches(𝑖new ) được tỉa. Ngoài ra, nếu 1≤𝑖 ≤𝑘 SLIP(path(𝑢)) = SLIP(𝑖new ), thì non-GHU branch(𝑖new ) Định lý 2: Ta có: được tỉa; (a) SF là một chặn dưới của 𝑢 min , tức là SF(𝛼) ≤ 𝑢 min (𝛼), (iii) Nếu q.type = s-ext, q.Parent.Item = q.Item với mọi 𝛼; (tồn tại 𝑟 ∈ q.Parent.iChildren sao cho r.Item = (b) SF là đơn điệu tăng đối với các mở rộng, tức là u.Item), q.Parent.type = s-ext, SE(path(𝑟)) = SE(𝑖new ) và SF(𝛽) ≥ SF(𝛼), với mọi 𝛽 = 𝛼 𝛿 w 𝛼. SF(path(𝑟)) ≥ 𝑚𝑢, thì ta có thể tỉa non-GHU branch(𝑖 new ). Í𝑘 Chứng minh: (a) Với mọi 𝛼, ta có SF(𝛼) = 𝑖=1 𝑢𝑖 ≤ (b) Với mỗi 𝑠-mở rộng, 𝑠new = 𝛼 𝑠 𝑣 sao cho v.type = Í𝑛 𝑢 𝑖=1 𝑖 = 𝑢 min (𝛼). s-ext, nếu SE(path(𝑣)) = SE(𝑠new ) và SF(path(𝑣)) ≥ 𝑚𝑢, (b) Với mở rộng bất kỳ 𝛽 = 𝛼𝛿 w 𝛼, ta có 𝜌(𝛽) ⊆ 𝜌(𝛼) thì non-GHU branch(𝑠new ) có thể được tỉa. và 𝑢 min (𝛽, Ψ0) ≥ 𝑢 min (𝛼, Ψ0), với mọi Ψ0 ∈ 𝜌(𝛽). Thật vậy Chứng minh: Ta sẽ chứng minh a(i). Các khẳng định def 𝑢 min (𝛽, Ψ0) = min{𝑢(𝛽 0) | 𝛽 0 ∈ O (𝛽, Ψ0)} = 𝑢(𝛽min 0 ), còn lại có thể được chứng minh tương tự. Giả sử rằng ∃𝛼∗ ∈ O (𝛼, Ψ ), 𝜀 ∗ v 𝛽min sao cho 𝛼 v 𝛽min = 𝛼∗0 0 0 0 0 0 SE(𝛼) = SE(𝑖 new ) và SF(𝛼) ≥ 𝑚𝑢. Vì 𝛼 @ 𝑖new , với mọi 𝜀 ∗0 ∈ O (𝛽, Ψ0) và 𝑢(𝛽min 0 ) = 𝑢(𝛼 0 ) + 𝑢(𝜀 0 ) ≥ 𝑢(𝛼 0 ) ≥ ∗ ∗ ∗ 𝑠-mở rộng 𝛾 và 𝜆 của 𝛼 và 𝑖 new tương ứng với cùng một def min{𝑢(𝛼 0) | 𝛼 0 ∈ O (𝛼, Ψ0)} = 𝑢 min (𝛼, Ψ0). Sau khi sắp chuỗi 𝜀 (kể cả chuỗi rỗng), 𝛾 = 𝛼 𝑠 𝜀 và 𝜆 = 𝑖new 𝑠 𝜀, tăng U (𝛼) và U (𝛽), ta có được hai dãy {𝑢 𝑖 , 1 ≤ 𝑖 ≤ 𝑛}, thì 𝛾 @ 𝜆 và supp(𝛾) = supp(𝜆), vì do phần (a) của định {𝑢 0𝑗 , 1 ≤ 𝑗 ≤ 𝑚} với 𝑛 ≥ 𝑚 ≥ 𝑘. Khi đó, tồn tại các số lý 1, với 𝜀 khác rỗng, D𝛾 = D𝜆 , nên |D𝛾 | = |D𝜆 |. Hơn nguyên 1 ≤ 𝑖 1 < 𝑖2 < · · · < 𝑖 𝑚 sao cho 𝑢 𝑖 𝑗 ≤ 𝑢 0𝑗 , với nữa, nếu SLIP(𝛼) = SLIP(𝑖new ), do phần (b) của định lý 1, 1 ≤ 𝑗 ≤ 𝑚, nên ta có ta cũng có 𝛾 @ 𝜆 và supp(𝛾) = supp(𝜆), với bất kỳ 𝑖- 𝑘 𝑘 𝑘 mở rộng 𝜆 = 𝑖new 𝑖 𝜀 của 𝑖 new và 𝑖-mở rộng tương ứng Õ Õ Õ SF(𝛼) = 𝑢𝑖 ≤ 𝑢𝑖 𝑗 ≤ 𝑢 0𝑗 = SF(𝛽). 𝛾 = 𝛼 𝑖 𝜀 của 𝛼 với cùng 𝜀. Vì vậy, với bất kỳ mở rộng 𝑖=1 𝑗=1 𝑗=1 𝜆 = 𝑖new 𝜀 của 𝑖 new và 𝛾 = 𝛼 𝜀 của 𝛼, ta luôn có 𝛾 @ 𝜆 và supp(𝛾) = supp(𝜆). Ngoài ra, do tính đơn điệu Ví dụ, khi xét hai ngưỡng 𝑚𝑢 = 85, 𝑚𝑠 = 2 và mở rộng tăng của SF đối với phép toán mở rộng (phần (b) của định 𝛽 = 𝑒 → 𝑒 của 𝛼 = 𝑒, ta có 𝜌(𝛽) = {Ψ10 , Ψ20 } ⊂ 𝜌(𝛼) = D 0, lý 2), nên 𝑢 min (𝛾) ≥ SF(𝛾) ≥ SF(𝛼) ≥ 𝑚𝑢, nghĩa là ∃𝛾 ∈ 𝑢 min (𝛼) = 120, 𝑢 min (𝛽) = 85, và U (𝛼) = {20; 20; 40; 40}, HUS: 𝛾 @ 𝜆 và supp(𝛾) = supp(𝜆). Vì vậy, 𝜆 ∉ GHUS. U (𝛽) = {40; 45}, nên SF(𝛼) = 20 + 20 = 40 và SF(𝛽) = 40 + 45 = 85. Khi đó, SF(𝛼) < 𝑢 min (𝛼), SF(𝛽) ≤ 𝑢 min (𝛽), Chiến lược LPG cho phép tỉa sớm các chuỗi non-GHU và SF(𝛼) < SF(𝛽). ngay khi chúng vừa được tạo ra trong hai mức liền kề nhau trên cây tiền tố. Ngoài ra, ta không cần kiểm tra quan hệ Trên cây tiền tố với gốc Root =, với mỗi nút 𝑞 (1- cha con trên các chuỗi sử dụng trong định lý 3, chẳng hạn, thuộc tính), ta có chuỗi tương ứng 𝛼 = path(𝑞), trong đó 𝛼 @ 𝑖new = 𝛼 𝑖 𝑢 trong a(i). Do đó, nó giúp rút ngắn path(𝑞) là chuỗi đầy đủ thu được bằng cách duyệt từ Root đáng kể thời gian thực thi cũng như giảm lượng bộ nhớ lưu đến 𝑞. Nút 𝑞 có 𝑖-mở rộng và 𝑠-mở rộng bởi hai thuộc trữ trong quá trình khai thác. Sau đây, ta sẽ minh họa các tính 𝑢 và 𝑣 tương ứng, ký hiệu là, 𝛼 𝑖 𝑢 và 𝛼 𝑠 𝑣. Khi trường hợp áp dụng của định lý 3. đó, ta gán 𝑢.type = 𝑖-ext và 𝑣.type = 𝑠-ext. Ký hiệu tập chứa 𝛼 và tất cả các mở rộng (hay các 𝑠-mở rộng, các 𝑖-mở rộng) cũng như tất cả các hậu duệ của các mở rộng này 3. Minh họa chiến lược LPG (hay các 𝑠-mở rộng và các 𝑖-mở rộng) là branch(𝛼) (hay Trước hết, ta minh họa trường hợp a(i) của định lý 3. tương ứng là 𝑠-child branches(𝛼) và 𝑖-child branches(𝛼)). Xét hai ngưỡng 𝑚𝑢 = 85, 𝑚𝑠 = 2 và 𝛼 = 𝑎 → 𝑑𝑔 Nếu tất cả các chuỗi trong các nhánh này không là chuỗi → 𝑎 v 𝑖new = 𝛼 𝑖 𝑒 = 𝑎 → 𝑑𝑔 → 𝑎𝑒. Ta có sinh HU, ta ký hiệu chúng là non-GHU branch(𝛼) (hay SE(𝑖new ) = SE(𝛼) = 3, SF(𝛼) = 174 ≥ 𝑚𝑢, và tương ứng là non-GHU s-child branches(𝛼) và non-GHU SLIP(𝑖new ) = SLIP(𝛼) = 2. Theo phần a(i) của định lý 3, i-child branches(𝛼)). toàn bộ nhánh non-GHU branch(𝑖new ) được tỉa. Định lý 3 (Chiến lược LPG): Xét 𝑞, 𝑢, 𝑣 là các nút có Bây giờ, ta minh họa trường hợp a(ii). Đặt 𝑚𝑢 = 75 cùng tiền tố và 𝛼 = path(𝑞) là chuỗi ứng với 𝑞. và 𝑚𝑠 = 2. Cho trước hai nút 𝑞 = 𝑎 và 𝑢 = 𝑒 với cùng def (a) Với mỗi 𝑖-mở rộng, 𝑖new = 𝛼 𝑖 𝑢: tiền tố 𝑎 → 𝑑, ta có 𝛼 = path(𝑞) = 𝑎 → 𝑑 → 𝑎 và def (i) Nếu SE(𝛼) = SE(𝑖new ) và SF(𝛼) ≥ 𝑚𝑢, thì 𝛾 = path(𝑢) = 𝑎 → 𝑑 → 𝑒. Khi đó, 𝑖 new = 𝑎 → 𝑑 → 𝑎𝑒 w non-GHU s-child branches(𝑖new ) có thể được tỉa. Hơn nữa, 𝛾, 𝜌(𝑖new ) = 𝜌(𝛾) ={Ψ1 , Ψ2 }. Ta có 𝑢 min (𝑖 new ) = 96 ≥ 𝑚𝑢 63
- Các công trình nghiên cứu phát triển Công nghệ Thông tin và Truyền thông Thuật toán 1: Thuật toán FGenHUSM Thuật toán 2: Thủ tục DfsFGHUS Dữ liệu vào: D 0 , 𝑚𝑠, 𝑚𝑢 Dữ liệu vào: 𝛾, 𝑆, 𝐼, 𝑚𝑠, 𝑚𝑢 Dữ liệu ra: FGHUS Dữ liệu ra: FGHUS 1 FGHUS ← ∅; 1 update ← UpdateFGHUS(𝛾, 𝑚𝑢); 2 S ← I ← {𝑖 ∈ A | (𝐿𝑅𝑈 (𝑖) ≥ 𝑚𝑢) ∧ supp(𝑖) ≥ 𝑚𝑠)}; 2 if update is true then 3 Loại các thuộc tính không thuộc S khỏi D 0 ; 3 return; 4 for 𝑖 ∈ 𝑆 do 4 end 5 DfsFGHUS(𝑖, 𝑆, 𝐼, 𝑚𝑠, 𝑚𝑢); 5 𝑆new ← 𝐼new ← ∅; 6 end 6 for 𝑖 ∈ 𝐼 mà 𝑖 > lastItem(𝛾) do 7 if LRU(𝛾 𝑖 𝑖) ≥ 𝑚𝑢 và supp(𝛾 𝑖 𝑖) ≥ 𝑚𝑠 then 8 𝐼new ← 𝐼new ∪ {𝑖}; 9 end và supp(𝑖 new ) = 2 ≥ 𝑚𝑠, nên 𝑖 new là chuỗi FHU. Tuy nhiên, 10 end 11 for 𝑖 ∈ 𝐼new mà RBU(𝛾 𝑖 𝑖) ≥ 𝑚𝑢 do 𝑖 new và các 𝑠-mở rộng của nó không là các chuỗi FGHU. 12 𝑖new ← 𝛾 𝑖 𝑖 ; Thật vậy, ta có SF(𝛾) = 78 ≥ 𝑚𝑢 và SE(𝑖 new ) = SE(𝛾) = 3. 13 LocalPruningGHU(𝑖 new , 𝛾, 𝑚𝑢); Tuy nhiên, mặc dù LP(𝑖new , Ψ1 ) = LP(𝛾, Ψ1 ) = 5, nhưng 14 𝛽 ← anh em của 𝛾 ứng với 𝑖, có cùng kiểu mở rộng do LP(𝑖new , Ψ2 ) = 5 ≠ LP(𝛾, Ψ2 ) = {4, 5}, cho nên với 𝛾; 15 LocalPruningGHU(𝑖 new , 𝛽, 𝑚𝑢); SLIP(𝑖new ) = 2 ≠ SLIP(𝛾) = 3. Theo phần a(ii) của định 16 if 𝛾.type = s-ext, 𝛾.typeOfParent = s-ext, lý 3, các nhánh non-GHU s-child branches(𝑖new ) được tỉa. 𝛾.lastItemOfParent = 𝛾.lastItem và ∃𝛿 ∈ i- anh em của 𝛾 mà 𝛿.lastItem = 𝑖 then Để minh họa trường hợp (b), xét hai nút 𝑞 = 𝑔 và 𝑣 = 𝑒 17 LocalPruningGHU(𝑖new , 𝛿, 𝑚𝑢); def với cùng tiền tố 𝑎 → 𝑑, ta có 𝛼 = path(𝑞) = 𝑎 → 𝑑𝑔, 18 end def 19 end 𝛾 = path(𝑣) = 𝑎 → 𝑑 → 𝑒 và v.type = s-ext. Khi đó, 20 if 𝛾.do-s-ext hoặc 𝛾.do-ext then 𝑠new = 𝛼𝑠 𝑒 = 𝑎 → 𝑑𝑔 → 𝑒 w 𝛾, SE(𝑠new ) = SE(𝛾) = 3 và 21 for 𝑖 ∈ 𝑆 do SF(𝛾) = 78 ≥ 𝑚𝑢. Vì lastEvent(𝛾) = lastEvent(𝑠new ) = 𝑒, 22 if LRU(𝛾 𝑠 𝑖) ≥ 𝑚𝑢 và supp(𝛾 𝑠 𝑖) ≥ 𝑚𝑠 then nên SLIP(𝑠new ) = SLIP(𝛾) = 3. Theo phần (b) của định 23 𝑆new ← 𝑆new ∪ {𝑖}; 24 end lý 3, ta có thể tỉa ngay nhánh non-GHU branch(𝑠new ). 25 end Bây giờ, đặt 𝑚𝑢 = 65, 𝑚𝑠 = 2 và xét hai nút 𝑞 = 𝑐 và 26 for 𝑖 ∈ 𝑆new mà RBU(𝛾 𝑠 𝑖) ≥ 𝑚𝑢 do def 27 𝑠new ← 𝛾 𝑠 𝑖 ; (𝑢 ≡) 𝑟 = 𝑒 ứng với các chuỗi 𝛼 = path(𝑞) = 𝑐 → 𝑐 → 𝑐 và def 28 𝛼 ← anh em của 𝛾 ứng với 𝑖 và có kiểu mở 𝛿 = path(𝑟) = 𝑐 → 𝑐𝑒 có cùng chuỗi cha parent = 𝑐 → 𝑐 rộng s-ext; và parent.type = q.type = s-ext. Khi đó, ta có 𝑖new = 𝛼 𝑖 29 LocalPruningGHU(𝑠new , 𝛼, 𝑚𝑢); 30 end 𝑢 = 𝑐 → 𝑐 → 𝑐𝑒 w 𝛿, SE(𝑖new ) = SE(𝛿) = 3, SF(𝛿) = 31 for 𝑖 ∈ 𝑆new do 66 ≥ 𝑚𝑢 và SLIP(𝑖new ) = SLIP(𝛿) = 3. Vì vậy, theo phần 32 DfsFGHUS(𝛾 𝑠 𝑖, 𝑆new , 𝑆new , 𝑚𝑠, 𝑚𝑢); a(iii) của định lý 3, toàn bộ nhánh non-GHU branch(𝑖new ) 33 end có thể được tỉa. 34 else 35 𝑆new ← 𝑆; Để ý rằng, điều kiện “SF(𝛼) ≥ 𝑚𝑢” là cần thiết cho việc 36 end tỉa. Thật vậy, với 𝑚𝑢 = 99 và 𝑚𝑠 = 3, hai nút 𝑞 = 𝑐 và 37 for 𝑖 ∈ 𝐼new do def def 38 DfsFGHUS(𝛾 𝑖 𝑖, 𝑆new , 𝐼new , 𝑚𝑠, 𝑚𝑢); 𝑣 = 𝑑 có cùng tiền tố , ta có 𝛼 = path(𝑞) = 𝑐, 𝛾 = 39 end path(𝑣) = 𝑑 và 𝑣.𝑡𝑦 𝑝𝑒 = 𝑠-𝑒𝑥𝑡, 𝑠new = 𝛼 𝑠 𝑑 = 𝑐 → 𝑑 w 𝛾 với SE(𝑠new ) = SE(𝛾) = 6 và SLIP(𝑠new ) = SLIP(𝛾) = 3. Do đó, nếu dùng phần (b) của định lý 3 mà bỏ qua phép kiểm tra “SF(𝛾) = 88 ≥ 𝑚𝑢 = 99”, nhánh branch(𝑠new ) sẽ dòng 2 và 3, WPS dựa vào LRU và supp được sử dụng. Ở bị tỉa nhầm. Thật vậy, 𝑠new là chuỗi FGHU, vì 𝑢 min (𝑠new ) = dòng 5, nó gọi thủ tục DfsFGHUS (Thuật toán 2) tìm kiếm 99 ≥ 𝑚𝑢, supp(𝑠new ) = 3 ≥ 𝑚𝑠 và không tồn tại 𝛾 ∗ ∈ HUS các chuỗi FGHU. Thủ tục này nhận vào chuỗi 𝛾, hai tập mà 𝛾 ∗ @ 𝑠new và supp(𝛾 ∗ ) = supp(𝑠new ). Thật vậy, với mọi thuộc tính 𝑆 và 𝐼 chứa các thuộc tính cho các 𝑠- và 𝑖-mở 𝑐, 𝑑 @ 𝑠new , 𝑢 min (𝑐) = 10 < 𝑢 min (𝑑) = 88 < 𝑚𝑢. rộng tương ứng của 𝛾. Trong thủ tục, tại các dòng 1–3, hàm UpdateFGHUS (Thuật toán 3) kiểm tra xem 𝛾 có là GHU không và cập nhật FGHUS khi cần. Tại các dòng 13, IV. THUẬT TOÁN VÀ THỬ NGHIỆM 15, 17, 20 và 29 trong DfsFGHUS và các dòng 4, 7 và 15 1. Thuật toán FGenHUSM trong UpdateFGHUS, chiến lược LPG được sử dụng thông Thuật toán 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 khai thác tập FGHUS được cho qua thủ tục LocalPruningGHU (Thuật toán 4). trong thuật toán 1. Đầu vào của nó là QSDB D 0, hai ngưỡng Tính đúng của thuật toán được bảo đảm bởi định lý 3 𝑚𝑠 và 𝑚𝑢; đầu ra là FGHUS (để tiện trình bày, ta xem nó trong bài báo này và định lý 2 trong [7]. Cụ thể, việc áp như biến toàn cục đối với các thủ tục và hàm con). Ở các dụng hai chiến lược tỉa WPS và DPS nhằm loại nhanh các 64
- Tập 2019, Số 2, Tháng 12 Thuật toán 3: Hàm UpdateFGHUS Bảng II QSDB D 00 MINH HỌA THUẬT TOÁN 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 Dữ liệu vào: 𝛾, 𝑚𝑢 Dữ liệu ra: true nếu 𝛾 là GHU và false trong trường hợp ngược lại và cập nhật FGHUS khi cần SID Chuỗi 1 if 𝑅𝐵𝑈 (𝛾) < 𝑚𝑢 then 1 Ψ01 = (𝑎, 2) (𝑐, 5) (𝑒, 6) → (𝑎, 3) (𝑏, 6) → (𝑎, 5) (𝑑, 50) 2 return true; → (𝑎, 5) (𝑏, 9) (𝑐, 40) → (𝑎, 4) (𝑐, 10) (𝑑, 10) ( 𝑓 , 36) 3 end 2 Ψ02 = (𝑏, 12) → (𝑎, 2) (𝑐, 20) (𝑒, 6) → (𝑎, 3) (𝑑, 20) 4 if 𝛾.𝑑𝑜-𝑒𝑥𝑡 is 𝑓 𝑎𝑙𝑠𝑒 then → (𝑎, 1) (𝑐, 20) (𝑑, 10) ( 𝑓 , 9) → (𝑎, 4) (𝑏, 9) (𝑐, 15) 5 return true; 3 Ψ03 = (𝑐, 20) → (𝑎, 4) (𝑐, 10) (𝑒, 4) → (𝑎, 1) ( 𝑓 , 18) 6 end 7 if 𝛾.do-s-ext is false then 4 Ψ04 = (𝑑, 80) → (𝑎, 7) (𝑐, 50) (𝑒, 6) → (𝑎, 2) (𝑔, 2) 8 return false; → (𝑎, 9) ( 𝑓 , 72) 9 end 10 if 𝑢 min (𝛾) < 𝑚𝑢 then 11 return false; 12 end 𝑚𝑠 = 1. Để tiện trình bày, với chuỗi 𝛼, chúng tôi viết thêm 13 for 𝛼 ∈ FGHUS do các giá trị 𝑢 min , RBU, LRU, supp, SE, SLIP và SF(𝑢 min ) 14 if supp(𝛼) = supp(𝛾) và 𝛾 A 𝛼 then 𝑢min ,RBU,LRU của nó ở dạng 𝛼supp;SE,SLIP;SF . Ký hiệu (_) cũng được dùng 15 LocalPruningGHU(𝛾, 𝛼); 16 if 𝛾.𝑑𝑜-𝑒𝑥𝑡 is false then để dấu đi một hoặc một dãy các giá trị kề nhau. 17 return true; Tại dòng 2, ta có 18 end 19 return false; 𝑆 = 𝐼 = {𝑎 6,495,607 4;_ 15,306,322 80,504,607 , 𝑏 2;_ , 𝑐 4;_ , 20 end 100,480,550 22,395,607 135,163,607 2,83,228 21 end 𝑑3;10,3;_ , 𝑒 4;_ , 𝑓4;_ , 𝑔1;_ }. 22 for 𝛼 ∈ FGHUS do 23 if supp(𝛼) = supp(𝛾) và 𝛼 A 𝛾 then Trước hết, dễ thấy rằng, các lần gọi DfsFGHUS trên 24 Loại 𝛼 ra khỏi FGHUS; các nhánh có gốc tại 𝑓 và 𝑔 sẽ dừng ngay tại dòng 3 (vì 25 end 26 end RBU( 𝑓 ) = 163 và RBU(𝑔) = 83 < 𝑚𝑢 nên UpdateFGHUS 27 FGHUS ← FGHUS ∪ {𝛾}; trả về true). Nói cách khác, hai nhánh tại 𝑓 và 𝑔 được tỉa 28 return false; bằng DPS. Các chuỗi ứng với các nút 𝑎, 𝑏, 𝑐, 𝑑 và 𝑒 bị bỏ qua vì các giá trị 𝑢 min của chúng đều bé hơn 𝑚𝑢, tuy Thuật toán 4: Thủ tục LocalPruningGHU nhiên, tìm kiếm trên chúng vẫn được tiếp tục. Sau khi kết Dữ liệu vào: cha, con, mu thúc tìm kiếm trên 𝑎, 𝑏 và 𝑐, ta có Dữ liệu ra: cha 1 if 𝑆𝐹 (con) ≥ 𝑚𝑢 và 𝑆𝐸 (cha) = 𝑆𝐸 (con) then FGHUS = {𝑐 → 𝑓4220 , 𝑎𝑐 → 𝑎 → 𝑓3211 , 𝑐𝑒 → 𝑎 → 𝑓3218 ; 2 cha.do-s-ext ← false; 𝑎𝑐 → 𝑎𝑑 → 𝑐 → 𝑎𝑐200 202 2 , 𝑎𝑐 → 𝑎𝑑 → 𝑐𝑑𝑓2 , 3 if SLIP(cha) = SLIP(con) then 4 cha.do-ext ← false; 𝑎𝑐𝑒 → 𝑑 → 𝑎𝑐 → 𝑐202 202 2 , 𝑐 → 𝑎𝑑 → 𝑎𝑐 → 𝑎𝑐 2 , 5 end 6 end 𝑐 → 𝑎𝑑 → 𝑎𝑐𝑑𝑓2203 , 𝑐𝑒 → 𝑎𝑑 → 𝑐 → 𝑐200 2 , 𝑒𝑐 → 𝑑 → 𝑐 → 𝑎𝑐200 200 2 , 𝑐𝑒 → 𝑑 → 𝑐𝑑𝑓2 }, ta chỉ lưu lại các giá trị 𝑢 min (ở trên) và supp (ở dưới). nhánh chỉ chứa các chuỗi có lợi ích thấp hoặc ít phổ biến, 100,480,550 Bây giờ, ta xét quá trình khai thác trên nhánh 𝑑3;_ . và mục đích của chiến lược LPG là tỉa sớm các nhánh chỉ Sau khi hàm UpdateFGHUS trả về giá trị false, thực hiện chứa các chuỗi không là chuỗi sinh lợi ích cao. Vì vậy, việc các dòng 6–10, ta có 𝐼new (𝑑) = { 𝑓 }. Các 𝑖–mở rộng 𝑑𝑎, 𝑑𝑏, dùng ba chiến lược trên vào thuật toán 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 không 𝑑𝑐 và 𝑑𝑑 bị tỉa vì 𝑎, 𝑏, 𝑐 và 𝑑 không lớn hơn 𝑑. Hai 𝑖-mở làm mất đi bất kỳ chuỗi sinh phổ biến lợi ích cao nào. Chú rộng 𝑑𝑒 và 𝑑𝑔 bị tỉa vì 𝑑𝑒, 𝑑𝑔 không xuất hiện trong QSDB ý rằng, khác với chiến lược LPC trong [13] nhằm tỉa sớm D 00. Tương tự, ta có 𝑆new (𝑑) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔}. Không các chuỗi không là chuỗi đóng phổ biến lợi ích cao, chiến có gì xảy ra khi thực hiện các dòng 6–12. Lúc này, ta gọi lược LPG cần sử dụng thêm chặn dưới SF của độ đo 𝑢 min . DfsFGHUS cho các 𝑠–mở rộng của 𝑑 với mỗi thuộc tính Việc áp dụng LPG mà không dùng SF có thể dẫn đến việc trong 𝑆new (𝑑) trước và sau đó cho 𝑖-mở rộng 𝑑𝑓 của nó. tỉa nhầm một số nhánh như được minh họa trong mục III.3. Năm nhánh 𝑑 → 𝑏 _,193,252 _ , 𝑑 → 𝑑__,163,252 , 𝑑 → 𝑒 __,171,228 , 𝑑 → 𝑔_ _,163,228 _,93,252 và 𝑑𝑓_ bị tỉa vì các giá trị RBU của 2. Minh họa thuật toán 150,480,480 chúng bé hơn 𝑚𝑢. Ta chỉ còn lại ba nhánh 𝑑 → 𝑎 3;7,3;14 , 215,458,480 267,295,480 Trong ví dụ này, chúng tôi minh họa quá trình khai thác 𝑑 → 𝑐 3;7,3;25 và 𝑑 → 𝑓3;4,3;29 cần xét với 𝑆new (𝑑). các chuỗi sinh phổ biến lợi ích cao trên QSDB cho trong Xét việc thực thi DfsFGHUS với 𝑑 → 𝑎 __ . Trước hết, sau Bảng II bằng thuật toán 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 với 𝑚𝑢 = 200 và các dòng 3–7, ta có: 𝐼new (𝑑 → 𝑎) = {𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔}. Sau 65
- Các công trình nghiên cứu phát triển Công nghệ Thông tin và Truyền thông đó, ở cuối dòng 23, ta có 𝑆new (𝑑 → 𝑎) = {𝑎, 𝑐, 𝑓 , 𝑔}. Thật Sau đó, ta xét 𝑠-mở rộng 𝑑 → 𝑎𝑐 → 𝑎 → 𝑓 và chèn vậy, hai nhánh 𝑑 → 𝑎 → 𝑏 và 𝑑 → 𝑎 → 𝑑 bị tỉa bởi WPS nó vào FGHUS. Với các 𝑖-mở rộng 𝑑 → 𝑎𝑐 → 𝑎𝑐 cũng vì LRU của chúng lần lượt là 83 và 164 đều bé hơn 𝑚𝑢; như 𝑑 → 𝑎𝑐 → 𝑎 𝑓 , không có thay đổi nào diễn ra còn chuỗi 𝑑 → 𝑎 → 𝑒 không xuất hiện trong D 00. Thủ vì 𝑑 → 𝑎𝑐 → 𝑎 𝑓 là chuỗi cha của chuỗi 𝑑 → 𝑎 → 𝑓 tục gọi đệ quy trên các nhánh 𝑑 → 𝑎 → 𝑎, 𝑑 → 𝑎 → 𝑐, trong FGHUS với cùng độ hỗ trợ 2. Cuối cùng, với 𝑖-mở 𝑑 → 𝑎 → 𝑓 và 𝑑 → 𝑎 → 𝑔 với 𝑆new (𝑑 → 𝑎) tại dòng 32; rộng 𝑑 → 𝑎𝑐 → 𝑎𝑔. Ta có, 𝐼new (𝑑 → 𝑎𝑐 → 𝑎𝑔) = ∅ và cho các nhánh 𝑑 → 𝑎𝑏, 𝑑 → 𝑎𝑐, 𝑑 → 𝑎𝑑, 𝑑 → 𝑎𝑒, và 𝑆new (𝑑 → 𝑎𝑐 → 𝑎𝑔) = {𝑎, 𝑓 }. Ở các dòng 26–30 𝑑 → 𝑎 𝑓 và 𝑑 → 𝑎𝑔 với 𝑆new (𝑑 → 𝑎) và 𝐼new (𝑑 → 𝑎) trong DfsFGHUS, trường hợp (b) xảy ra với lời gọi tại dòng 38. LocalPruningGHU(𝑑 → 𝑎𝑐 → 𝑎𝑔 → 𝑓 ,𝑑 → 𝑎𝑐 → 𝑎 → 𝑓 ). 258 Trên nhánh 𝑑 → 𝑎 → 𝑎, ta đưa chuỗi 𝑑 → 𝑎 → 𝑎 𝑓_,2,_ Khi đó, ta tỉa toàn bộ nhánh 𝑑 → 𝑎𝑐 → 𝑎𝑔 → 𝑓 không vào FGHUS (ở dòng 28 trong UpdateFGHUS). Các nhánh chứa chuỗi sinh phổ biến lợi ích cao. 𝑑 → 𝑎 → 𝑐 và 𝑑 → 𝑎 → 𝑔 bị tỉa bởi DPS. Trên nhánh Quay trở lại nút 𝑑 → 𝑎𝑐 và xét các 𝑖-mở rộng của 𝑑 → 𝑎 → 𝑓 , ta thay thế 𝑑 → 𝑎 → 𝑎 𝑓 bởi 𝑑 → 𝑎 → 𝑓 nó, ta không tìm thấy lời giải nào, đồng thời cũng không trong FGHUS (các dòng 22–27 trong UpdateFGHUS) vì có nhánh nào bị tỉa. Tuy nhiên, với 𝑑 → 𝑎𝑐𝑒, ta tỉa chúng có cùng độ hỗ trợ mà 𝑑 → 𝑎 → 𝑓 @ 𝑑 → 𝑎 → 𝑎 𝑓 . được 7 nhánh không chứa chuỗi sinh và đưa thêm ứng Vì các giá trị RBU của 𝑑 → 𝑎𝑑, 𝑑 → 𝑎𝑒 và 𝑑 → 𝑎𝑔 viên 𝑑 → 𝑎𝑐𝑒 → 𝑓1215 vào FGHUS. bé hơn 𝑚𝑢, ta xét 𝑑 → 𝑎𝑏, 𝑑 → 𝑎 𝑓 và 𝑑 → 𝑎𝑐. Với Khi xét hai nhánh bắt đầu tại 𝑑 → 𝑓3267 và 𝑑 → 𝑑 → 𝑎𝑏, không có thay đổi nào trên FGHUS. Với 𝑑 → 𝑎 𝑓 𝑐215 3 , ta chèn thêm chúng vào FGHUS đồng thời loại bỏ và 𝑑 → 𝑎𝑐, ta đẩy 𝑑 → 𝑎 𝑓3281 và 𝑑 → 𝑎𝑐230 3 vào FGHUS. 𝑑 → 𝑎𝑐𝑒 → 𝑓1215 . Tìm kiếm trên 𝑑 → 𝑓__ kết thúc và ta Khi đó, ta có 𝐼new (𝑑 → 𝑎𝑐) = {𝑑, 𝑒, 𝑓 } và 𝑆new (𝑑 → 𝑎𝑐) = tiếp tục trên 𝑑 → 𝑐__ . Trong quá trình này, ta phát hiện {𝑎, 𝑐, 𝑓 , 𝑔}. ra 12 lần sử dụng chiến lược tỉa LPG, và 64 lần sử dụng Không có thay đổi nào trên FGHUS khi xét 𝑑 → 𝑎𝑐 → 𝑐 WPS và DPS. Năm ứng viên sau được thêm vào FGHUS: và 𝑑 → 𝑎𝑐 → 𝑓 . Với 𝑑 → 𝑎𝑐 → 𝑎, ta tìm thấy trong 𝑑 → 𝑐𝑒 → 𝑓1208 , 𝑑 → 𝑐 → 𝑎 → 𝑓1204 , 𝑑 → 𝑐 → 𝑓2328 FGHUS chuỗi con 𝑑 → 𝑎𝑐230 và 𝑑 → 𝑐 → 𝑔 → 𝑓1204 . Các ứng viên 𝑑 → 𝑎𝑐230 3 , 3 có cùng độ hỗ trợ tại dòng 14 trong UpdateFGHUS. Tại dòng tiếp theo, ta thực hiện thủ 𝑑 → 𝑎 𝑓3231 , 𝑑 → 𝑎𝑐 → 𝑎 → 𝑓1211 và 𝑑 → 𝑎𝑐𝑒 → 𝑓1215 tục LocalPruningGHU với 𝑑 → 𝑎𝑐 → 𝑎 và 𝑑 → 𝑎𝑐. Mặc bị loại vì 𝑑 → 𝑐215 267 3 , 𝑑 → 𝑓3 , 𝑑 → 𝑐 → 𝑎 → 𝑓1 204 và 00 dù SE(D𝑑→𝑎𝑐→𝑎 00 ) = SE(D𝑑→𝑎𝑐 ) = 7, chiến lược tỉa LPG 𝑑 → 𝑐𝑒 → 𝑓1208 đã có trong FGHUS tương ứng. không thể được áp dụng vì Sau đó, quá trình tìm kiếm trên 𝑒, 𝑓 , và 𝑔 diễn ra. Đáng tiếc là, ta không thu được gì. Cuối cùng, ta có SF(𝑢 min (𝑑 → 𝑎𝑐)) = 29 < 𝑚𝑢. FGHUS = {𝑐 → 𝑓4220 ; 𝑎𝑐 → 𝑎 → 𝑓3211 , 𝑐𝑒 → 𝑎 → 𝑓3218 , Tiếp tục, ta có 𝑑 → 𝑓3267 , 𝑑 → 𝑐215 3 ; 𝑎𝑐 → 𝑎𝑑 → 𝑐 → 𝑎𝑐 2 , 200 𝐼new (𝑑 → 𝑎𝑐 → 𝑎) = {𝑐, 𝑓 , 𝑔}, 202 202 𝑎𝑐 → 𝑎𝑑 → 𝑐𝑑𝑓2 , 𝑎𝑐𝑒 → 𝑑 → 𝑎𝑐 → 𝑐 2 , 𝑆new (𝑑 → 𝑎𝑐 → 𝑎) = {𝑎, 𝑓 }. 𝑐 → 𝑎𝑑 → 𝑎𝑐 → 𝑎𝑐202 203 2 , 𝑐 → 𝑎𝑑 → 𝑎𝑐𝑑𝑓2 , 𝑐𝑒 → 𝑎𝑑 → 𝑐 → 𝑐 2 , 𝑐𝑒 → 𝑑 → 𝑐 → 𝑎𝑐200 200 2 , Với 𝑠-mở rộng 𝑑 → 𝑎𝑐 → 𝑎 → 𝑎, ta có 𝐼new (𝑑 → 𝑎𝑐 → 𝑐𝑒 → 𝑑 → 𝑐𝑑𝑓2200 , 𝑑 → 𝑎 → 𝑓2245 , 𝑎 → 𝑎) = { 𝑓 }. Vì RBU(𝑑 → 𝑎𝑐 → 𝑎 → 𝑎 𝑓 ) ≥ 𝑚𝑢, 𝑑 → 𝑐 → 𝑓2328 ; 𝑑 → 𝑐𝑒 → 𝑓1208 , tại dòng 13, ta gọi LocalPruningGHU (trường hợp (i)) với 𝑑 → 𝑐 → 𝑎 → 𝑓1204 , 𝑑 → 𝑐 → 𝑔 → 𝑓1204 }, 𝑖 new = 𝑑 → 𝑎𝑐 → 𝑎 → 𝑎 𝑓 và 𝑑 → 𝑎𝑐 → 𝑎 → 𝑎. Trong thủ tục ta không áp dụng được LPG, vì với 18 lời giải, chiếm tỉ lệ 22% so với 83 chuỗi phổ biến lợi ích cao. SF(𝑢 min (𝑑 → 𝑎𝑐 → 𝑎 → 𝑎)) = 148 < 𝑚𝑢. Tiếp tục các dòng 14–15, trường hợp (ii) được xét giữa 𝑖new 3. Thử nghiệm với 𝛽 = 𝑑 → 𝑎𝑐 → 𝑎 → 𝑓 . Vì Các thử nghiệm nhằm minh họa tính hiệu quả của 00 00 SE(D𝑑→𝑎𝑐→𝑎→ 𝑓 ) = SLIP(D𝑑→𝑎𝑐→𝑎→𝑎 𝑓 ) 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 được tiến hành trên các cơ sở dữ liệu được 00 00 mô tả trong Bảng III. Kosarak và Snake là hai QSDB thực = SE(D𝑑→𝑎𝑐→𝑎→ 𝑓 ) = SLIP(D𝑑→𝑎𝑐→𝑎→ 𝑓 ) = 1, tế, trong khi D4C7T5N5S6I4 và D0.5C10T15N2S6I4 là hai SF(𝑢 min (𝑑 → 𝑎𝑐 → 𝑎 → 𝑓 )) = 211 ≥ 𝑚𝑢, QSDB tổng hợp, với các giá trị về số lượng và lợi ích đơn ta tỉa toàn bộ nhánh non-GHU branch(𝑑 → 𝑎𝑐 → 𝑎 → vị của các thuộc tính trong các QSDB tương ứng được tạo 𝑎 𝑓 ) bởi LPG, cụ thể là đặt giá trị false cho trường do-ext ngẫu nhiên bởi chương trình sinh dữ liệu của IBM (IBM của 𝑖 new . Quest data generator) từ thư viện SPMF [21]. 66
- Tập 2019, Số 2, Tháng 12 D4C7T5N5S6I4 (ms = 0.25%) Bảng III QSDB D 00 MINH HỌA THUẬT TOÁN 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 1E+4 1E+3 Độ dài Thời gian chạy (giây) Số Số Loại Tên thuộc trung chuỗi dữ liệu tính bình 1E+2 Kosarak 10000 10094 8,14 Duyệt web 1E+1 D4C7T5N5S6I4 4000 5000 28,7 Tổng hợp D0.5C10T15N2S6I4 500 2000 127,7 Tổng hợp 1E+0 0.6 0.3 0.24 0.15 0.03 0.018 0.005 0.002 0.001 0.0003 mu (%) Snake 163 20 60,6 Chuỗi protein Kosarak (ms = 0.15%) 1E+3 Với mỗi QSDB 𝑄 cố định, chúng tôi xác định một Thời gian chạy (giây) ngưỡng 𝑚𝑠 tương đối (tần suất tính theo % đã được dùng 1E+2 phổ biến trong các thực nghiệm cho các thuật toán về lĩnh def 1E+1 vực này, 𝑚𝑠% = 𝑚𝑠 ∗ 100/|𝑄|(%), trong đó |𝑄| là số các 𝑞-chuỗi đầu vào của 𝑄). Nếu không gây hiểu nhầm ta cũng 1E+0 ký hiệu 𝑚𝑠 tương đối là 𝑚𝑠. 3 2 1 0.6 0.1 0.01 mu (%) 0.006 0.004 0.002 0.001 Chúng tôi đã tiến hành khai thác các chuỗi sinh phổ D0.5C10T15N2S6I4 (ms = 2.2%) 3E+3 biến lợi ích cao bằng 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 trong ba trường hợp: (i) Non: không dùng chiến lược tỉa nào (tìm các chuỗi phổ biến lợi ích cao trước và sau đó lọc ra các chuỗi sinh); Thời gian chạy (giây) 3E+2 (ii) WDPS: sử dụng WPS và DPS; (iii) All: dùng cả ba chiến lược WPS, DPS và LPG. Trước hết, chúng tôi nhận thấy rằng hai tập kết quả của 3E+1 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 luôn trùng nhau tương ứng với hai trường 2 1.2 0.75 0.3 0.05 mu (%) 0.005 0.001 0.0001 hợp: khi dùng cả ba chiến lược tỉa (All) và khi không dùng Snake (ms = 60%) bất cứ chiến lược nào (Non) mà chỉ đơn thuần dùng định 2E+4 nghĩa của chuỗi sinh lợi ích cao phổ biến (Định nghĩa 5). Do đó, tính đúng của 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 đã được kiểm chứng Thời gian chạy (giây) thêm thông qua thực nghiệm. 2E+3 Thời gian chạy của 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 được cho trong hình 1. Khi ngưỡng 𝑚𝑢 cao, các điều kiện tỉa LRU(𝛼) < 𝑚𝑢 và RBU(𝛼) < 𝑚𝑢 (trong hai chiến lược WPS và DPS, hay 2E+2 15 14 12 7 5 3 2.7 2.4 𝑊 𝐷𝑃𝑆) dễ có cơ hội xảy ra hơn, nên số ứng viên (sinh ra mu (%) và chưa bị tỉa) khi dùng WDPS là bé hơn đáng kể so với Non (không dùng chiến lược nào). Khi 𝑚𝑢 giảm dần, tác Hình 1. Thời gian chạy của 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀. Ghi chú: All (màu đỏ, dụng của WDPS cũng giảm theo. Ngược lại, với các ngưỡng hình tam giác), WDPS (màu xanh đậm, hình tròn), Non (màu xanh lá cây, hình vuông). 𝑚𝑢 thấp, vì điều kiện SF(𝛼) ≥ 𝑚𝑢 (trong chiến lược LPG khi dùng All) dễ xảy ra hơn, nên số ứng viên sinh ra khi dùng All (áp dụng cả ba chiến lược tỉa nêu trên) là bé hơn lực lượng, có thể xem FGHUS là một biểu diễn súc tích đáng kể so với chỉ dùng WDPS. Vì vậy, so với Non, việc của FHUS. áp dụng đồng thời cả ba chiến lược tỉa sẽ tỉa nhiều hơn các chuỗi ứng viên, do đó thời gian thi hành của thuật toán sẽ nhanh hơn đáng kể. V. KẾT LUẬN Ghi nhận số lượng các ứng viên được sinh ra tương ứng Bài báo này đã đề xuất khái niệm tập FGHUS các trong hình 2 của ba trường hợp lý giải thêm về sự khác chuỗi sinh phổ biến lợi ích cao và thuật toán hiệu quả nhau về thời gian chạy của chúng. 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 khai thác chúng, thông qua các kỹ thuật tỉa Hình 3 chỉ ra số lượng các chuỗi FGHU khai thác được các nhánh ứng viên trên cây tìm kiếm tiền tố. Trước hết, bởi 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 (#fGenHU) và số lượng các chuỗi FHU hai chiến lược tỉa theo chiều rộng WPS và chiều sâu DPS (#fHU). Có thể thấy rằng, #fGenHU bé hơn #fHU từ 5 đến (đã dùng trong các kết quả trước đây cho việc tỉa các chuỗi 100 lần theo trung bình (đặc biệt khi 𝑚𝑢 bé). Vì vậy, theo lợi ích thấp) được điều chỉnh phù hợp để tỉa các chuỗi ít 67
- Các công trình nghiên cứu phát triển Công nghệ Thông tin và Truyền thông D4C7T5N5S6I4 (ms = 0.25%) D4C7T5N5S6I4 (ms = 0.25%) 1E+6 Số lời giải và số chuỗi FHU 1E+5 1E+6 Số ứng viên 1E+4 1E+3 1E+5 1E+2 1E+1 1E+4 1E+0 0.6 0.3 0.24 0.15 0.03 0.018 0.005 0.002 0.001 0.0003 0.6 0.3 0.24 0.15 0.03 0.018 0.005 0.002 0.001 0.0003 mu (%) mu (%) Kosarak (ms = 0.15%) Kosarak (ms = 0.15%) 1E+6 5E+4 Số lời giải và số chuỗi FHU 1E+5 5E+3 Số ứng viên 5E+2 1E+4 5E+1 1E+3 5E+0 3 2 1 0.6 0.1 0.01 0.006 0.004 0.002 0.001 3 2 1 0.6 0.1 0.01 0.006 0.004 0.002 0.001 mu (%) mu (%) D0.5C10T15N2S6I4 (ms = 2.2%) D0.5C10T15N2S6I4 (ms = 2.2%) 1E+6 1E+7 1E+5 Số lời giải và số chuỗi FHU 1E+4 Số ứng viên 1E+3 1E+2 1E+1 1E+6 1E+0 2 1.2 0.75 0.3 0.05 0.005 0.001 0.0001 2 1.2 0.75 0.3 0.05 0.005 0.001 0.0001 mu (%) mu (%) Snake (ms = 60%) Snake (ms = 60%) 29 5E+5 x 100000 27 5E+4 25 Số lời giải và số chuỗi FHU 23 5E+3 Số ứng viên 21 19 5E+2 17 5E+1 15 13 5E+0 15 14 12 7 5 3 2.7 2.4 15 14 12 7 5 3 2.7 2.4 mu (%) mu (%) Hình 2. Số ứng viên sinh bởi 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀. Ghi chú: All (màu Hình 3. Số lời giải và số chuỗi FHU. Ghi chú: #fGenHU (màu đỏ, hình tam giác), WDPS (màu xanh đậm, hình tròn), Non (màu xanh đậm, hình thoi), #fHU (màu đỏ, hình dấu nhân). xanh lá cây, hình vuông). LỜI CẢM ƠN phổ biến hoặc các chuỗi lợi ích thấp. Sau đó, chúng tôi đã chỉ ra một chặn dưới SF của độ đo lợi ích tối thiểu Nghiên cứu này được tài trợ bởi Quỹ Phát triển Khoa 𝑢 min . Dựa vào SF và điều kiện tỉa sớm tổng quát [13], học và Công nghệ Quốc gia (NAFOSTED) trong đề tài mã chiến lược tỉa LPG được đề xuất và dùng để tỉa các ứng số 102.05-2017.300. viên không là chuỗi sinh phổ biến lợi ích cao. Để ý rằng, WPS và DPS có tác dụng tỉa mạnh với các ngưỡng lợi ích TÀI LIỆU THAM KHẢO tối thiểu 𝑚𝑢 cao, trong khi LPG có hiệu quả cao với các [1] C. F. Ahmed, S. K. Tanbeer, and B.-S. Jeong, “Mining 𝑚𝑢 thấp. Do đó, chúng tôi đã tích hợp tất cả chúng vào high utility web access sequences in dynamic web log thuật toán 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀. Thực nghiệm trên bốn cơ sở dữ data,” in 11th ACIS International Conference on Software liệu lớn (thực tế lẫn tổng hợp) đã chỉ ra rằng 𝐹𝐺𝑒𝑛𝐻𝑈𝑆𝑀 Engineering, Artificial Intelligence, Networking and Paral- lel/Distributed Computing, 2010, pp. 76–81. khai thác nhanh FGHUS − một biểu diễn súc tích của tập [2] B.-E. Shie, H.-F. Hsiao, V. S. Tseng, and S. Y. Philip, các chuỗi phổ biến lợi ích cao. “Mining high utility mobile sequential patterns in mobile 68
- Tập 2019, Số 2, Tháng 12 commerce environments,” in International Conf. Database pruning techniques,” Applied Intelligence, vol. 45, no. 2, pp. Systems for Advanced Applications, 2011, pp. 224–238. 333–342, 2016. [3] M. Zihayat, H. Davoudi, and A. An, “Top-k utility-based [21] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.- gene regulation sequential pattern discovery,” in IEEE In- W. Wu, and V. S. Tseng, “SPMF: A Java open-source pattern ternational Conference on Bioinformatics and Biomedicine, mining library,” The Journal of Machine Learning Research, 2016, pp. 266–273. vol. 15, no. 1, pp. 3389–3393, 2014. [4] C. F. Ahmed, S. K. Tanbeer, and B.-S. Jeong, “A novel ap- proach for mining high-utility sequential patterns in sequence databases,” ETRI Journal, vol. 32, no. 5, pp. 676–686, 2010. [5] J. Yin, Z. Zheng, and L. Cao, “USpan: An efficient algorithm for mining high utility sequential patterns,” in ACM/SIGKDD Int’l Conf. Knowl. Disc. Data Mining, 2012, pp. 660–668. Trương Chí Tín là giảng viên tại Khoa [6] J. C.-W. Lin, J. Zhang, and P. Fournier-Viger, “High-utility Toán – Tin học, Trường Đại học Đà Lạt. sequential pattern mining with multiple minimum utility Tác giả tốt nghiệp Cử nhân Toán tại Trường thresholds,” in Asia-Pacific Web and Web-Age Infor. Man- agement Joint Conf. Web and Big Data, 2017, pp. 215–229. Đại học Đà Lạt năm 1983 và nhận bằng [7] T. Truong, A. Tran, H. Duong, B. Le, and P. Fournier-Viger, Tiến sĩ về Điều khiển tối ưu ngẫu nhiên “EHUSM: Mining high utility sequences with a pessimistic năm 1990 tại Đại học Quốc gia Hà Nội. utility model,” 1st Int’l Work. Utility-Driven Mining, 2018. Hướng nghiên cứu hiện nay của tác giả là [8] T. C. Tin, T. N. Anh, D. Van Hai, and L. H. Bac, “HUPSMT: trí tuệ nhân tạo và khai thác dữ liệu. An efficient algorithm for mining high utility-probability sequences in uncertain databases with multiple minimum utility thresholds,” Journal of Computer Science and Cy- bernetics, vol. 35, no. 1, pp. 1–20, 2019. [9] T. Truong-Chi and P. Fournier-Viger, “A survey of high Trần Ngọc Anh đang giảng dạy và nghiên utility sequential pattern mining,” in High-Utility Pattern cứu tại Khoa Toán – Tin học, Trường Đại Mining, P. Fournier-Viger, J. Lin, R. Nkambou, B. Vo, and học Đà Lạt. Tác giả tốt nghiệp Đại học V. Tseng, Eds. Springer, 2019, pp. 97–129. [10] W. Gan, J. C.-W. Lin, J. Zhang, H.-C. Chao, H. Fujita, and ngành Toán – Tin học vào năm 1999 tại S. Y. Philip, “ProUM: Projection-based utility mining on Đại học Đà Lạt, nhận bằng Thạc sĩ và Tiến sequence data,” Info. Sciences, vol. 513, pp. 222–240, 2020. sĩ về Khoa học máy tính vào các năm 2004 [11] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining closed và 2016 tại Trường Đại học Khoa học Tự sequential patterns in large datasets,” in SIAM International nhiên, Đại học Quốc gia Tp. Hồ Chí Minh. Conference on Data Mining, 2003, pp. 166–177. Tác giả đang nghiên cứu về khai thác dữ [12] B. Le, H. Duong, T. Truong, and P. Fournier-Viger, “FCloSM, FGenSM: Two efficient algorithms for min- liệu và trí tuệ nhân tạo. ing frequent closed and generator sequences using the lo- cal pruning strategy,” Knowledge and Information Systems, vol. 53, no. 1, pp. 71–107, 2017. [13] T. Truong, H. Duong, B. Le, and P. Fournier-Viger, “FMax- Dương Văn Hải tốt nghiệp Trường Đại học CloHUSM: An efficient algorithm for mining frequent closed and maximal high utility sequences,” Eng. Applica- Đà Lạt ngành Tin học năm 2004. Tác giả tions of Artificial Intelligence, vol. 85, pp. 1–20, 2019. tốt nghiệp Cao học ngành Công nghệ thông [14] L. Szathmary, P. Valtchev, A. Napoli, and R. Godin, “Effi- tin năm 2009 và đang là Nghiên cứu sinh cient vertical mining of frequent closures and generators,” tại Trường Đại học Khoa học Tự nhiên, in Int’l Symp. Intelligent Data Analysis, 2009, pp. 393–404. Đại học Quốc gia Tp. Hồ Chí Minh. Tác [15] A. Tran, T. Truong, and B. Le, “Simultaneous mining of giả hiện đang giảng dạy và nghiên cứu về frequent closed itemsets and their generators: Foundation and algorithm,” Engineering Applications of Artificial In- khai thác dữ liệu tại Khoa Toán – Tin học, telligence, vol. 36, pp. 64–80, 2014. Trường Đại học Đà Lạt. [16] P. Fournier-Viger, C.-W. Wu, and V. S. Tseng, “Novel con- cise representations of high utility itemsets using generator patterns,” in International Conference on Advanced Data Mining and Applications, 2014, pp. 30–43. ˇ Lê Hoài Bắc nhận bằng Cử nhân Toán [17] P. Fournier-Viger, A. Gomariz, M. Sebek, and M. Hlosta, “VGEN: Fast vertical mining of sequential generator pat- năm 1984, Cao học Khoa học máy tính terns,” in International Conference on Data Warehousing năm 1990 và hoàn thành Luận án Tiến sĩ về and Knowledge Discovery, 2014, pp. 476–488. Đảm bảo Toán học cho máy tính năm 2000 [18] H. Duong, T. Truong, and B. Le, “Efficient algorithms for tại Trường Đại học Khoa học Tự nhiên, simultaneously mining concise representations of sequential Đại học Quốc gia Tp. Hồ Chí Minh. Tác patterns based on extended pruning conditions,” Eng. Appli- cations of Artificial Intelligence, vol. 67, pp. 197–210, 2018. giả hiện là giảng viên tại Khoa Công nghệ [19] P. D. Gr¨unwald, I. J. Myung, and M. A. Pitt, Advances in Thông tin, Trường Đại học Khoa học Tự minimum description length: Theory and applications. MIT nhiên, Đại học Quốc gia Tp. Hồ Chí Minh và đang nghiên cứu press, 2005. về trí tuệ nhân tạo, tính toán mềm, khai thác dữ liệu và khoa học [20] M.-T. Tran, B. Le, B. Vo, and T.-P. Hong, “Mining non- dữ liệu. redundant sequential rules with dynamic bit vectors and 69
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn