intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình Đo lường cảm biến: Phần 2 - CĐ Giao thông Vận tải

Chia sẻ: Bautroimaudo Bautroimaudo | Ngày: | Loại File: PDF | Số trang:50

36
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tiếp nội dung phần 1, Giáo trình Đo lường cảm biến: Phần 2 cung cấp cho người học những kiến thức như: Đo vận tốc, gia tốc; Đo biến dạng, lực và trọng lượng; Đo lưu lượng, tốc độ và mức chất lưu; Các cảm biến đo lường khác.

Chủ đề:
Lưu

Nội dung Text: Giáo trình Đo lường cảm biến: Phần 2 - CĐ Giao thông Vận tải

  1. Chƣơng 5: Đo vận tốc , gia tốc CHƢƠNG 5 Trong công nghiệp, phần lớn trƣờng hợp đo vận tốc là đo tốc độ quay của máy. Độ an toàn cũng nhƣ chế độ làm việc của máy phụ thuộc rất lớn vào tốc độ quay. Trong trƣờng hợp chuyển động thẳng, việc đo vận tốc dài cũng thƣờng đƣợc chuyển về đo tốc độ quay. Bởi vậy, các cảm biến đo vận tốc góc đóng vai trò quan trọng trong việc đo vận tốc. Để đo vận tốc góc thƣờng ứng dụng các phƣơng pháp sau đây:  Sử dụng tốc độ kế vòng kiểu điện từ: nguyên lý hoạt động dựa trên hiện tƣợng cảm ứng điện từ. Cảm biến gồm có hai phần: phần cảm (nguồn từ thông) và phần ứng (phần có từ thông đi qua). Khi có chuyển động tƣơng đối giữa phần cảm và phần ứng, từ thông đi qua phần ứng biến thiên, trong nó xuất hiện suất điện động cảm ứng xác định theo công thức: (5.1) Thông thƣờng từ thông qua phần ứng có dạng: (x)= 0F(x) (5.2) Trong đó x là biến số của vị trí thay đổi theo vị trí góc quay hoặc theo đƣờng thẳng, khi đó suất điện động e xuất hiện trong phần ứng có dạng: (5.3) Suất điện động này tỉ lệ với vận tốc cần đo.  Sử dụng tốc độ kế vòng loại xung: làm việc theo nguyên tắc đo tần số chuyển động của phần tử chuyển động tuần hoàn, ví dụ chuyển động quay. Cảm biến loại này thƣờng có một đĩa đƣợc mã hoá gắn với trục quay, chẳng hạn gồm các phần trong suốt xen kẽ các phần không trong suốt. Cho chùm sáng chiếu qua đĩa đến một đầu thu quang, xung điện lấy từ đầu thu quang có tần số tỉ lệ với vận tốc quay cần đo. 5.1 Máy phát tốc. Máy phát tốc là một máy phát điện, gồm rotor và Stator. Trong đó Rotor thƣờng là nam châm Khoa Kỹ thuật Điện – Điện tử Trang 67
  2. Chƣơng 5: Đo vận tốc , gia tốc vĩnh cửu. Máy phát tốc thƣờng đƣợc lắp ở trục động cơ, trục máy phát điện. Khi trục động cơ hoặc trục máy phát quay thì rotor của máy phát tốc cũng quay, phía Stator của máy phát tốc sẽ có điện áp. Ngƣời ta xuất điện áp đó để cung cấp cho mạch kiểm soát tốc độ của trục động cơ hoặc trục máy phát. Hình 5.1: Hình ảnh máy phát tốc 5.2 Encoder. Cấu tạo: Encoder gồm một đĩa mã có khắc vạch sáng tối, đặt giữa nguồn sáng và transistor quang (phototransistor). Encoder có 2 loại: Encoder tƣơng đối và encoder tuyết đối.  Encoder tƣơng đối: gồm một đĩa mã trên đó có khắc một vòng các vạch tối sáng Hình 5.2: Cấu tạo của encoder tƣơng đối Bộ thu phát hồng ngoại có cấu tạo gồm ba cặp thu phát hồng ngoại bố trí nhƣ hình Hình 5.3: Sơ đồ thu phát hồng ngoại và bố trí các cặp thu phát trong encoder Hai cặp thu phát A, B đƣợc bố trí sao cho trục tia sáng nằm trên đƣờng tròn qua tâm lỗ trống Khoa Kỹ thuật Điện – Điện tử Trang 68
  3. Chƣơng 5: Đo vận tốc , gia tốc nhƣng lệch nhau, khi trục tia sáng của cặp A đi qua tâm của một lỗ trống thì trục tia sáng căp B sẽ chiếu qua biên của lỗ trống. Cặp Z đƣợc bố trí có trục tia sáng đi chỉ đi qua lỗ trống lớn mà không qua các lỗ trống còn lại. Khi đĩa mã quay, lỗ trống sẽ lần lƣợt đi qua các trục tia sáng của cặp A và cặp B. Khi trục tia sáng của cặp nào xuyên qualỗ trống thì ở phototransistor sẽ cho ra tín hiệu mức 1, ngƣợc lại thì ở phototransistor sẽ cho ra tín hiệu mức 0. Số xung phát ra ở ngõ ra của mỗi phototransistor A, B sẽ bằng số lỗ trống trên đĩa mã. Khi đĩa mã quay đƣợc một vòng thì phototransistor Z sẽ phát ra một xung. Giản đồ xung của Encoder tƣơng đối nhƣ hình Hình 5.4: Giản đồ xung quay thuận – quay ngƣợc Dựa vào thứ tự xuất hiện của các xung ta có thể xác định đƣợc chiều quay của encoder. Hình 5.5: Hình ảnh thật của Encoder tƣơng đối Độ phân giải của encoder tuỳ thuộc vào số lỗ trống (vạch sáng tối) trên đĩa mã. Thƣờng thì đĩa mã có số lỗ trống là: 100, 200, 500, 1000 lỗ. Nếu gọi số lỗ trống trên đĩa mã (số xung phát ra) là n thì độ phân giải của encoder là s: s = 3600 / n (5.4)  Encoder tuyệt đối (Absolute Encoder): gồm một đĩa mã trên đó có khắc nhiều vòng các vạch tối sáng. Số vòng các lỗ trống trên đĩa mã chính là số bit của encoder. Khoa Kỹ thuật Điện – Điện tử Trang 69
  4. Chƣơng 5: Đo vận tốc , gia tốc Hình 5.6 Cấu tạo của encoder tuyệt đối 3 bit Bộ thu phát hồng ngoại có cấu tạo gồm ba cặp thu phát hồng ngoại bố trí nhƣ hình Hình 5.7: Sơ đồ thu phát hồng ngoại trong encoder tuyệt đối Các cặp thu phát hồng ngoại đƣợc bố trí thẳng hàng sao cho trục tia sáng của mỗi cặp thu phát sẽ đi qua tâm của một lỗ trống. Khi đĩa mã quay thì ở ngõ ra sẽ tạo ra một số nhị phân, mã BCD hoặc mã Gray tuỳ vào cách đục lỗ trên đĩa mã. Nếu gọi số bit ngõ ra của encoder tuyệt đối là n thì khi encoder quay một vòng sẽ cho ra 2n giá trị, gọi độ phân giải của encoder là s: S = 3600 / 2n (5.5) Hình 5.8 : Hình dạng của encoder tuyệt đối Khoa Kỹ thuật Điện – Điện tử Trang 70
  5. Chƣơng 5: Đo vận tốc , gia tốc Mạch ngõ ra của encoder: Hình 5.9: Mạch ngõ ra của encoder Ứng dụng của encoder: Encoder đƣợc dùng để đo tốc độ, đo chiều dài, đo dịch chuyển, đo vị trí, đo góc quay  Dùng encoder để đo tốc độ băng tải trong máy rót nƣớc chai. Hình 5.10: Dùng encoder đo tốc độ băng tải  Dùng đo chiều dài của ống kim loại/ vải Hình 5.11: Dùng encoder đo chiều dài Khoa Kỹ thuật Điện – Điện tử Trang 71
  6. Chƣơng 5: Đo vận tốc , gia tốc 5.3 Tốc độ kế điện từ. 5.3.1 Tốc độ kế điện từ đo vận tốc góc  Tốc độ kế dòng một chiều: Hình 5.12: Sơ đồ cấu tạo của máy phát dòng một chiều 1) Stato 2) Rôto 3) Cổ góp 4) Chổi quét Stato (phần cảm) là một nam châm điện hoặc nam châm vĩnh cửu, roto (phần ứng) là một trục sắt gồm nhiều lớp ghép lại, trên mặt ngoài roto xẽ các rãnh song song với trục quay và cách đều nhau. Trong các rãnh đặt các dây dẫn bằng đồng gọi là dây chính, các dây chính đƣợc nối với nhau từng đôi một bằng các dây phụ. Cổ góp là một hình trụ trên mặt có gắn các lá đồng cách điện với nhau, mỗi lá nối với một dây chính của roto. Hai chổi quét ép sát vào cổ góp đƣợc bố trí sao cho tại một thời điểm chúng luôn tiếp xúc với hai lá đồng đối diện nhau. Khi rô to quay, suất điện động xuất hiện trong một dây dẫn xác định theo biểu thức: (5.5) Trong đó dΦi là từ thông mà dây dẫn cắt qua trong thời gian dt: = d⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ (5.6) dSc là tiết diện bị cắt trong khoảng thời gian dt: dSC = lvdt = lωrdt (5.7) Trong đó: l - chiều dài dây dẫn. v - vận tốc dài của dây. Khoa Kỹ thuật Điện – Điện tử Trang 72
  7. Chƣơng 5: Đo vận tốc , gia tốc ω - vận tốc góc của dây. r - bán kính quay của dây. Biểu thức của suất điện động xuất hiện trong một dây: ei = - ωrlBiN (5.8) Suất điện động ứng với một nửa số dây ở bên phải đƣờng trung tính: (5.9) N - tổng số dây chính trên roto. n - số vòng quay trong một giây. Φ0 - là từ thông xuất phát từ cực nam châm. Tƣơng tự tính đƣợc suất điện động ứng với một nửa số dây ở bên trái: Et = nN0 (5.10) Nguyên tắc nối dây là nối thành hai cụm, trong mỗi cụm các dây mắc nối tiếp với nhau, còn hai cụm thì mắc ngƣợc pha nhau.  Tốc độ kế dòng xoay chiều  Máy phát đồng bộ: Sơ đồ cấu tạo của một tốc độ kế dòng xoay chiều kiểu máy phát đồng bộ biểu diễn trên (hình 5.12). Thực chất đây là một máy phát điện xoay chiều nhỏ. Roto (phầm cảm) của máy phát là một nam châm hoặc tổ hợp của nhiều nam châm nhỏ. Phần ứng gồm các cuộn dây bố trí cách đều trên mặt trong của stato là nơi cung cấp suất điện động cảm ứng hình sin có biên độ tỉ lệ với tốc độ quay của roto. e = E sin t (5.11) Trong đó E=K1ω, =K2ω, K1 và K2 là các thông số đặc trƣng cho máy phát. Khoa Kỹ thuật Điện – Điện tử Trang 73
  8. Chƣơng 5: Đo vận tốc , gia tốc Hình 5.12: Sơ đồ cấu tạo của máy phát đồng bộ Giá trị của ω có thể tính đƣợc theo E hoặc . - Xác định ω từ biên độ suất điện động: Cuộn cảm ứng có trở kháng trong: Zi = Ri + jLi (5.11) Trong đó Ri, Li là điện trở và tự cảm của cuộn dây. Điện áp ở hai đầu cuộn ứng với tải R có giá trị: (5.12) Từ biểu thức trên, ta thấy điện áp U không phải là hàm tuyến tính của tốc độ quay ω. Điều kiện để sử dụng máy phát nhƣ một cảm biến vận tốc là R>>Zi để sao cho có thể coi U ≈ E. Điện áp ở đầu ra đƣợc chỉnh lƣu thành điện áp một chiều, điện áp này không phụ thuộc chiều quay và hiệu suất lọc giảm khi tần số thấp. Mặt khác, sự có mặt của bộ lọc làm tăng thời gian hồi đáp của cảm biến. Xác định bằng cách đo tần số của suất điện động: phƣơng pháp này có ƣu điểm là tín hiệu có thể truyền đi xa mà sự suy giảm tín hiệu không ảnh hƣởng tới độ chính xác của phép đo.  Máy phát không đồng bộ: Cấu tạo của máy phát không đồng bộ tƣơng tự nhƣ động cơ không đồng bộ hai pha (hình 5.13). Roto là một đĩa hình trụ kim loại mỏng và dị từ quay cùng tốc độ với trục cần đo, khối lƣợng và quán tính của nó không đáng kể. Stato làm bằng thép từ tính, trên đó bố trí hai cuộn dây, một cuộn là cuộn kích thích đƣợc cung cấp điện áp Vc có biên độ Ve và tần số ωe ổn định Vc = Ve cos ωet. (5.13) Khoa Kỹ thuật Điện – Điện tử Trang 74
  9. Chƣơng 5: Đo vận tốc , gia tốc Hình 5.13: Sơ đồ cấu tạo máy phát không đồng bộ Cuộn dây thứ hai là cuộn dây đo. Giữa hai đầu ra của cuộn này xuất hiện một suất điện động em có biên độ tỉ lệ với tốc độ góc cần đo: em = EmCos(ωet + ) = kωVe Cos(ωet + ) (5.14) Trong đó k là hằng số phụ thuộc vào kết cấu của máy, φ là độ lệch pha. 5.3.2 Tốc độ kế điện từ đo vận tốc dài Khi đo vận tốc dài, với độ dịch chuyển lớn của vật khảo sát (> 1m) thƣờng chuyển thành đo vận tốc góc. Trƣờng hợp đo vận tốc của dịch chuyển thẳng nhỏ có thể dùng cảm biến vận tốc dài gồm hai phần tử cơ bản: một nam châm và một cuộn dây. Khi đo, một phần tử đƣợc giữ cố định, phần tử thứ hai liên kết với vật chuyển động. Chuyển động tƣơng đối giữa cuộn dây và nam châm làm xuất hiện trong cuộn dây một suất điện động tỉ lệ với vận tốc cần đo. Sơ đồ cảm biến có cuộn dây di động biểu diễn trên hình 18.4. Hình 5.14: Cảm biến dùng cuộn dây di động Suất điện động xuất hiện trong cuộn dây có dạng: e = 2rNBv (5.15) N - số vòng dây. Khoa Kỹ thuật Điện – Điện tử Trang 75
  10. Chƣơng 5: Đo vận tốc , gia tốc r - bán kính vòng dây. B - giá trị của cảm ứng từ. v - tốc độ dịch chuyển của vòng dây. l - tổng chiều dài của dây. Tốc độ kế loại này đo đƣợc độ dịch chuyển vài mm với độ nhạy ~ 1V/m.s. Khi độ dịch chuyển lớn hơn (tới 0,5 m) ngƣời ta dùng tốc độ kế có nam châm di động (hình 5.15). Cảm biến gồm một nam châm di chuyển dọc trục của hai cuộn dây quấn ngƣợc chiều nhau và mắc nối tiếp. Khi nam châm di chuyển, suất điện động xuất hiện trong từng cuộn dây tỉ lệ với tốc độ của nam châm nhƣng ngƣợc chiều nhau. Hai cuộn dây đƣợc mắc nối tiếp và quấn ngƣợc chiều nên nhận đƣợc suất điện động ở đầu ra khác không. Hình 5.15: Cảm biến có lõi từ di dộng 5.4 Tốc độ kế xung. Tốc độ kế xung thƣờng có cấu tạo đơn giản, chắc chắn, chịu đựng tốt trong môi trƣờng độc hại, khả năng chống nhiễu và chống suy giảm tín hiệu cao, dễ biến đổi tín hiệu sang dạng số. Tùy thuộc vào bản chất của vật quay và dấu hiệu mã hoá trên vật quay, ngƣời ta sử dụng loại cảm biến thích hợp. - Cảm biến từ trở biến thiên: sử dụng khi vật quay là sắt từ. - Cảm biến từ điện trở: sử dụng khi vật quay là một hay nhiều nam châm nhỏ. - Cảm biến quang cùng với nguồn sáng: sử dụng khi trên vật quay có các lỗ, đƣờng vát, mặt phản xạ. Khoa Kỹ thuật Điện – Điện tử Trang 76
  11. Chƣơng 5: Đo vận tốc , gia tốc 5.4.1 Tốc độ kế từ trở biến thiên Cấu tạo của cảm biến từ trở biến thiên gồm một cuộn dây có lõi sắt từ chịu tác động của một nam châm vĩnh cửu đặt đối diện với một đĩa quay làm bằng vật liệu sắt từ trên đó có khía răng. Khi đĩa quay, từ trở của mạch từ biến thiên một cách tuần hoàn làm cho từ thông qua cuộn dây biên thiên, trong cuộn dây xuất hiện một suất điện động cảm ứng có tần số tỉ lệ với tốc độ quay. Hình 5.16: Sơ đồ cấu tạo của cảm biến từ trở biến thiên Tần số của suất điện động trong cuộn dây xác định bởi biểu thức: f = p.n (5.16) p - số lƣợng răng trên đĩa. n - số vòng quay của đĩa trong một giây. Biên độ E của suất điện động trong cuộn dây phụ thuộc hai yếu tố: - Khoảng cách giữa cuộn dây và đĩa quay: khoảng cách càng lớn E càng nhỏ. - Tốc độ quay: Tốc độ quay càng lớn, E càng lớn. Khi tốc độ quay nhỏ, biên độ E rất bé và khó phát hiện, do vậy tồn tại một vùng tốc độ quay không thể đo đƣợc, gọi là vùng chết. Dải đo của cảm biến phụ thuộc vào số răng của đĩa. Khi p lớn, tốc độ nmin đo đƣợc có giá trị bé. Khi p nhỏ, tốc độ nmax đo đƣợc sẽ lớn. Thí dụ với p = 60 răng, dải tốc độ đo đƣợc n = 50 - 500 vòng/phút, còn với p =15 răng dải tốc độ đo đƣợc 500 - 10.000 vòng/phút. 5.4.2 Tốc độ kế quang Nguồn sáng phát tia hồng ngoại là một diot phát quang (LED). Đĩa quay, đặt giữa nguồn sáng và đầu thu, có các lỗ bố trí cách đều trên một vòng tròn. Đầu thu là một photodiode hoặc Khoa Kỹ thuật Điện – Điện tử Trang 77
  12. Chƣơng 5: Đo vận tốc , gia tốc phototranzitor. Khi đĩa quay, đầu thu chỉ chuyển mạch khi nguồn sáng, lỗ, nguồn phát sáng thẳng hàng. Khi đĩa quay, đầu thu quang nhận đƣợc một thông lƣợng ánh sáng biến điệu và phát tín hiệu có tần số tỉ lệ với tốc độ quay nhƣng biên độ không phụ thuộc tốc độ quay. Hình 5.17: Sơ đồ nguyên lý của tốc độ kế quang Trong các cảm biến quang đo tốc độ, ngƣời ta cũng có thể dùng đĩa quay có các vùng phản xạ ánh sáng bố trí tuần hoàn trên một vòng tròn để phản xạ ánh sáng tới đầu thu quang. Phạm vi tốc độ đo đƣợc phụ thuộc vào hai yếu tố chính: - Số lƣợng lỗ trên đĩa. - Dải thông của đầu thu quang và của mạch điện tử. Để đo tốc độ nhỏ (~ 0,1 vòng/phút) phải dùng đĩa có số lƣợng lỗ lớn (500 - 1.000 lỗ). Trong trƣờng hợp đo tốc độ lớn ( ~ 105 - 106 vòng/phút) phải sử dụng đĩa quay chỉ một lỗ, khi đó tần số ngắt của mạch điện xác định tốc độ cực đại có thể đo đƣợc. 5.5 Cảm biến gia tốc (công nghệ MEMS) Vào thế kỷ XX, các thiết bị điện tử đƣợc tích hợp với số lƣợng ngày càng lớn, kích thƣớc ngày càng nhỏ và chức năng ngày càng đƣợc nâng cao. Điều này đã mang lại sự biến đổi sâu sắc cả về mặt công nghệ lẫn xã hội. Vào cuối những năm 50 của thế kỷ XX, một cuộc cách mạng hoá về công nghệ micro đã diễn ra và hứa hẹn một tƣơng lai cho tất cả các ngành công nghiệp. Hệ thống vi cơ điện tử (Micro ElectroMechanical Systems) viết tắt là MEMS cũng đã đƣợc ra đời và phát triển trong giai đoạn này. Công nghệ vi cơ đã và đang tiến xa hơn nhiều so với guồn gốc của nó là công nghiệp bán dẫn. MEMS bao gồm những cấu trúc vi cơ, vi sensor, vi chấp hành và vi điện tử cùng đƣợc tích hợp trên cùng một chip (on chip). Các linh kiện MEMS Khoa Kỹ thuật Điện – Điện tử Trang 78
  13. Chƣơng 5: Đo vận tốc , gia tốc thƣờng đƣợc cấu tạo từ silic. Một thiết bị MEMS thông thƣờng là một hệ thống vi cơ tích hợp trên một chip mà có thể kết hợp những phần cơ chuyển động với những yếu tố sinh học, hoá học, quang hoặc điện. Kết quả là các linh kiện MEMS có thể đáp ứng với nhiều loại lối vào: hoá, ánh sáng, áp suất, rung động vận tốc và gia tốc...Với ƣu thế có thể tạo ra những cấu trúc cơ học nhỏ bé tinh tế và nhạy cảm đặc thù, công nghệ vi cơ hiện nay đã cho phép tạo ra những bộ cảm biến (sensor), những bộ chấp hành (actuator) đƣợc ứng dụng rộng rãi trong cuộc sống. Các bộ cảm biến siêu nhỏ và rất tiện ích này đã thay thếcho các thiết bị đo cũ kỹ, cồng kềnh trƣớc đây. Song công nghệ MEMS mới đang ở giai đoạn đầu của nó và cần rất nhiều những nghiên cứu cơ bản hơn, sâu hơn. Hình 5.18 : Hình dạng cảm biến gia tốc trong công nghiệp Cảm biến gia tốc là một thiết bị dùng để đo gia tốc. Cảm biến vi cơ là một loại cảm biến đƣợc chế tạo theo công nghệ vi cơ. Nó chính là một trong những sản phẩm phong phú và đa dạng nhất của công nghệ MEMS. Cảm biến gia tốc chế tạo theo công nghệ vi cơ điện tử có hai loại là cảm biến kiểu tụ và cảm biến kiểu áp trở. Trong nhiều ứng dụng việc lựa chọn cảm biến kiểu tụhay kiểu áp trở là rất quan trọng. Cảm biến kiểu áp trở có ƣu điểm là công nghệ cấu tạo rất đơn giản. Tuy nhiên nhƣợc điểm của nó là hoạt động phụ thuộc nhiều vào sự thay đổi nhiệt độ và có độ nhạy kém hơn cảm biến kiểu tụ. Các cảm biến kiểu tụ có độ nhạy cao hơn, ít bị phụ thuộc vào nhiệt độ, ít bị nhiễu và mất mát năng lƣợng. Tuy nhiên chúng có nhƣợc điểm là mạch điện tử phức tạp hơn. Hiện nay cảm biến gia tốc kiểu tụ đƣợc ứng dụng rộng rãi hơn Ứng dụng của cảm biến gia tốc Cảm biến gia tốc vi cơ đã nhanh chóng thay thế các loại cảm biến gia tốc thông thƣờng trƣớc đây trong nhiều ứng dụng. Một vài những ứng dụng điển hình của cảm biến gia tốc vi cơ. • Cảm biến góc Roll –Pitch Khoa Kỹ thuật Điện – Điện tử Trang 79
  14. Chƣơng 5: Đo vận tốc , gia tốc • Định hƣớng 3D trong không gian • Phát hiện va chạm : những thông tin về gia tốc, vận tốc và độ dịch chuyển giúp phân biệt sự va chạm và việc không xảy ra va chạm • Đo và điều khiển mức rung • Điều khiển và dự đoán khả năng làm việc của máy móc, thiết bị • Đo một số thông số sinh học trong cơ thể con ngƣời Gia tốc thƣờng đƣợc tính thông qua lực gây ra gia tốc đó vì lực liên hệ với gia tốc theo công thức F = ma. Ở đó F là lực gây ra gia tốc, m là khối lƣợng, a là gia tốc. Lực có đơn vị là N, m có đơn vị là gam (g), a có đơn vị là m/s2 Các thiết bị dùng để đo gia tốc phải xác định đƣợc giá trị của lực tác dụng lên một khối vật thể đã biết trƣớc. Hình 5.19 Cảm biến gia tốc ADXL202 Một cách tiếp cận khác để tính toán gia tốc đó là : Gia tốc là đạo hàm của vận tốc theo thời gian. Vận tốc lại là đạo hàm của độ dịch chuyển theo thời gian. Việc đo gia tốc thông qua cảm biến gia tốc MEMS có thể đƣợc mô tả nhờ một sơ đồ trên hình vẽ nhƣ một hệ gồm một khối lƣợng m và một lò xo Hình 5.20 : Ứng dụng của cảm biến đo gia tốc Khoa Kỹ thuật Điện – Điện tử Trang 80
  15. Chƣơng 5: Đo vận tốc , gia tốc Hai loại cảm biến gia tốc đƣợc sử dụng phổ biến trong các ứng dụng hiện nay là cảm biến kiểu tụ và kiểu áp trở. Cảm biến gia tốc đƣợc sử dụng trong đề tài này là một cảm biến gia tốc hai chiều kiểu tụ cho phép xác định một cách độc lập các gia tốc theo các phƣơng trục toạ độ X và Y. Cảm biến này có hai loại lối ra đó là lối ra số (độ rộng xung lối ra tỉ lệ với gia tốc) và lối ra tƣơng tự (mức điện áp tƣơng tự lối ra tỉ lệ với gia tốc). Cảm biến có thể đƣợc sử dụng để đo cả gia tốc tĩnh ( ví dụ nhƣ gia tốc trọng trƣờng) ứng dụng làm sensor đo độ nghiêng và gia tốc động (ví dụ nhƣ độ rung) ứng dụng làm sensor đo độ rung. Dải đo là trong khoảng ±2g với g là gia tốc trọng trƣờng. Hình 5.21 : Sơ đồ chân ADXL202 Khoa Kỹ thuật Điện – Điện tử Trang 81
  16. Chƣơng 6: Đo biến dạng, lực và trọng lƣợng CÂU HỎI ÔN TẬP Câu 1 : Trình bày cấu tạo cảu Encoder tƣơng đối và nêu các ứng dụng của nó. Câu2 : Trình bày cấu tạo của Encoder tuyệt đối và nêu các ứng dụng của nó. Câu 3 : Nêu ƣu khuyết điểm của các loại Encoder Câu 4 : Trình bày cấu tạo và nguyên lý hoạt động của tốc độ kế xung Câu 5 : Trình bày cấu tạo và nguyên lý hoạt động của tốc độ kế điện từ. TRẮC NGHIỆM Câu 6: Encoder loại 1 (incremental) có ƣu điểm: a. Chỉ có 1 đĩa mã quang c. Không mất thông tin khi mất điện b. Dùng 2 xung A,B xác định chiều quay d. Sử dụng nhiều mã đĩa Câu 7: Cảm biến thƣờng dùng trong điều khiển chính xác cánh tay Robot là: a. Laser c. Incremental encoder b Load cell d. Absolute encoder Câu 8: Để phát hiện Cabin thang máy tại các tầng, nắp chai nƣớc ngọt bằng kim loại, vị trí 2 đầu mũi khoan ta nên chọn cảm biến loại a. Encoder c. Cảm biến laser b. Cảm biến thông minh d. Cảm biến tiệm cận điện cảm Câu 9: Cấu tạo encoder gồm nguồn phát sáng, nguồn thu và a. Mã đĩa c. Trục quay b. Mạch khuếch đại d. Mạch xử lý tín hiệu Câu 10. Độ phân giải s của encoder tuyệt đối với n bit tín hiệu là a. s = 360. n2 c. s = 2n/360 b. s = 360/2n d. s = 360/n2 Khoa Kỹ thuật Điện – Điện tử Trang 82
  17. Chƣơng 6: Đo biến dạng, lực và trọng lƣợng CHƢƠNG 6 : ĐO BIẾN DẠNG, LỰC VÀ TRỌNG LƢỢNG. (6 TIẾT) Dƣới tác động của ứng lực cơ học, môi trƣờng chịu ứng lực xuất hiện bị biến dạng. Sự biến dạng của các cấu trúc ảnh hƣởng lớn đến khả năng làm việc cũng nhƣ độ an toàn khi làm việc của kết cấu chịu lực. Mặc khác giữa ứng lực và biến dạng có mối quan hệ với nhau từ đó ngƣời ta có thể xác định đƣợc ứng lực khi đo biến dạng do nó gây ra. Bởi vậy biến dạng là vấn đề rất đƣợc quan tâm trong kỹ thuật. Để đo biến dạng ngƣời ta dùng các cảm biến biến dạng còn gọi là đầu đo biến dạng. Hiện nay có hai loại cảm biến biến dạng đƣợc sử dụng phổ biến : đầu đo điện trở và đầu đo dây rung 6.1 Cảm biến biến dạng (Strain gage). Cấu tạo: Cảm biến biến dạng gồm một sợi dây dẫn có điện trở suất (thƣờng dùng hợp kim của Niken) có chiều dài là l và có tiết diện s, đƣợc cố định trên một phiến cách điện nhƣ hình Hình 6.1: Cấu tạo của cảm biến biến dạng Khi đo biến dạng của một bề mặt dùng strain gage, ngƣời ta dán chặt strain gage lên trên bề mặt cần đo sao cho khi bề mặt bị biến dạng thì strain gage cũng bị biến dạng. Điện trở cảm biến (6.1) Khi cảm biến bị biến dạng, do kích thƣớc của dây dẫn bị thay đổi nên điện trở của cảm biến thay đổi một lƣợng ∆R: (6.2) Trong đó: ∆l là biến thiên chiếu dài của dây dẫn, ∆ là biến thiên điện trở suất của dây dẫn và ∆s là biến thiên tiết diện của dây dẫn, R là điện trở của cảm biến khi chƣa bị biến dạng. Biến dạng dọc của dây dẫn kéo theo biến dạng ngang của dây. Nếu dây dẫn hình chữ nhật có Khoa Kỹ thuật Điện – Điện tử Trang 83
  18. Chƣơng 6: Đo biến dạng, lực và trọng lƣợng các cạnh a, b hoặc dây dẫn tròn có đƣờng kính d thì (6.3) Hình 6.2: Cảm biến biến dạng (Strain gage) 6.2 Ứng dụng của Strain gage Strain gage đƣợc dùng để đo lực, đo mô men xoắn của trục, đo biến dạng bề mặt của chi tiết cơ khí, dùng để chế tạo cảm biến trọng lƣợng (Loadcell), cảm biến đo ứng suất … Đo lực dùng cảm biến biến dạng: Để đo lực tác động lên mộtvật thể, ta dán strain gage vào một vật ứng lực (vật chứng) đặt giữa điểm tác dụng lực và vật chịu tác động sao cho biến dạng của cảm biến bằng với biến dạng của vật chứng, dƣới tác dụng của lực tác động, vậtchứng bị biến dạng sẽ làm cảm biến biến dạng là thay đổi điện trở củacảm biến, đo sự thay đổi điện trở của cảm biến ta suy ra lực tác dụng. Hình 6.3: cảm biến strain gage Khi vật chứng bị tác dụng bởi lực F nó sẽ bị biến dạng theo phƣơng ứng lực một lƣợng: (6.4) Trong đó:  là biến dạng của vật chứng,  là ứng lực, Y là module Young, S là tiết diện của vật Khoa Kỹ thuật Điện – Điện tử Trang 84
  19. Chƣơng 6: Đo biến dạng, lực và trọng lƣợng chứng, F là lực tác dụng. Các vật liệu khác nhau thì module Young sẽ khác nhau. Đo lực ép cho máy ép cọc bê tông Hình 6.4: Máy ép cọc bê tông Đo mô men xoắn: Để đo mô men xoắn của trục quay, ta dán 2 strain gage lên trên trục quay theo hƣớng của ứng suất (Nghiêng 45o so với trục) và 2 strain gage có trục vuông góc với nhau Hình 6.5 Dán strain gage lên trục để đo mô men xoắn Khi chịu tác dụng của ngẫu lực, trên bề mặt của trục quay sẽ xuất hiện một biến dạng (6.5) Trong đó: T là mô men tác động lên trục, Y là module Young, D là bán kính bề mặt trục Đo mô men xoắn trên trục của hệ tuabin máy phát: Hình 6.6 : Ứng dụng đo momen xoắn Khoa Kỹ thuật Điện – Điện tử Trang 85
  20. Chƣơng 6: Đo biến dạng, lực và trọng lƣợng 6.3 Cảm biến trọng lƣợng (Loadcell). Cấu tạo: Bộ phận chính của loadcell là những tấm điện trở mỏng loại dán. Tấm điện trở để biến đổi một biến dạng nhỏ thành sự thay đổi tƣơng ứng trong điện trở. Thân loadcell là một khối kim loại đàn hồi (nhôm hợp kim, thép không gỉ, thép hợp kim). Một mạch đo dùng các miếng biến dạng sẽ cho phép thu đƣợc một tín hiệu điện tỉ lệ với mức độ thay đổi của điện trở. Mạch thông dụng nhất sử dụng trong loadcell là cầu Wheatstone. Hình 6.7: Cấu tạo của Loadcell Cấu tạo chính của loadcell gồm các điện trở strain gauges R1, R2, R3, R4 kết nối thành 1 cầu điện trở Wheatstone nhƣ hình dƣới và đƣợc dán vào bề mặt của thân loadcell. R là điện trở danh nghĩa ban đầu của các điện trở R1, R2, R3, R4 (thƣờng là 120 ohms, nhƣng có thể là 350 ohms dành cho các bộ cảm biến). Hình 6.8: Sơ đồ cầu Wheatstone Khoa Kỹ thuật Điện – Điện tử Trang 86
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2