intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình Công nghệ khí nén - thủy lực ứng dụng (Ngành: Công nghệ ô tô - Cao đẳng) - Trường Cao đẳng nghề Ninh Thuận

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:83

8
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Giáo trình "Công nghệ khí nén - thủy lực ứng dụng (Ngành: Công nghệ ô tô - Cao đẳng)" được biên soạn với mục tiêu nhằm giúp sinh viên nắm được các kiến thức về: Khái niệm, yêu cầu và các định luật truyền dẫn năng lượng của hệ thống truyền động khí nén và thủy lực; cấu tạo và nguyên lý hoạt động của hệ thống truyền động bằng khí nén và thủy lực; cấu tạo và nguyên lý hoạt động của các thiết bị truyền động bằng khí nén và thủy lực;... Mời các bạn cùng tham khảo!

Chủ đề:
Lưu

Nội dung Text: Giáo trình Công nghệ khí nén - thủy lực ứng dụng (Ngành: Công nghệ ô tô - Cao đẳng) - Trường Cao đẳng nghề Ninh Thuận

  1. LỜI NÓI ĐẦU Trong những năm gần đây, sự phát triển mạnh mẽ của khoa học kỹ thuật đã giúp cho có sự thay đổi vượt bậc trong cuộc sống của con người. Bên cạnh sự phát triển của các ngành như: Kỹ thuật điện tử, kỹ thuật tự động hóa..thì ngành kỹ thuật thủy khí ngày càng trở nên có ý nghĩa và chiếm một vị trí quan trọng trong một số lĩnh vực của cuộc sống, đặc biệt trong ngành chế tạo máy và kỹ thuật ôtô, các máy công trình thì truyền động thủy lực khí nén đang có một vai trò đáng kể do có mật độ công suất cao, kết cấu đơn giản, độ tin cậy cao và đặc biệt là việc bố trí các phần tử tự do và linh động theo không gian và van điều khiển, có chi phí công suất nhỏ là những ưu điểm nổi bật của công nghệ truyền động khí nén thủy lực. Với những ưu điểm như vậy, nên ở nước ta hiện nay đã có rất nhiều máy móc sử dụng truyền đồng thủy lực khí nén tuy nhiên số lượng những thợ giỏi về lĩnh vực này lại khá khiêm tốn Nhằm giúp cho sinh viên có thể nắm được một số kiến thức cơ bản về truyền động thủy lực khí nén, tiếp cận dần với công việc sửa chữa các thiết bị có liên quan trong thực tế. Nội dung của giáo trình biên soạn được dựa trên sự kế thừa nhiều tài liệu của các trường đại học và cao đẳng, kết hợp với yêu cầu nâng cao chất lượng đào tạo cho sinh viên các trường dạy nghề. Để giúp cho người học có thể nắm được những kiến thức cơ bản của môn học thủy lực khí nén ứng dụng, giáo trình đã được sắp xếp môn học theo từng chương theo thứ tự: Chương 1: Khái niệm và các quy luật về truyền động bằng khí nén Chương 2: Hệ thống truyền động bằng khí nén Chương 3: Khái niệm và các quy luật về truyền động bằng thủy lực Chương 4: Cấu tạo hệ thống truyền động bằng thủy lực Kiến thức trong giáo trình được biên soạn theo chương trình, sắp xếp logic và cô đọng. Do đó người đọc có thể hiểu một cách dễ dàng các nội dung trong chương trình. 1
  2. MỤC LỤC CHƯƠNG I: KHÁI NIỆM VỀ CÁC QUY LUẬT VÀ TRUYỀN ĐỘNG KHÍ NÉN .......................... 4 1.1 KHÁI NIỆM, YÊU CẦU VÀ CÁC THÔNG SỐ CỦA KHÍ NÉN ..................................................... 4 1.2 CÁC QUY LUẬT TRUYỀN DẪN BẰNG KHÍ NÉN ...................................................................... 14 1.3 NHẬN DẠNG CÁC THIẾT BỊ SỬ DỤNG KHÍ NÉN ..................................................................... 21 CHƯƠNG 2: HỆ THỐNG TRUYỀN ĐỘNG BẰNG KHÍ NÉN......................................................... 33 2.1 NHIỆM VỤ, YÊU CẦU, PHÂN LOẠI HỆ THỐNG TRUYỀN ĐỘNG BẰNG KHÍ NÉN .. 33 2.2 SƠ ĐỒ CẤU TẠO VÀ NGUYÊN LÝ HOẠT ĐỘNG CỦA HỆ THỐNG TRUYỀN ĐỘNG BẰNG KHÍ NÉN ................................................................................................................................... 34 2.3 CẤU TẠO VÀ NGUYÊN LÝ HOẠT ĐỘNG CỦA MÁY NÉN KHÍ............................................... 39 CHƯƠNG 3: KHÁI NIỆM VÀ CÁC QUY LUẬT VỀ TRUYỀN ĐỘNG BẰNG THỦY LỰC....... 46 3.1 KHÁI NIỆM, YÊU CẦU VÀ CÁC THÔNG SỐ CỦA THỦY LỰC ................................................ 46 3.2 CÁC QUY LUẬT TRUYỀN DẪN BẰNG THỦY LỰC .................................................................. 50 3.3 NHẬN DẠNG CÁC THIẾT BỊ THỦY LỰC ................................................................................... 53 CHƯƠNG 4: CẤU TẠO HỆ THỐNG TRUYỀN ĐỘNG BẰNG THỦY LỰC ...................................... 71 4.1 NHIỆM VỤ, YÊU CẦU VÀ PHÂN LOẠI ....................................................................................... 71 4.2 SƠ ĐỒ CẤU TẠO VÀ NGUYÊN LÝ HOẠT ĐỘNG CỦA HỆ THỐNG TRUYỀN ĐỘNG BẰNG THỦY LỰC................................................................................................................................ 71 4.3 CẤU TẠO VÀ NGUYÊN LÝ HOẠT ĐỘNG CỦA MÁY THỦY LỰC ........................................... 76 TÀI LIỆU THAM KHẢO .................................................................................................................... 83 2
  3. CHƯƠNG TRÌNH MÔN HỌC CÔNG NGHỆ KHÍ NÉN - THỦY LỰC ỨNG DỤNG Mã số của môn học: MĐ 18 Thời gian của môn học: 45 giờ (Lý thuyết: 15 giờ; Thực hành: 30 giờ) Vị trí, tính chất của môn học: - Vị trí: Môn học được bố trí giảng dạy sau với các môn học/ mô đun sau: - Tính chất: Là môn học kỹ thuật cơ sở bắt buộc. Mục tiêu của môn học: + Trình bày được đầy đủ các khái niệm, yêu cầu và các định luật truyền dẫn năng lượng của hệ thống truyền động khí nén và thủy lực. + Giải thích đầy đủ cấu tạo và nguyên lý hoạt động của hệ thống truyền động bằng khí nén và thủy lực. + Nhận dạng cấu tạo và nguyên lý hoạt động của các thiết bị truyền động bằng khí nén và thủy lực. + Tuân thủ đúng quy định, quy phạm về lĩnh vực thủy lực và khí nén + Rèn luyện tác phong làm việc nghiêm túc, tỉ mỉ. 3
  4. CHƯƠNG I: KHÁI NIỆM VỀ CÁC QUY LUẬT VÀ TRUYỀN ĐỘNG KHÍ NÉN Mã số của chương 1: Mục tiêu: - Phát biểu đúng các khái niệm, yêu cầu và các thông số của truyền động bằng khí nén - Giải thích được các quy luật truyền dẫn của khí nén - Phát biểu đúng yêu cầu, nhiệm vụ và phân loại hệ thống truyền động bằng khí nén - Giải thích được sơ đồ cấu tạo và nguyên lý hoạt động của hệ thống truyền động bằng khí nén - Nhận dạng được cấu tạo và nguyên lý hoạt động của các thiết bị truyền động bằng khí nén - Tuân thủ đúng quy định, quy phạm về lĩnh vực thủy lực và khí nén. 1.1 KHÁI NIỆM, YÊU CẦU VÀ CÁC THÔNG SỐ CỦA KHÍ NÉN Bên cạnh các chất lỏng thủy lực như nước và dầu, khí nén cũng là một trong những môi chất mang năng lượng và tín hiệu quan trọng nhất trong kỹ thuật thủy khí. Trong các hệ thống truyền động khí nén môi chất là không khí nén - một chất “lỏng” chịu nén. Như vậy có thể lấy không khí từ môi trường, nén lại, truyền dẫn làm hoạt động các động cơ khí nén hoặc xy lanh khí nén và lại thải ra môi trường. Khí nén đã được ứng dụng từ rất lâu, cách đây trên 2000 năm, người ta đã biết tạo ra khí nén, lưu trữ khí nén và sử dụng làm môi chất mang năng lượng. Vào quãng thế kỷ thứ 3 và thứ nhất trước công nguyên ở Alexandrie các nhà cơ khí Ktesibios và Heron đã phát minh ra các thiết bị máy móc hoạt động bằng khí nén. Tuy nhiên lịch sử phát triển của kỹ thuật khí nén cũng có những bước thăng trầm. Một mặt do trình độ kỹ thuật công nghệ các thời kỳ trước chưa tương xứng, mặt khác còn có sự cạnh tranh gay gắt của các hệ thống truyền năng lượng khác như động cơ nhiệt, truyền động điện… mà mãi đến những năm gần đây kỹ thuật khí nén mới lại có được vai trò xứng đáng của nó trong sản xuất. Thời kỳ bùng nổ của kỹ thuật khí nén bắt đầu cùng với sự phát triển mạnh mẽ của kỹ thuật điều khiển và tự động hóa của các quá trình sản xuất, nhất là khi có sự tham gia của kỹ thuật điện tử và kỹ thuật tính hiện đại. Ngày nay khí nén đã tham gia vào hầu hết các lĩnh vực sản xuất như chế tạo máy, xây dựng, kỹ thuật xe hơi, kỹ thuật y học, kỹ thuật rô bot, khai khoáng… 4
  5. 1.1.1 Khái niệm 1.1.1.1 Khái niệm Là hệ thống truyền động lấy không khí từ môi trường ngoài, nén lại truyền dẫn làm hoạt động các động cơ khí nén hoặc xy lanh khí nén và lại thải ra môi trường. 1.1.1.2 Sản xuất khí nén Hệ thống điều khiển khí nén hoạt động dựa vào nguồn cung cấp khí nén, nguồn khí này phải được sản xuất thường xuyên với lượng thể tích đầy đủ với một áp suất nhất định thích hợp cho năng lượng hệ thống. a. Máy nén khí Máy nén khí là máy có nhiệm vụ thu hút không khí, hơi ẩm, khí đốt ở một áp suất nhất định và tạo ra nguồn lưu chất có áp suất cao hơn. b. Các loại máy nén khí công suất nhỏ thường sử dụng Máy nén khí được phân loại theo áp suất hoặc theo nguyên lý hoạt động. Đối với nguyên lý hoạt động ta có: - Máy nén theo nguyên lý thể tích: máy nén pít tông, máy nén khí kiểu trục vít, máy nén cánh gạt. - Máy nén tuốc bin là được dùng cho công suất rất lớn và không kinh tế khi sử dụng lưu lượng dưới mức 600 m3/phút. Vì thế nó không mang lại áp suất cần thiết cho ứng dụng điều khiển khí nén và hiếm khi sử dụng. * Máy nén kiểu piston Máy nén pít tông (hình 1.1) là máy nén phổ biến nhất và có thể cung cấp năng suất đến 500 m3/phút. Máy nén 1 pít tông có thể nén khí khoảng 6 bar và ngoại lệ có thể đến 10 bar; máy nén kiểu pít tông hai cấp có thể nén đến 15 bar; 3-4 cấp lên đến 250 bar. Hình 1.1. Máy nén khí kiểu piston 5
  6. * Máy nén khí kiểu trục vít Máy nén trục vít làm việc theo nguyên lý thay đổi thể tích. Thể tích không gian giữa hai răng kề nhau và vỏ sẽ thay đổi khi trục trục vít quay. Do các rô to được chế tạo ở dạng trục vít nên điểm nén sẽ dịch chuyển từ cửa nạp đến cửa đẩy. Phần chính của máy nén trục vít gồm 2 roto: roto chính 2 và rô to phụ 1, (hình 1.3). Số đầu mối ren trên rô to xác định thể tích làm việc của máy, có nghĩa là thể tích không khí cuốn vào trong một vòng quay. Số đầu mối ren càng lớn thể tích làm việc càng nhỏ. Số đầu mối ren của hai rô to khác nhau sẽ cho hiệu suất cao hơn. Hình 1.2. Cấu tạo máy nén khí kiểu trục vít Hình 1.3. Quá trình hút, nén và đẩy của máy nén trục vít 6
  7. * Máy nén kiểu cánh quạt (Rotary compressors) Nguyên lý hoạt động của máy nén khí kiểu cánh gạt mô tả ở hình 1.2: không khí sẽ được vào buồng hút. Nhờ rôto và stato đặt lệch tâm, nên khi rôto quay chiều sang phải, thì không khí vào buồng nén. Sau đó khí nén sẽ đi ra buồng đẩy. Hình 1.4. Máy nén khí kiểu cánh gạt 1.1.1.3 Phân phối khí nén a. Phân phối khí nén Hệ thống phân phối khí nén có nhiệm vụ chuyển không khí nén từ nơi sản xuất đến nơi tiêu thụ, đảm bảo áp suất p và lưu lượng Q và chất lượng khí nén cho các thiết bị làm việc, ví dụ như van, động cơ khí, xy lanh khí… Hình 1.5. Hệ thống, thiết bị phân phối khí nén 7
  8. Truyền tải không khí nén được thực hiện bằng hệ thống ống dẫn khí nén, chú ý đối với hệ thống ống dẫn khí có thể là mạng đường ống được lắp ráp cố định (trong toàn nhà máy) và mạng đường ống lắp ráp trong từng thiết bị, trong từng máy mô tả ở hình 1.3. Đối với hệ thống phân phối khí nén ngoài tiêu chuẩn chọn máy nén khí hợp lí, tiêu chuẩn chọn đúng các thông số của hệ thống ống dẫn ( đường kính ống, vật liệu ống); cách lắp đặt hệ thống ống dẫn, bảo hành hệ thống phẫn phối cũng đóng vai trò quan trọng về phương diện kinh tế cũng như yêu cầu kỹ thuật cho hệ thống điều khiển khí nén. * Bình nhận và trích khí nén Bình trích chứa khí nén có nhiệm vụ cân bằng áp suất khí nén của máy nén khí chuyển đến, trích chứa, ngưng tụ và tách nước trước khi chuyển đến nơi tiêu thụ. Kích thước của bình trích chứa phụ thuộc vào công suất của máy nén khí, công suất tiêu thụ của các thiết bị sử dụng vàphương pháp sử dụng khí nén. Bình trích chứa khí nén có thể đặt nằm ngang, nằm đứng. Đường ống ra của khí nén bao giờ cũng nằm ở vị trí cao nhất của bình trích chứa (hình 1.6). Hình 1.6. Các loại bình trích chứa khí nén * Đường ống Đường ống dẫn khí nén có đường kính trong vài milimet trở lên. Chúng được làm bằng các vật liệu cao su, nhựa hoặc kim loại. Thông số cơ bản kích thước ống (đường kính bên trong) phụ thuộc vào: vận tốc dòng chảy cho phép, tổn thất áp suất cho phép, áp suất làm việc, chiều dài ống, lưu lượng, hệ số cản trở dòng chảy và các phụ kiện nối ống. 8
  9. - Lưu lượng: Phụ thuộc vào vận tốc dòng chảy (Q=v.F). Vận tốc dòng chảy càng lớn, tổn thất áp suất trong ống càng lớn. - Vận tốc dòng chảy: vận tốc dòng chảy của khí nén trong ống dẫn nên chọn là từ 6 ÷ 10 m/s. Vận tốc của dòng chảy khi qua các chỗ lượn cua của ống hoặc nối ống, van, những nơi có tiết diện nhỏ lại sẽ tăng lên, hay vận tốc dòng chảy sẽ tăng lên nhất thời khi các thiết bị hay máy móc đang vận hành. - Tổn thất áp suất: tốt nhất không vượt quá 0.1 bar. Thực tế sai số cho phép đến 5% áp suất làm việc. Như vậy tổn thất áp suất là 0.3 bar là chấp nhận được với áp suất làm việc là 6 bar. - Hệ số cản dòng chảy: khi lưu lượng khí đi qua các chỗ nối khớp, van, khúc cong sẽ gây ra hiện tượng cản dòng chảy. Bảng 1, biểu thị các hệ số cản tương đương chiều dài ống dẫn l’ của các phụ kiện nối. Bảng 1. Giá trị hệ số cản  tương đương chiều dài ống dẫn l 1.1.1.4 Xử lý khí nén Khí nén được tạo ra từ máy nén khí có chứa nhiều chất bẩn, độ bẩn có thể ở các mức độ khác nhau. Chất bẩn có thể là bụi, độ ẩm của không khí hút vào, những cặn bả của dầu bôi trơn và truyền động cơ khí. Hơn nữa trong quá trình nén nhiệt độ của khí nén tăng lên, có thể gây ra ô xy hóa một số phần tử của hệ thống. Do đó việc xử lý khí nén cần phải thực hiện bắt buộc. Khí nén không được xử lý thích hợp sẽ gây hư hỏng hoặc gây trở ngại tính làm việc 9
  10. của các phần tử khí nén. Đặc biệt sử dụng khí nén trong hệ thống điều khiển đòi hỏi chất lượng khí nén rất cao. Mức độ xử lý khí nén tùy thuộc vào từng phương pháp xử lý. Trong thực tế người ta thường dùng bộ lọc để xử lý khí nén (hình 1.7). Hình 1.7. Bộ lọc khí Van lọc khí (hình 1.8) là làm sạch các chất bẩn và ngưng tụ hơi nước chứa trong nó. Khí nén sẽ tạo chuyển động xoắn khi qua lá xoắn kim loại, sau đó qua phần tử lọc, các chất bẩn được tách ra và bám vào màng lọc, cùng với những phân tử nước được để lại nằm ở đáy của bầu lọc. Tùy theo yêu cầu chất lượng của khí nén mà chọn phần tử lọc. Độ lớn của phần tử lọc nên chọn từ 20µm - 50µm. Hình 1.8. Van lọc khí nén 10
  11. Van điều chỉnh áp suất: nhiệm vụ của van áp suất là ổn định áp suất điều chỉnh, mặc dù có sự thay đổi bất thường của áp suất làm việc ở đường ra hoặc sự dao động của áp suất ở đầu vào. Ap suất ở đầu vào luôn luôn là lớn hơn áp suất ở đầu ra (hình 1.9). Hình 1.9. Van điều chỉnh áp suất Van điều chỉnh áp được điều chỉnh bằng vít điều chỉnh tác động lên màng kín. Phía trên của màng chịu tác dụng của áp suất đầu ra, phía dưới chịu tác dụng của lực lò xo sinh ra do vít điều chỉnh. Bất kỳ sự tăng áp ở đầu tiêu thụ gây cho màng kín dịch chuyển chống lại lực căn của lò xo vì vậy hạn chế dòng khí đi qua miệng van cho tới lúc có thể đóng sát. Khi khí nén được tiêu thụ, áp suất đầu ra giảm, kết quả là đĩa van được mở bở lực căn lò xo lực. Để ngăn chặn đĩa van dao động chập chờn phải dùng đến lò xo cản gắn trên đĩa van. Van tra dầu: được sử dụng đảm bảo cung cấp bôi trơn cho các thiết bị trong hệ thống điều khiền khí nén nhằm giảm ma sát, sự ăn mòn và sự gỉ (hình 1.10). Hình 1.10. Van dầu 11
  12. 1.1.2 Yêu cầu về hệ thống truyền động bằng khí nén 1.1.2.1 Ưu điểm của hệ thống truyền động bằng khí nén − Tính đồng nhất năng lượng giữa phần I và P ( điều khiển và chấp hành) nên bảo dưỡng, sửa chữa, tổ chức kỹ thuật đơn giản, thuận tiện. − Không yêu cầu cao đặc tính kỹ thuật của nguồn năng lượng: (3 - 8) bar. − Khả năng quá tải lớn của động cơ khí − Độ tin cậy khá cao ít trục trặc kỹ thuật − Tuổi thọ lớn − Tính đồng nhất năng lượng giữa các cơ cấu chấp hành và các phần tử chức năng báo hiệu, kiểm tra, điều khiển nên làm việc trong môi trường dễ nổ, và bảo đảm môi trường sạch vệ sinh. − Có khả năng truyền tải năng lượng xa, bởi vì độ nhớt động học khí nén nhỏ và tổn thất áp suất trên đường dẫn ít. − Do trọng lượng của các phần tử trong hệ thống điều khiển bằng khí nén nhỏ, hơn nữa khả năng giãn nở của áp suất khí lớn, nền truyền động có thể đạt được vận tốc rất cao. 1.1.2.2 Nhược điểm của hệ thống truyền động bằng khí nén − Thời gian đáp ứng chậm so với điện tử − Khả năng lập trình kém vì cồng kềnh so với điện tử , chỉ điều khiển theo chương trình có sẵn. Khả năng điều khiển phức tạp kém. − Khả năng tích hợp hệ điều khiển phức tạp và cồng kềnh. − Lực truyền tải trọng thấp. − Dòng khí nén thoát ra ở đường dẫn gây tiếng ồn − Không điều khiển được quá trình trung gian giữa 2 ngưỡng. 1.1.2.3 Yêu cầu về hệ thống truyền động bằng khí nén Hệ thống truyền động khí nén gồm có các bộ phận để chuyển đổi năng lượng khí nén, các bộ phận để điều khiển hệ thống, để điều khiển và điều chỉnh môi chất, ngoài ra còn có các bộ phận để chuẩn bị khí nén, lưu giữ và phân phối khí nén… Các bộ phận chuyển đổi năng lượng khí nén gồm: các máy nén khí (biến năng lượng cơ học thành áp năng tích lũy trong khí nén), các động cơ và xi lanh khí nén (biến năng lượng tích lũy trong khí nén thành năng lượng cơ học ở dạng chuyển động quay, chuyển động thẳng hoặc chuyển động lắc). Chính vì vậy hệ thống truyền động khí nén cần đảm bảo các yêu cầu: - Kết cấu đơn giản, dễ bảo dưỡng sửa chữa - Tuổi thọ và độ kín khít giữa các bộ phận lắp ghép phải đảm bảo - Có độ an toàn cao 12
  13. - Giá thành rẻ 1.1.3 Các thông số của khí nén 1.1.3.1 Lực - Đơn vị của lực là Newton (N). 1 Newton là lực tác động lên đối trọng có khối lượng 1kg với gia tốc 1 m/s2. 1 N = 1 kg.m/s2 1.1.3.2 Áp suất - Đơn vị cơ bản của áp suất theo hệ đo lường SI là pascal. - Pascal (Pa) là áp suất phân bố đều lên bề mặt có diện tích 1m2 với lực tác động vuông góc lên bề mặt đó là 1 Newton (N). 1 Pascal = 1 N/m2 = 1kg m/s2/m2 = 1kg/ms2 - Ngoài ra còn dùng đơn vị bar: 1 bar = 105Pa = 1Kg/cm2 =1 at - Một số nước tư bản còn dùng đơn vị psi ( pound (0.45336 kg) per square inch (6.4521 cm2). Kí hiệu lbf/in2 (psi); 1 bar = 14,5 psi - Áp suất có thể tính theo cột áp lưu chất P = w*h Trong đó: w trọng lượng riêng lưu chất h chiều cao cột áp 1.1.3.3 Lưu lượng - Lưu lượng là vận tốc dòng chảy của lưu chất qua một tiết diện dòng chảy. Đơn vị thường dùng là l/min. Q = v.A Trong đó: Q lưu lượng của dòng chảy A Tiết diện của dòng chảy v Vận tốc trung bình của dòng chảy 1.1.3.4 Công - Đơn vị của công là Joule (J). 1 Joule là công sinh ra dưới tác động của lực 1 N để vật dịch chuyển quãng đường 1 m. 1 J =1Nm 1 J = 1 m2kg/s2 - Công được tính theo công thức: Wk = F*L Trong đó: F lực tác dụng vào vật L quảng đường vật đi được. 13
  14. 1.1.3.5 Công suất - Đơn vị công suất là Watt -1 Watt là công suất, trong thời gian 1 giây sinh ra năng lượng 1 joule. 1 W = 1 Nm/s 1 W = 1 m2kg/s3 - Công suất được tính theo công thức: 1.1.3.6 Độ nhớt - Độ nhớt động của một chất là có độ nhớt động lực 1 Pa.s và khối lượng riêng 1 kg/cm3. Trong đó:  : độ nhớt động lực [Pa.s]  : khối lượng riêng [kg/m3] v: độ nhớt động [m2/s] - Ngoài ra ta còn sử dụng đơn vị độ nhớt động là Stokes (St) hoặc là centiStokes (cSt). Chú ý: độ nhớt động không những có vai trò quan trọng trong hệ thống điều khiển khí nén mà nó rất quan trọng trong điều khiển thủy lực. 1.2 CÁC QUY LUẬT TRUYỀN DẪN BẰNG KHÍ NÉN 1.2.1 Các phương trình tính toán dòng chảy khí nén 1.2.1.1 Các đại lượng vật lý cơ bản của không khí Bảng 1.2. Các đại lượng vật lý cơ bản của không khí Stt Đại lượng vật lý K.hiệu Giá trị Đơn vị Ghi chú 1 Khối lượng riêng n 1,293 kg/m3 T=273K, Pa=760 2 Hằng số khí R 287 J/kg.K 3 Tốc độ âm thanh s 331,2 m/s Ở nhiệt độ 00C 344 Ở nhiệt độ 200C 4 Nhiệt lượng riêng cp 1,004 kJ/kg.K Áp suất hằng số cv 0,717 kJ/kg.K Thể tích hằng số 5 Số mũ đoạn nhiệt K 1,4 6 Độ nhớt động lực  17,17.10-6 Pa.s Ở trạng thái tiêu chuẩn 7 Độ nhớt động  13,28.10-6 m2/s Ở trạng thái tiêu chuẩn 14
  15. 1.2.1.2 Các phương trình tính toán * Phương trình trạng thái nhiệt động học Giả thiết khí nén trong hệ thống gần như là khí lý tưởng. Phương trình trạng thái nhiệt tổng quát của khí nén: pabs .V = m.R.T. Trong đó: pabs: Áp suất tuyệt đối [bar]. V: Thể tích của khí nén [m3]. m: Khối lượng [kg]. R: Hằng số khí. [J/kg.K]. T: Nhiệt độ Kelvin [K]. pabs V m R T Hay: p V p V 1 abs 1  2 abs 2 T T 1 2 Khối lượng không khí m được tính theo công thức: - Khi nhiệt độ T không thay đổi, ta có: m  1 p 2 abs m  p 1 abs 2 Hay: p 2 abs   2 1 p 1 abs - Khi áp suất p không thay đổi, ta có: T 1   2 1 T 2 - Khi cả ba đại lượng trên đều thay đổi, ta có: T p  1 2 2  abs 1 T p Thể tích riêng của không khí: 2 1 abs V v= .[m3/kg]. m Suy ra, ta có phương trình trạng thái của khí nén: pv R , hay p.v = R.T. T 15
  16. Trong đó; R là hằng số khí. Nhiệt lượng riêng c là nhiệt lượng cần thiết để nung nóng khối lượng không khí 1 kg lên 10K. Nhiệt lượng riêng khi thể tích không thay đổi ký hiệu là cv, khi áp suất không thay đổi ký hiệu cp. tỷ số của cv và cp gọi là số mũ đoạn nhiệt k: cp k= c v Hiệu số của cp và cv gọi là hằng số khí R: k 1 R = cp - cv = cp = cv(k -1) k Trạng thái đoạn nhiệt là trạng thái mà trong quá trình nén hay giãn nở không có nhiệt được đưa vào hay lấy đi, có phương trình sau: p1.v1k = p2.v2k = hằng số. k p v T Hay p1 ( 2 ) k ( 1 ) k 1 v T 2 1 2 Diện tích mặt phẳng 1, 2, 5, 6 trong hình 1.11 tương ứng lượng nhiệt giãn nở cho khối lượng khí 1 kg và có giá trị: k 1 p v  v   W  1 1 1  1  k 1  v 2   k 1 p v   p k W  1 1   k 1 1  2  p     1  p v   T  W  1 1 1 2  k 1  T   1  Công kỹ thuật Wt là công cần thiết để nén lượng không khí (Ví dụ trong máy nén khí) hoặc là công thực hiện khi áp suất khí giãn nở. Diện tích mặt phẳng 1, 2, 3, 4 ở trong hình 1.11 là công thực hiện để nén hay công thực hiện khí áp suất khí giãn nở cho 1 kg không khí, có giá trị: k  v  k 1  W  p v 1  1  t k 1 1 1    k  v 2 k1    k   p 2  W  k 1 p 1 v 1 1   p     1   16
  17. Trong thực tế không thể thực hiện được quá trình đẳng nhiệt hay đoạn nhiệt. Quá trình xảy ra thường nằm trong khoảng giữa quá trình đẳng nhiệt và quá trình đoạn nhiệt gọi là quá trình đa biến và có phương trình: 17
  18. p v  n n T n 1  p1.v1n = p2.v2n = hằng số Hay 1 2    2 p 2 v    1  T 1  Quá trình đẳng nhiệt: Quá trình đẳng áp: Quá trình đoạn nhiệt: Quá trình đẳng tích: * Phương trình dòng chảy: - Phương trình dòng chảy liên tục: Lưu lượng khí nén chảy trong đường ống từ vị trí 1 đến vị trí 2 là không đổi (hình 1.11), ta có phương trình dòng chảy như sau: Qv1 = Qv2 Hay: w1.A1 = w2.A2 = hằng số. Trong đó: Qv1, Qv2[m3]: Lưu lượng dòng chảy tại vị trí 1 và vị trí 2. w1 [m/s]: Vận tốc dòng chảy tại vị trí 1. w2 [m/s]: Vận tốc dòng chảy tại vị trí 2. 2 A1 [m ]: Tiết diện chảy tại vị trí 1. A2 [m2]: Tiết diện chảy tại vị trí 2. - Phương trình Becnully: Phương trình Becnully được viết như sau: 2 2 w p w p m 1 1 2 2 m g h m m m g h m 2 1 2 Trong đó:  2  2 m w : Động năng. 2 m.g.h: Thế năng. p  V p : Áp năng. m 18
  19. g: Gia tốc trọng trường. : Khối lượng riêng không khí. p: Áp suất tĩnh. c. Lưu lượng khí nén qua khe hở hẹp Lưu lượng khối lượng khí qm qua khe hở được tính như sau: qm =  A 2 p [kg/s] 1 1 2 p Hay qm   A 1 [m3/s]  1 Trong đó: : Hệ số lưu lượng. : Hệ số giãn nở. A1 [m2]: Diện tích mặt cắt của khe hở. p = p1 - p2: Độ chênh áp suất trước và sau khe hở. 1: Khối lượng riêng của không khí. 1.2.2 Các định luật cơ bản của dòng chất khí 1.2.2.1 Định luật pascal Tác dụng lên F=5 diện tích A=2cm2 kg 2 Tạo ra áp suất diện tích bình =1.5cm lực =37.500kgf p=2.5kgf/cm2 Diện tích đáy =100cm2 lực =250kgf Hình 1.12. Mô tả định luật pascal Áp suất trong chất lỏng kín có thể được xem là đồng nhất trong toàn bộ hệ thống, thực tế có sự chênh lệch do áp lực cột nước ở những độ cao khác nhau. Nhưng thường không đáng kể so với áp suất vận hành hệ thống, áp suất bằng nhau này gọi là định luật pascal. Trên (hình 1.13) với lực 5 kgf tác dụng vào piston diện tích 2 cm2, lực này tạo ra áp suất 2.5 kgf/cm2 tại mọi điểm trong chất lỏng và tác dụng lực bằng nhau lên khắp diện tích vách hệ thống. Lực tác dụng lên vách bình: F=P.A 19
  20. Giả sử đáy bình bên trái có diện tích 100cm2, tổng lực tác dụng lên đáy bình là 250 kgf. Nếu diện tích đỉnh bình bên phải là 150.000 cm 2 thì lực hướng lên trên bình bên phải rất lớn là 37500 kgf. Vì vậy, có thể dùng dòng chất lỏng kín để khuếch đại lực. Đối với khí nén trong bình kín ở trạng thái ổn định có thể áp dụng tương tự. 1.2.2.2 Lưu lượng lưu chất Hệ thống khí nén và thủy lực đều liên quan với dòng lưu chất đi qua ống. Lưu lượng thường có 3 định nghĩa: -Lưu lượng thể tích: được dùng để đo thể tích lưu chất đi qua một điểm trong một đơn vị thời gian. Nếu chất lỏng là chất khí có thể nén được, nhiệt độ và áp suất phải được định rõ hoặc lưu lượng được tiêu chuẩn hóa với nhiệt độ và áp suất chuẩn. Lưu lượng thể tích là số đo thông dụng trong điều khiển quá trình. - Lưu lượng khối: đo khối lượng lưu chất đi qua một điểm trong một đơn vị thời gian. - Lưu tốc (tốc độ lưu động): đo tốc độ thẳng qua một điểm đo. Lưu tốc là đại lượng rất quan trọng khi thiết kế hệ thống thủy lực và khí nén. Trên hình 1.4 minh họa các dạng lưu động của lưu chất, với vận tốc lưu động đủ thấp, dòng chảy êm và thẳng với vận tốc thấp ở vách và cao nhất tại tâm ống, trạng thái này được gọi là chảy tầng. Chảy tầng Chảy rối Hình 1.13. Mô phỏng dòng chảy môi chất Khi vận tốc lưu động tăng lên, các cuộn xoáy bắt đầu hình thành cho đến khi vận tốc đủ lớn sẽ xuất hiện các dòng chảy rối hoàn toàn, lúc này vận tốc lưu động gần như đồng nhất qua mặt cắt ống, trạng thái này gọi là chảy rối. 1.2.2.3 Định luật chất khí Trong thực tế, chất lỏng được dùng trong hệ thống thủy lực có thể được xem là không nén được và không nhạy với sự thay đổi nhiệt độ. Trong khi đó chất khí trong hệ thống khí nén rất nhạy với sự thay đổi nhiệt độ và áp suất, được xác định bằng các định luật chất khí. Trong các biểu thức này, áp suất được xem là áp suất tuyệt đối, nhiệt độ là độ K, chẳng hạn nếu lấy một lít không khí ở áp suất khí quyển và 200C 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2