Giáo trình CẤU KIỆN ĐIỆN TỬ - phần 3
lượt xem 26
download
3.7 MỘT SỐ ỨNG DỤNG CỦA TRANSISTOR HIỆU ỨNG TRƯỜNG. a) Các mạch khuyếch đại bằng FET. FET được dùng rộng rãi trong các bộ khuyếch đại yêu cầu tạp âm thấp và có điện trở vào cao. Cả hai loại FET kênh-n và kênh-p đều được dùng nhưng để đơn giản, ta xét các mạch dùng các mạch khuyếch đại dùng FET kênh-n. Việc thiết kế các bộ khuyếch đại dựa vào FET phải thỏa mãn cả điều kiện dc và điều kiện tín hiệu nhỏ. Hình 3.42 là mạch khuyếch đại đơn giản dùng MOSFET và JFET,...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình CẤU KIỆN ĐIỆN TỬ - phần 3
- CẤU KIỆN ĐIỆN TỬ 88 VoQ 5V I DQ = = = 2 mA 2 ,5 kΩ RL Từ phương trình Shockley’s (3.47): ) = −3 V. ( 2 ⎛ ⎞ ⎛ ⎞ ID V VGS = VP ⎜ 1 − ⎟ = −6 1 − I D = I DSS ⎜ 1 − GS ⎟ suy ra: 2 ⎜ ⎟ ⎜ ⎟ 8 ⎝ ⎠ VP I DSS ⎝ ⎠ Và tìm được giá trị của RS = 1,5 kΩ Như đã xác định theo phương pháp đồ thị. 3.7 MỘT SỐ ỨNG DỤNG CỦA TRANSISTOR HIỆU ỨNG TRƯỜNG. a) Các mạch khuyếch đại bằng FET. FET được dùng rộng rãi trong các bộ khuyếch đại yêu cầu tạp âm thấp và có điện trở vào cao. Cả hai loại FET kênh-n và kênh-p đều được dùng nhưng để đơn giản, ta xét các mạch dùng các mạch khuyếch đại dùng FET kênh-n. Việc thiết kế các bộ khuyếch đại dựa vào FET phải thỏa mãn cả điều kiện dc và điều kiện tín hiệu nhỏ. Hình 3.42 là mạch khuyếch đại đơn giản dùng MOSFET và JFET, trong đó mạch chỉ đơn giản gồm một transistor, một tải điện trở và một mạch phân cực. Sự khác nhau giữa các mạch trên xuất phát từ yêu cầu phân cực khác nhau của mỗi loại transistor. Tất cả các kiểu phân cực cho mạch khuyếnch đại dùng FET trên, có thể mô tả phù hợp bởi mạch cho ở hình 3.30 đã xét ở mục 3.6a, chỉ cần chọn lựa các giá trị điện áp cung cấp VGG thích hợp cho cổng. Khi sử dụng các dụng cụ kênh-n, thì điện áp này phải dương đối với các MOSFET tăng cường, âm đối với các JFET, và thường bằng 0 đối với các MOSFET nghèo [DE MOSFET]. Đối với các dụng cụ kênh-p, thì cực tính của các điện áp trên là ngược lại. Trở lại với mạch hình 3.30, tín hiệu vào được đặt giữa cực cổng và cực nguồn của FET, và tín hiệu ra là được lấy giữa cực máng và cực nguồn, vì vậy cực nguồn là cực chung giữa mạch vào và mạch ra, nên các bộ khuyếch đại có dạng thông dụng này được gọi là bộ khuyếch đại nguồn chung [common-source amplifiers]. Ví dụ, các mạch ở hình 3.42 trên là các mạch khuyếch đại nguồn chung. Mặc dù mạch hình 3.30 có thể thực hiện được, nhưng nó thường bất tiện khi phải dùng riêng rẽ nguồn cung cấp cho cổng. Thông thường, điện áp phân cực nhận được chỉ từ một nguồn cung cấp chung cho cả mạch phân cực cổng và mạch máng-nguồn. Đối với DE MOSFET, điện áp phân cực thường bằng 0 Volt, có thể nhận được đơn giản bằng cách nối điện trở RG xuống đất [ground] như ở hình 3.42a. Mạch phân cực đối với MOSFET tăng cường phức tạp hơn một chút, do đòi hỏi điện áp phân cực khác 0V. Tuy vậy, do điện áp phân cực yêu cầu nằm trong khoảng giữa điện áp cung cấp ở cực máng VDD và điện áp cung cấp ở cực nguồn VSS, nên điện áp phân cực có thể nhận được một cách dễ dàng bằng cách dùng mạch điện trở dưới dạng cầu phân áp như ở hình 3.42b. Đối với JFET, điện áp phân cực sẽ được trích ra ở đường nguồn cung cấp vào cực máng và cực nguồn. Trong trường hợp này, mạch phân cực thường sử dụng điện trở nối vào cực nguồn (gọi là điện trở nguồn) như ở hình 3.42c. Dòng điện ra cực nguồn sẽ chảy qua điện trở nguồn tạo ra sụt áp trên điện trở nguồn, làm cho điện áp trên cực nguồn cao hơn VSS, nếu nối một điện trở cổng với VSS thì cực cổng sẽ được phân cực với điện áp bằng sụt áp trên điện trở RS, và cực tính điện áp ngược lại đối với cực nguồn. Kỹ thuật phân cực này được gọi là phân cực tự động. BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 3: TRANSISTOR HIỆU ỨNG TRƯỜNG
- CẤU KIỆN ĐIỆN TỬ 89 Mạch tương đương tín hiệu nhỏ cho một bộ khuyếch đại bằng FET ở hình 3.30 được mô tả ở hình 3.43. Khi có mạch tương đương tín hiệu nhỏ của bộ khuyếch đại bằng FET, ta có thể xác định được hệ số khuyếch đại điện áp tín hiệu nhỏ. Từ hình 3.43, rõ ràng là, nếu bỏ qua ảnh hưởng của điện dung vào C, thì điện áp trên cực cổng của FET cũng chính là điện áp tại lối vào vi. Điện áp ra được xác định bởi nguồn phát dòng và điện trở tương đương của hai nhánh mắc song ≅ song là điện trở máng tín hiệu nhỏ rD và điện trở tải RL. Do vậy, điện áp ra của mạch khuyếch đại sẽ là: v o = − gm vGS (rD // RL ) = − gm vi (rD // RL ) = − gm (rD // RL ) vo vi Dấu trừ trong biểu thức cho biết điện áp ra sẽ giảm xuống khi dòng ra tăng, do điện áp ra thay đổi ngược với điện áp vào, nên đây là một bộ khuyếch đại đảo. Hệ số khuyếch đại điện áp được xác định đơn giản bằng tích của hệ số điện dẫn gm của FET và điện trở tương đương của hai nhánh song song rD và RL. v rR Hệ số khuyếch đại điện áp = o = − g m D L (3.81) rD + RL vi Chúng ta cũng dễ dàng xác định điện trở vào tín hiệu nhỏ và điện trở ra tín hiệu nhỏ của bộ khuyếch đại từ mạch tương đương. Điện trở vào đơn giản bằng với điện trở cổng RG. Bởi vì điện trở vào của FET rất cao nên điện trở cổng có thể thường được chọn cao cần thiết để phù hợp với ứng dụng cụ thể. Điện trở ra được cho bởi hai nhánh song song rD và RL. Điện trở vào và điện trở ra được tính từ mạch tương đương tín hiệu nhỏ nên được gọi là điện trở tín hiệu nhỏ, nghĩa là nó là quan hệ giữa các điện áp tín hiệu nhỏ và các dòng điện tín hiệu nhỏ. Các điện trở tín hiệu nhỏ không liên quan đến các điện áp dc và dòng điện dc trong mạch. Ví dụ 3.4: Xác định hệ số khuyếch đại điện áp tín hiệu nhỏ, điện trở vào và điện trở ra của một bộ khuyếch đại bằng FET như hình (a) dưới đây, biết rằng: rD = 100 kΩ và gm = 2 ms. Giải: Bước đầu tiên là xác định mạch tương đương tín hiệu nhỏ của bộ khuyếch đại. Dựa vào mô hình tương đương của FET, dễ dàng xác định được mạch tương đương cho bộ khuyếch đại như ở hình (b). Rõ ràng từ mạch tương đương, ta có: 100 x 10 3 2 x 10 3 = − gm (rD // RL ) = − g m D L = −2 x 10 − 3 vo rR = −3 ,9 rD + RL 100 x 10 3 + 2 x 10 3 vi Dấu trừ cho biết đây là mạch khuyếch đại đảo. Điện trở vào của mạch tín hiệu nhỏ chỉ đơn giản là RG, và vì vậy: BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 3: TRANSISTOR HIỆU ỨNG TRƯỜNG
- CẤU KIỆN ĐIỆN TỬ 90 ri = RG = 1MΩ (a) (b) Điện trở ra của mạch tín hiệu nhỏ được cho bởi: 100 x 10 3 2 x 10 3 rR ro = rd // RL = d L = ≈ 2 ,0 kΩ rd + RL 100 x 10 3 + 2 x 10 3 Ví dụ này xét mạch dùng DE MOSFET kênh-n, thực hiện tính toán tương tự đối với mạch dùng linh kiện kiểu khác của FET. Giá trị điển hình cho điện trở máng tín hiệu nhỏ rd nằm trong khoảng 50 đến 100 kΩ; điện trở này thông thường lớn hơn nhiều so với điện trở tải RL, nên trong trường hợp này ảnh hưởng của rd thường được bỏ qua, và hệ số khuyếch đại có thể được xấp xỉ bằng biểu thức: vo ≈ − g m RL vi Rõ ràng là bằng cách thay đổi giá trị của RL thì ta sẽ thay đổi được hệ số khuyếch đại của mạch khuyếch đại ở chế độ tín hiệu nhỏ, nhưng phải lưu ý rằng điều này cũng sẽ ảnh hưởng đến dòng một chiều chảy trong FET. hiệu nhỏ. Các điện trở tín hiệu nhỏ không liên quan đến các điện áp dc và dòng điện dc trong mạch. Ví dụ 3.4: Xác định hệ số khuyếch đại điện áp tín hiệu nhỏ, điện trở vào và điện trở ra của một bộ khuyếch đại bằng FET như hình (a) dưới đây, biết rằng: rD = 100 kΩ và gm = 2 ms. Giải: Bước đầu tiên là xác định mạch tương đương tín hiệu nhỏ của bộ khuyếch đại. Dựa vào mô hình tương đương của FET, dễ dàng xác định được mạch tương đương cho bộ khuyếch đại như ở hình (b). Từ mạch tương đương, ta có: 100 x 10 3 2 x 10 3 = − gm (rD // RL ) = − g m D L = −2 x 10 − 3 vo rR = −3 ,9 rD + RL 100 x 10 3 + 2 x 10 3 vi Dấu trừ cho biết đây là mạch khuyếch đại đảo. Điện trở vào của mạch tín hiệu nhỏ chỉ đơn giản là RG, và vì vậy: ri = RG = 1MΩ BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 3: TRANSISTOR HIỆU ỨNG TRƯỜNG
- CẤU KIỆN ĐIỆN TỬ 91 Điện trở ra của mạch tín hiệu nhỏ được cho bởi: 100 x 10 3 2 x 10 3 rR ro = rd // RL = d L = ≈ 2 ,0 kΩ rd + RL 100 x 10 3 + 2 x 10 3 Ví dụ này xét mạch dùng DE MOSFET kênh-n, thực hiện tính toán tương tự đối với mạch dùng linh kiện kiểu khác của FET. Giá trị điển hình cho điện trở máng tín hiệu nhỏ rd nằm trong khoảng 50 đến 100 kΩ; điện trở này thông thường lớn hơn nhiều so với điện trở tải RL, nên trong trường hợp này ảnh hưởng của (a) (b) rd thường được bỏ qua, và hệ số khuyếch đại có thể được xấp xỉ bằng biểu thức: vo ≈ − gm RL vi Rõ ràng là bằng cách thay đổi giá trị của RL thì ta sẽ thay đổi được hệ số khuyếch đại của mạch khuyếch đại ở chế độ tín hiệu nhỏ, nhưng phải lưu ý rằng điều này cũng sẽ ảnh hưởng đến dòng một chiều (dc) chảy trong FET. b) Mạch khuyếch đại lặp lại cực nguồn [ Source follower amplifier ]. Ở trên ta đã xét các mạch khuyếch đại Nguồn-chung. Một số cấu hình khuyếch đại khác được dùng rộng rãi là mạch ở hình 3.44. Trong các mạch đó, cực máng là chung cho cả mạch vào và mạch ra (lưu ý rằng, VDD là kết nối hiệu dụng với đất đối với các tín hiệu nhỏ, tức là được xem như ngắn mạch nguồn đối với tín hiệu ac). Do đó, các mạch trên được gọi là các mạch khuyếch đại máng-chung. Từ định nghĩa của gm, ta có: iD = gm vGS = gm (vG − v S ) iD gm = vGS Vì điện áp tại cực nguồn vS được cho bởi: vS = RSid , nên suy ra: RS g m 1 vS = vG = vG 1 + RS g m 1 +1 RS g m Nếu 1/ RSgm
- CẤU KIỆN ĐIỆN TỬ 92 vG = 0. Như ở trên ta đã có: i D = g m vGS = g m (vG − v S ) , thay thế vG = 0, ta có: i D = g m vGS = g m (0 − v S ) Do dòng cổng là không đáng kể, nên giá trị của dòng nguồn bằng giá trị của dòng máng. Nhưng các dòng này được xét theo chiều quy ước là chảy vào dụng cụ và do đó, iS = - iD. v 1 iS = − i D = g m v S rD = S = Vì vậy: và iS gm Vì gm biến đổi theo dòng máng, nên điện trở ra cũng sẽ thay đổi theo dòng máng, nhưng giá trị điển hình của điện trở ra là vài trăm ohm đối với dòng là vài trăm miliampere. Các mạch lặp lại nguồn có giá trị điện trở vào không thấp như mạch lặp lại emitter dùng transistor bipolar (sẽ xét ở chương tiếp theo), với điện trở vào rất cao của mạch lặp lại nguồn, làm cho mạch được sử dụng nhiều, như ở các bộ khuyếch đại đệm, có hệ số khuyếch đại bằng đơn vị. c) Mạch khuyếch đại vi sai. Các mạch khuyếch đại vi sai là mạch có thể tạo một tín hiệu ra tỷ lệ với sự khác biệt giữa hai tín hiệu vào và có khả năng loại bỏ các tín hiệu cùng pha ở cả hai lối vào, đặc tính sau được xem như sự khử bỏ tín hiệu cùng pha [common-mode rejection]. Hình 3.45a, là dạng thông thường của mạch khuyếch đại vi sai thường được dùng ở các tầng vào của các bộ khuyếch đại thuật toán. Hai mạch khuyếch đại FET được phân chia một điện trở nguồn chung RS, và các điện trở cổng và máng của mỗi mạch có các giá trị bằng nhau. Các FET được chọn có đặc tính như nhau để mạch có tính đối xứng. Mạch có hai đầu vào v1 và v2, và hai đầu ra v3 và v4. Sơ đồ tương đương ở chế độ tín hiệu nhỏ của mạch khuyếch đại vi sai cho ở hình 3.45b. Điện áp vào và điện áp ra được đo với điểm tham chiếu chung (đất). Các điện trở cổng thường được chọn lớn để ít ảnh hưởng lên hoạt động của mạch và hơn nữa là để thiết lập các điều kiện phân cực dc thích hợp cho FET, do vậy các điện trở cổng được bỏ qua trong mạch tương đương tín hiệu nhỏ. Với giả thiết rằng các linh kiện trong mạch là đối xứng nhau, để có điện dẫn gm và điện trở máng rd của cả hai mạch là bằng nhau. Do điện áp vào v1 và v2 được đo đối với đất, nên điện áp đặt ngang qua tiếp giáp cổng-nguồn của mỗi FET là: vGS 1 = v1 − v S vGS 2 = v 2 − v S và Từ định luật Kirchhoff’s, ta thấy rằng: Tổng các dòng điện chảy vào một nút nào đó của mạch bằng 0. Áp dụng nguyên tắc trên cho một số điểm trong mạch tương đương, ta có các phương trình đồng thời như sau: Xét tại điểm P1 ta có: BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 3: TRANSISTOR HIỆU ỨNG TRƯỜNG
- CẤU KIỆN ĐIỆN TỬ 93 (v 3 − v S ) + g (v 4 − v S ) − vS g m vGS 1 + + =0 m vGS 2 rd rd RS Thay thế vGS1 và vGS2 đã có ở trên, ta có: (v − v S ) + g (v − v ) + (v 4 − v S ) − v S = 0 g m (v 1 − v S ) + 3 (3.82) m2 S rd rd RS Áp dụng cho điểm P2 ta có: v3 v v + 4 + S =0 (3.83) RD RD RS Và tại điểm P3 ta có: v 3 (v 3 − v S ) + g m (v1 − v S ) = 0 + (3.84) RD rd Từ các phương trình trên, ta có thể suy ra biểu thức cho các điện áp ra của mạch v3 và v4 theo các số hạng của hai đầu vào, nhưng việc giải khá phức tạp. Từ phương trình (3.83), ta giả sử rằng số hạng vS/ RS là rất nhỏ vì vậy, ảnh hưởng của số hạng trên có thể bỏ qua; tương đương với dòng tín hiệu nhỏ chảy qua điện trở nguồn RS không đổi, tức là làm việc như một nguồn dòng hằng. Nếu bỏ qua số hạng vS/ RS, thì phương trình (3.83) trở thành: v3 v + 4 =0 (3.85) RD RD suy ra: v3 = - v4. Kết hợp kết quả trên với các phương trình (3.82) và (3.84), ta nhận được biểu thức cho các tín hiệu ra: − gm v 3 = − v 4 = (v1 − v 2 ) (3.86) ⎛1 1⎞ 2⎜ + ⎟ ⎜r ⎟ ⎝ d RD ⎠ Như vậy, các tín hiệu ra là bằng nhau và ngược chiều cực tính và giá trị của chúng được xác định bằng sự chênh lệch giữa các tín hiệu ở hai lối vào, nên gọi là bộ khuyếch đại vi sai. Điện áp ra vi sai của mạch trên vo được cho bằng v3 - v4 và vì v3 và v4 là bằng nhau và ngược dấu, nên hệ số khuyếch đại của mạch có dạng đơn giản: v − v4 − gm v Hệ số khuyếch đại điện áp vi sai = o = 3 = vi v1 − v 2 ⎛ 1 1⎞ ⎜+ ⎟ ⎜r ⎟ ⎝ d RD ⎠ Lưu ý phần đã xét ở trên (mục 3.7a) thấy rằng: rd thường lớn hơn nhiều so với RD nên ta có thể đơn giản biểu thức trên: Hệ số khuyếch đại điện áp vi sai ≈ - gmRD có dạng tương tự biểu thức đơn giản của bộ khuyếch đại FET đã xét ở phần trước. d) FET như một nguồn dòng hằng. FET có thể xem như một nguồn dòng không đổi với điều kiện là điện áp máng-nguồn lớn hơn điện áp thắt, dòng máng của FET sẽ được điều khiển bởi điện áp cổng-nguồn. Do vậy, một nguồn dòng hằng rất đơn giản có thể được tạo thành dễ dàng khi áp dụng một điện áp không đỗi đến cực cổng. Đối với JFET và DE MOSFET, các dạng đơn giản nhất của mạch nguồn dòng hằng cho ở hình 3.46a và 3.46b. Ở các mạch này, chỉ kết nối đơn giản cực cổng với cực nguồn để cho dòng máng bằng IDSS, dòng điện tạo thành bởi các mạch như vậy được xác định bằng các đặc tính của dụng cụ và thường có giá trị trong khoảng 1mA đến 5 mA. Đã xuất hiện các ‘ nguồn dòng hằng ‘ thường là các FET đơn, với chân nguồn và chân cổng của BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 3: TRANSISTOR HIỆU ỨNG TRƯỜNG
- CẤU KIỆN ĐIỆN TỬ 94 FET được kết nối bên trong để tạo thành các dụng cụ hai chân, có các mức dòng khác nhau. Người ta cũng chế tạo các nguồn dòng hằng có khả năng thay đổi mức dòng bằng cách sử dụng kỹ thuật phân cực tự động như mạch cho ở hình 3.46c. Dòng điện chảy qua dụng cụ sẽ tạo nên một sụt áp trên điện trở, tức là phát sinh một điện áp phân cực giữa cổng và nguồn. Trị số của điện trở này được hiệu chỉnh để tạo ra dòng điện hằng tùy yêu cầu của người sử dụng. Các nguồn dòng hằng bằng FET thường được dùng để tạo ra nguồn dòng cho các mạch khuyếch đại vi sai, chẳng hạn như mạch ở hình 3.47. e) FET như một điện trở được điều khiển bằng điện áp. Từ họ đặc tuyến ra (đặc tuyến dòng máng) của FET, rõ ràng là: Đối với các giá trị nhỏ của điện áp máng-nguồn, các FET có đặc tính được mô tả như một điện trở thuần [ohmic], bởi vì dòng máng tăng một cách tuyến tính theo điện áp máng. Giá trị của điện trở hiệu dụng (tương ứng với độ dốc của các đặc tuyến ra) được điều khiển bằng điện áp cổng. Điều này cho phép FET được sử dụng như một điện trở được điều khiển bằng điện áp (VCR) [voltage controlled resistance]. Các giá trị điện trở có thể được tạo ra sẽ thay đỗi từ một vài chục Ω [ohm] (hoặc thấp hơn đối với FET công suất) lên đến một vài GΩ (1 GΩ = 1000 MΩ). Ứng dụng thông thường của mạch này trong phạm vi các mạch điều khiển hệ số khuyếch đại tự động [automatic gain control circuits]. Khi đó điện áp điều khiển điện trở được lấy từ mạch phân áp với một điện trở cố định để tạo thành một bộ suy giảm được điều khiển bằng điện áp [voltage controlled attenuator] như mạch cho ở hình 3.48. Mạch suy giảm được dùng trong đường hồi tiếp âm của bộ khuyếch đại để làm thay đổi hệ số khuyếch đại của mạch. Điện áp cung cấp cho FET để điều khiển điện trở của mạch suy giảm là được trích từ tín hiệu ra của mạch khuyếch đại và được bố trí sao cho nếu biên độ điện áp ra tăng, thì lượng hồi tiếp âm tăng, dẫn đến làm giảm hệ số khuyếch đại của bộ khuyếch đại. Điều này cho phép duy trì biên độ ra tại một giá trị không đổi nào đó độc lập với biên độ của tín hiệu vào. Kỹ thuật này thường được sử dụng, ví dụ như: giữ âm lượng của một máy thu radio không đổi, ngay khi cường độ của tín hiệu radio luôn thay đổi. Một ứng dụng khác của các bộ suy giảm được điều khiển bằng điện áp là trong việc chế tạo các bộ dao động, mà trong đó mạch điều khiển hệ số khuyếch đại tự động dùng để ổn định hệ số khuyếch đại của bộ dao động mà không làm méo dạng tín hiệu ra. Các mạch suy giảm được điều khiển bằng điện áp có thể được sử dụng với các tín hiệu vào DC hay AC, do FET là dụng cụ có tính đối xứng trong nguyên tắc làm việc của nó (mặc dù đặc tính BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 3: TRANSISTOR HIỆU ỨNG TRƯỜNG
- CẤU KIỆN ĐIỆN TỬ 95 của các FET đối với các tín hiệu vào có cực tính khác nhau thường rất khác nhau), nhưng để tránh gây méo dạng thì biên độ của tín hiệu vào cần phải được hạn chế ở một vài chục milivolts. g) FET như một chuyển mạch tương tự. Bằng cách đặt một điện áp thích hợp đến cực cổng của FET, ta có thể biến đổi điện trở máng- nguồn hiệu dụng từ vài chục ohm hay thấp hơn (ngắn mạch một cách hiệu dụng trong nhiều ứng dụng) đến một giá trị cao, tức là có thể xem mạch hầu như là hở mạch. Điện trở của FET ở hai trạng thái như trên được gọi là điện trở dẫn [ON resistance] và điện trở ngưng [OFF resistance]. Khả năng chuyển dụng cụ từ ‘ Dẫn’ [ON] sang ‘Ngưng’ [OFF] theo phương pháp này sẽ cho phép FET được sử dụng như một chuyển mạch, như hình 3.49. Hình 3.49a là chuyển mạch nối tiếp dùng JFET. MOSFET có thể được sử dụng theo cách tương tự. Khi FET được chuyển sang Dẫn [ON] thì điện trở giữa lối vào và lối ra của mạch rất nhỏ, bằng điện trở ON của FET, dụng cụ được xem như ngắn mạch. Khi FET chuyển sang Ngưng [OFF] thì điện trở giữa lối vào và lối ra của mạch sẽ bằng với điện trở OFF của FET. Do có nhiều khoảng giá trị khác nhau giữa điện trở ON và OFF, nên FET thường được dùng như một chuyển mạch rất hiệu quả. Hình 3.49b mô tả FET được sử dụng ở mạch song song. Ở đây điện trở nối tiếp R được chọn lớn so với RON , và nhỏ so với ROFF. Bộ phân áp sẽ tạo nên một điện áp ra gần bằng Vi khi dụng cụ chuyển sang OFF, và gần bằng không khi dụng cụ chuyển sang ON. Khi dùng FET như các chuyển mạch tương tự, cần phải đảm bảo các điều kiện làm việc thích hợp cho dụng cụ. Chủ yếu đảm bảo không được vượt quá điện áp đánh thủng của cổng, nhưng cũng cần phải đảm bảo điện áp thích hợp ở cổng để dụng cụ làm việc theo cả hai trạng thái: Dẫn hoàn toàn hoặc Ngưng hoàn toàn. Đối với MOSFET kênh-n, thì cổng có thể lấy điện áp dương lớn hơn để chuyển dụng cụ sang Dẫn [ON], và phải có điện áp âm so với điện áp vào để chuyển dụng cụ sang Ngưng [OFF]. Đối với JFET trạng thái hơi khác với MOSFET, đặc biệt khi sử dụng ở các mạch nối tiếp, vì tiếp giáp cổng của JFET cần phải không được phân cực thuận. Mạch dùng cho JFET cho ở hình 3.50. Khi điện áp chuyển mạch VS dương hơn so với điện áp vào Vi thì diode sẽ được phân cực ngược và điện áp cổng sẽ bằng với Vi do điện trở R, sẽ chuyển FET sang ON. Nếu VS có giá trị âm thì diode sẽ dẫn và đưa điện áp âm vào cổng so với nguồn và chuyển FET về OFF. h) FET như một chuyển mạch số. Ngoài ứng dụng FET làm chuyển mạch tương tự, các FET (riêng các MOSFET) được sử dụng rộng rãi trong các ứng dụng số. Trong đó, các mạch thường theo hai trạng thái hay nhị phân [binary], trong các mạch số, tất cả các tín hiệu đều được quy về một trong hai dải điện áp, một dải điện áp biểu diễn trạng thái thứ nhất (ví dụ trạng thái ON), và dải điện áp khác biểu diễn trạng thái thứ hai (ví dụ trạng thái OFF). Các khoảng điện áp này thường được xem như mức ‘logic 1’ và ‘logic 0’. Trong các mạch dùng MOSFET thì thường đối với các mức điện áp gần bằng 0 sẽ tương đương với một mức logic 0, và đối với các điện áp gần bằng điện áp dương của nguồn cung cấp sẽ tương đương với mức logic 1. Một mạch logic đơn giản nhất là bộ đảo logic [logical inverter] cần cho việc tạo ra một điện áp tương ứng với mức logic 1 nếu đầu vào tương ứng với mức logic 0, và ngược lại. Mạch đảo đơn giản để thực hiện chức năng này cho ở hình 3.51a. Mạch sử dụng một MOSFET tăng cường kênh-n và một điện trở. Khi được dùng như một mạch đảo logic, thì điện áp vào sẽ thay đổi theo cả hai hướng: gần bằng 0 (mức logic 0) hoặc gần bằng điện áp nguồn VDD (mức logic 1). Khi điện áp vào gần bằng 0 V, thì MOSFET tăng cường sẽ được chuyển về ngưng dẫn [OFF] (vì BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 3: TRANSISTOR HIỆU ỨNG TRƯỜNG
- CẤU KIỆN ĐIỆN TỬ 96 dụng cụ cần phải có điện áp dương đặt trên cổng để tạo ra kênh dẫn giữa vùng máng và vùng nguồn), vì vậy dòng máng là không đáng kể, tức là không có sụt áp trên điện trở R, do đó điện áp ra gần bằng với điện áp nguồn cung cấp VDD (mức logic 1). Khi điện áp vào gần bằng với điện áp nguồn cung cấp, thì MOSFET sẽ được chuyển sang dẫn [ON] và có dòng chảy qua điện trở R, điện áp ra giảm gần bằng với mức đất chung (mức logic 0). Như vậy, khi điện áp lối vào cao thì sẽ có điện áp lối ra thấp và ngược lại nên mạch có chức năng của một bộ đảo. Mạch ở hình 3.51a hoàn toàn có thể thực hiện với các linh kiện rời nhưng ít được dùng trong các vi mạch (IC). Một trong những lý do giải thích tại sao các MOSFET được sử dụng rộng rải trong các vi mạch số là do mỗi MOSFET chỉ cần một diện tích rất nhỏ trên phiến Silicon, nên cho phép chế tạo một số lượng lớn các dụng cụ trên một chíp đơn. Ngược lại các điện trở thường chiếm một tỷ lệ diện tích lớn hơn nhiều. Do vậy, khi chế tạo các mạch đảo logic bằng MOSFET người ta thường sử dụng mạch như ở hình 3.51b. Trong đó, một MOSFET thứ hai được dùng như một tải tích cực, làm giảm nhiều diện tích vùng Silicon cần thiết để chế tạo các mạch đảo trong các vi mạch. Tương tự, cũng có thể chế tạo các mạch đảo bằng MOSFET tăng cường kênh-p ở cả dạng rời và dạng vi mạch như trên. i) Các mạch CMOS. Trong các mạch NMOS và PMOS được giới thiệu ở trên, giá trị của điện trở tải R (hoặc điện trở hiệu dụng của MOSFET được dùng thay vào vị trí của điện trở) sẽ ảnh hưởng đến điện trở ra của mạch khi lối ra ở mức cao, và có sự tiêu tán công suất của cổng khi lối ra ở mức thấp. Khi điện áp lối vào thấp , thì chuyển mạch MOSFET chuyển về ngưng dẫn [OFF] và lối ra được đẩy lên cao bởi điện trở tải R. để nhận được điện trở ra thấp thì R cần phải nhỏ. Khi lối vào ở mức cao, thì chuyển mạch MOSFET sẽ được chuyển sang dẫn [ON] và lối ra được đẩy xuống thấp. Do sự chuyển mạch MOSFET có điện trở ON thấp nên điện trở ra thấp, làm cho mạch hút mức dòng cao từ tải ngoài. Trong trường hợp này hầu như toàn bộ điện áp nguồn cung cấp được đặt trên điện trở tải R tạo ra một dòng lớn và vì vậy sẽ tiêu tán công suất lớn. Để tối thiểu hóa công suất tiêu tán này thì điện trở tải cần phải lớn. Rõ ràng là các đòi hỏi điện trở ra thấp và tiêu tán công suất thấp là các yêu cầu đối lập nhau trên giá trị của R. Vấn đề này có thể được khắc phục bằng cách sử dụng mạch như ở hình 3.52. Trong đó cả hai transistor NMOS và PMOS được ghép thành một mạch mà bây giờ được mô tả như mạch MOSFET bổ phụ [Complementary MOS] hay mạch logic CMOS. Khi điện áp vào gần bằng 0, thì dụng cụ kênh-n T2 sẽ được chuyển về ngưng dẫn [OFF] nhưng dụng cụ kênh-p T1 được chuyển sang dẫn [ON]. Khi điện áp lối vào gần bằng với mức điện áp nguồn cung cấp thì vị trí được đảo ngược, với T1 ngưng [OFF] và T2 dẫn [ON]. Như vậy, với cả hai trạng thái ở lối vào thì một trong hai transistor sẽ dẫn [ON] và transistor kia ngưng [OFF]. Mạch ở hình 3.52a có thể được tương đương bởi mạch hình 3.52b. Với chuyển mạch T1 kín và T2 hở, thì lối ra sẽ được đẩy lên mức cao và điện trở lối ra thấp, được xác định bởi điện trở mở- điện trở ON của T1. Với T2 kín và T1 hở, thì lối ra sẽ được đẩy xuống thấp và điện trở ra cũng xuống thấp mà bây giờ được xác định bởi điện trở ON của T2. Trong cả hai trường hợp, vì một trong hai chuyển mạch được chuyển về ngắt [OFF] nên chỉ có sự cung cấp dòng là dòng là dòng kéo về bởi tải. Nếu tải là một MOSFET khác loại thì dòng kéo về sẽ không đáng kể vì điện trở vào cao của các MOSFET. Vì vậy, cả hai trạng thái điện trở ra của mạch CMOS là rất thấp và sự tiêu tán công suất là cực nhỏ. Trên thực tế, khi ở trạng thái tĩnh, thì sự tiêu tán công suất thường không đáng kế. Ở các mạch ứng dụng thì công suất được tiêu thụ bởi một mạch CMOS được xác định bằng một lượng nhỏ dòng điện chảy qua khi các dụng cụ chuyển mạch từ trạng thái này sang trạng thái khác. Trong một khoảng thời gian ngắn, cả hai transistor đều dẫn, tạo ra một ngắn mạch đột ngột từ nguồn cung cấp đến đất chung. Do tiêu thụ công suất thấp, nên các mạch CMOS được sử dụng rộng rải trong các ứng dụng làm việc bởi nguồn cung cấp bằng pin. Vấn đề này sẽ được thảo luận trong các giáo trình khác. BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 3: TRANSISTOR HIỆU ỨNG TRƯỜNG
- CẤU KIỆN ĐIỆN TỬ 97 BIÊN SOẠN DQB, B/M ĐTVT-ĐHKT CHƯƠNG 3: TRANSISTOR HIỆU ỨNG TRƯỜNG
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình linh kiện điện tử và ứng dụng part 2
25 p | 351 | 115
-
Giáo trình Cấu kiện điện tử - Dư Quang Bình
99 p | 327 | 106
-
Giáo trình linh kiện điện tử và ứng dụng part 3
25 p | 278 | 94
-
Giáo trình linh kiện điện tử và ứng dụng part 4
25 p | 249 | 86
-
Giáo trình linh kiện điện tử và ứng dụng part 5
25 p | 208 | 75
-
Giáo trình linh kiện điện tử và ứng dụng part 6
25 p | 224 | 74
-
Giáo trình Linh kiện điện tử (Nghề: Điện tử công nghiệp - CĐ/TC): Phần 2 - Trường Cao đẳng Nghề Đồng Tháp
107 p | 36 | 11
-
Giáo trình Cấu kiện điện tử (Dùng cho sinh viên hệ đào tạo đại học từ xa)
0 p | 93 | 10
-
Giáo trình Linh kiện điện tử (Nghề: Điện tử công nghiệp - Trình độ: Cao đẳng) - Trường Cao đẳng nghề Cần Thơ
51 p | 20 | 9
-
Giáo trình Linh kiện điện tử (Nghề Điện tử dân dụng - Trình độ: Cao đẳng) - Trường Cao đẳng nghề Cần Thơ (Năm 2017)
109 p | 9 | 8
-
Giáo trình Linh kiện điện tử (Nghề: Điện tử dân dụng - Trình độ: Cao đẳng) - Trường Cao đẳng nghề Cần Thơ
51 p | 14 | 8
-
Giáo trình Linh kiện điện tử (Nghề Điện tử dân dụng - Trình độ: Trung cấp) - Trường Cao đẳng nghề Cần Thơ (Năm 2017)
105 p | 18 | 8
-
Giáo trình Linh kiện điện tử (Nghề: Điện tử công nghiệp - Trình độ: Trung cấp) - Trường Cao đẳng nghề Cần Thơ
49 p | 14 | 7
-
Giáo trình Linh kiện điện tử (Nghề: Điện tử dân dụng - Trình độ: Trung cấp) - Trường Cao đẳng nghề Cần Thơ
49 p | 13 | 7
-
Giáo trình Linh kiện điện tử (Nghề: Cơ điện tử - Trình độ: Cao đẳng) - Trường Cao đẳng nghề Ninh Thuận
170 p | 14 | 6
-
Giáo trình Linh kiện điện tử (Nghề: Cơ điện tử - Trình độ: Cao đẳng) - Trường Cao đẳng nghề Cần Thơ
51 p | 12 | 6
-
Giáo trình Linh kiện điện tử (Ngành: Điện tử công nghiệp - Cao đẳng) - Trường Cao đẳng nghề Ninh Thuận
151 p | 11 | 6
-
Giáo trình Linh kiện điện tử (Nghề: Điện tử công nghiệp - Trình độ: Cao đẳng) - CĐ Kỹ thuật Công nghệ Quy Nhơn
58 p | 11 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn