intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình phân tích nguyên lý ứng dụng vào quy trình các phản ứng nhiệt hạch hạt nhân hydro p4

Chia sẻ: Fsdfds Dsfsdxf | Ngày: | Loại File: PDF | Số trang:5

67
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'giáo trình phân tích nguyên lý ứng dụng vào quy trình các phản ứng nhiệt hạch hạt nhân hydro p4', khoa học tự nhiên, vật lý phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Giáo trình phân tích nguyên lý ứng dụng vào quy trình các phản ứng nhiệt hạch hạt nhân hydro p4

  1. Tõ b¶ng sè liÖu (Nu, Re, Gr. Pr) ng−êi ta cã thÓ t×m c«ng thøc rhùc nghiÖm ë d¹ng Nu = CRenGrmPrp b»ng c¸ch lÇn l−ît x¸c ®Þnh c¸c sè mò n, m, p vµ h»ng sè C trªn c¸c ®å thÞ logarit. 10.3.2.1. Khi Nu = f(Re) = CRen Trªn ®å thÞ (lgNu, lgRe) ph−¬ng tr×nh trªn cã d¹ng ®−êng th¼ng lgNu = nlgRe + lgC, víi n, C ®−îc x¸c ®Þnh nh− sau: - BiÔu diÔn c¸c ®iÓm thùc nghiÖm trªn ®å thÞ (lgNu,lgRe) - X¸c ®Þnh ®−êng th¼ng ®i qua tËp ®iÓm thùc nghiÖm nãi trªn theo ph−¬ng ph¸p b×nh ph−¬ng nhá nhÊt. - T×m gãc nghiªng β cña ®−êng th¼ng vµ giao ®iÓm C0 = lgC víi trôc lgNu, nhê ®ã t×m ®−îc n = tgβ vµ C = 10C0 Khi miÒn biÕn thiªn cña Re kh¸ lín, lµm thay ®æi chÕ ®é chuyÓn ®éng ng−êi ta chia miÒn ®ã ra c¸c kho¶ng ⎣Re i ÷ Re i +1 ⎦ kh¸c nhau vµ t×m ni = tgβi, Ci = 10C0i cho mçi kho¶ng. 111
  2. 10.3.2.2. Khi Nu = f(Re,Gr)= CrenGrm §Ó x¸c ®Þnh hµm 2 biÕn trªn, cã thÓ lÇn l−ît t×m ra n, m, C trªn hai ®å thÞ logarit nh− sau: 1. T×m n theo hä c¸c ®−êng th¼ng d¹ng lgNu = nlgRe + lg (CGmi) khi Gr = const trªn ®å thÞ (lgNu, lgNu, lgRe) b»ng c¸ch: - Cè ®Þnh Gr = Gri = const ®Ó x¸c ®Þnh ®−êng th¼ng: lgNui = nilgRei + lg(CGim) nh− trªn vµ t×m ®−îc ni = tgβi, - Thay ®æi Gri, ∀i = 1÷k, sÏ cã 1 hä k ®−êng th¼ng víi ®é dèc ni, ∀i = 1÷k 1k ∑ ni. vµ x¸c ®Þnh n nh− gi¸ trÞ trung b×nh n k i =1 Nu Nu 2. T×m m vµ C theo ®−êng th¼ng lg n = mlgGr + lgC trªn ®å thÞ lg n , Re Re lgGr nh− tr−êng hîp hµm 1 biÕn, sÏ ®−îc m = tgγ víi C = 10C0. 10.3.2.3. Khi Nu = f(Re,Gr,Pr)= CrenGrmPrp §Ó x¸c ®Þnh hµm 3 biÕn trªn, cã thÓ t×m n, m, C theo tr×nh tù sau: - Cè ®Þnh Pr, Gr t¹i c¸c trÞ sè Prj, Gri kh¸c nhau, biÓu diÔn trªn to¹ ®é (lgNu, lgRe) sÏ ®−îc k hä ®−êng th¼ng d¹ng lgNu = nlgRe + lg(CGrm Prn) vµ t×m 1 k ⎛1 k ⎞ ∑ ⎜ k ∑ tgβ Þ ⎟ ; ®−îc sè mò n trung ba×nh theo n = k j=1 ⎝ i =1 ⎠ Nu - Cè ®Þnh Pr t¹i c¸c trÞ sè Prj kh¸c nhau, biÓu diÔn trªn to¹ ®é (lg , Re n 1k Nu = mlgGr vµ t×m ®−îc m = ∑ tgβ Þ . lgGr) sÏ ®−îc 1 hä ®−êng th¼ng lg Re n k j=1 112
  3. Nu -BiÓu diÔn k ®iÓm ®o trªn to¹ ®é (lg , lgPr) sÏ ®−îc hä ®−êng Re n Gr m Nu = p lg Pr + lg C . th¼ng d¹ng: lg Re n Gr m cã gãc nghiªng ϕ vµ giao ®iÓm c0 = lgc, nhê ®ã t×m ®−îc p = artgϕ vµ c = 10 c . 0 10.4. c¸c c«ng thøc thùc nghiÖm tÝnh α 10.4.1. bµi to¸n táa nhiÖt vµ c¸ch gi¶i - Bµi to¸n táa nhiÖt th−êng ®−îc ph¸t biÓu nh− sau: t×m hÖ sè táa nhiÖt α tõ bÒ mÆt cã vÞ trÝ vµ h×nh d¹ng cho tr−íc, ®−îc ®Æc tr−ng bëi kÝch th−íc x¸c ®Þnh l, cã nhiÖt ®é tw ®Õn m«i tr−êng chÊt láng hoÆc khÝ cho tr−íc cã nhiÖt ®é tf vµ vËn tèc chuyÓn ®éng c−ìng bøc lµ ω , nÕu cã t¸c nh©n c−ìng bøc. λ - Lêi gi¶i cña bµi to¸n trªn lµ α = Nu , víi Nu = f (Re,Gr,Pr) t×m theo l c«ng thøc thùc nghiÖm t−¬ng øng víi bµi to¸n ®· cho, trong ®ã c¸c gi¸ trÞ (λ, γ, β, Pr) ®−îc x¸c ®Þnh theo b¶ng th«ng sè vËt lÝ cña chÊt láng t¹i nhiÖt ®é x¸c ®Þnh theo quy ®Þnh cña c«ng thøc thùc nghiÖm. 10.4.2. C«ng thøc tÝnh táa nhiÖt tù nhiªn 10.4.2.1. Táa nhiÖn tù nhiªn trong kh«ng gian v« h¹n Kh«ng gian v« h¹n lµ kh«ng gian chøa chÊt láng cã chiÒu dµy ®ñ lín, ®Ó cã thÓ coi chÊt láng chØ trao ®æi nhiÖt víi bÒ mÆt ®ang xÐt. C«ng thøc chung cho c¸c mÆt ph¼ng, trô, c»u ®Æt th¼ng ®øng hoÆc n»m n ngang, cã d¹ng: Num = C(Gr, Pr) m Trong ®ã quy ®Þnh: NhiÖt ®é x¸c ®Þnh lµ: 1 [t ] = t m = ( t w + t f ). 2 KÝch th−íc x¸c ®Þnh lµ: ⎧h = chiÒu cao cña v¹ch hoÆc èng dÆt th¼ng døng [1] = ⎪ 4f ⎨ ⎪d u = d−êng kÝnh mÆt trô n¨m ngang hoÆc mÆt cÇu ⎩ C¸c sè c vµ n cho theo b¶ng bªn: (GrPr)m C n 10-3÷5.102 Khi tÊm ph¼ng n»m ngang vµ 1,18 1/8 táa nhiÖt lªn th× lÊy α n ↑ = 1,3α h , nÕu táa 5.102÷2. 107 0,54 1/4 NhiÖt xuèng d−íi th× lÊy α n ↓ = 0,7α h . 0,13 1/3 2. 107÷1013 113
  4. 10.4.2.2. Táa nhiÖn tù nhiªn trong kh«ng gian h÷u h¹n Kh«ng gian h÷u h¹n ®−îc hiÓu lµ 1 khe hÑp chøa chÊt láng cã chiÒu dµy δ nhá gi÷a 2 mÆt cã nhiÖt ®é kh¸c nhau t w > t w khiÕn cho chÊt láng võa nhËn 1 2 nhiÖn tõ mÆt nãng võa táa táa nhiÖt vµo mÆt l¹nh. L−îng nhiÖt truyÒn tõ mÆt nãng ®Õn mÆt l¹nh ®−îc tÝnh theo c«ng thøc dÉn nhiÖt qua v¸ch chÊt láng dµy δ víi hÖ sè dÉn nhiÖt t−¬ng ®−¬ng λtd, cho bëi c«ng thøc nghiÖm sau: λ td = λ m C(Gr Pr) n m C N [t ] = t m = 1 ( t w1 + t w 2 ) (Gr.Pr) m Víi: < 10 3 1 0 2 [l] = δ = chiÒu dµy khe hÑp 103 ÷ 1010 0,18 1/4 C vµ n ®−îc tÝnh theo b¶ng bªn. λ td q= ( t w1 − t w 2 ), W / m 2 Víi khe hÑp ph¼ng cã: δ 1w 1 − t w 2 q1 = , W / m. Víi khe hÑp trô cã: d2 1 1n 2πλ td d1 10.4.3. táa nhiÖt c−ìng bøc 10.4.3.1. Khi chÊt láng ch¶y ngang qua 1 èng Khi chÊt láng nhiÖt ®é tf ch¶y c−ìng bøc víi vËn tèc ω , lÖch 1 gãc ϕ so víi trôc èng cã ®−êng kÝnh ngoµi d, nhiÖt ®é tw th× c«ng thøc thùc nghiÖm cã d¹ng: 1/ 4 ⎛ prf ⎞ ⎜ ⎟ 0 , 38 Nu fd = C Re .εϕ n prf ⎜ pr ⎟ fd ⎝w ⎠ Trong ®ã quy ®Þnh [t] = tf ; [l] = d; C vµ n cho theo b¶ng sau: Refd C N 10÷10 0,5 0,5 3 103÷2.105 0,25 0,6 εα = f(ϕ) lµ sè hiÖu chØnh theo gãc ϕ = (trôc èng, ω ) cho theo ®å thÞ h×nh 10.4.3a. 10.4.3.2. Khi chÊt láng ch¶y ngang chïm èng Trong thiÕt bÞ trao ®æi nhiÖt, c¸c èng th−êng ®−îc bè trÝ theo chïm song song hoÆc so le. MÆt c¾t ngang cña mçi chïm cã d¹ng nh− H10.4.3.2, ®−îc ®Æc tr−ng bëi b−íc ngang s1, b−íc däc s2 ®−êng kÝnh èng d, sè hµng èng theo ph−¬ng dßng ch¶y n. 114
  5. HÖ sè táa nhiÖt α trung b×nh gi÷a chÊt láng vµ mÆt èng cã thÓ tÝnh theo c«ng thøc sau: 1 .0 ,15 ⎛ pr ⎞4 ⎛ d ⎞ n − 0,5 λ 0,26 Re 0,65 Prf0,33 ⎜ f ⎟⎜ ⎟ - Khi chïm song song α = , ⎟ ⎜S ⎟ ⎜ pr fd n d ⎠⎝2 ⎠ ⎝w 1 1/ 4 ⎛ pr ⎞ ⎛ S1 ⎞6 λ n − 0,7 0,41 Re 0, 6 ⎜ f ⎟ ⎜ ⎟ - Khi chïm sole víi s 1 /s 2 < 2 th×: α = ⎟ d, ⎜S fd ⎜ ⎟ n ⎝ prw ⎝2 ⎠ ⎠ Trong ®ã quy ®Þnh [t]=tf, [l]= d; n lµ sè hµng èng tÝnh theo ph−¬ng vËn tèc ω cña chÊt láng. 10.4.3.3. Khi chÊt láng ch¶y trong èng HÖ sè to¶ nhiÖt gi÷a chÊt láng cã nhiÖt ®é tf ch¶y víi vËn tèc ω bªn trong 1 èng hoÆc kªnh m−¬ng cã tiÕt diÖn bÊt kú f = const, chu vi −ít lµ u, dµI l, nhiÖt ®é tw ®−îc tÝnh theo c«ng thøc sau: 1 0 ⎛ pr ⎞4 ⎟ ε1 khi Re < 2300 (ch¶y tÇng) Nu fd = 0,15 Re 0,33 Prf0, 43 Grfd,1 ⎜ f ⎜ pr ⎟ fd ⎝w ⎠ 1 ⎛ pr ⎞ 4 Nu fd = 0,021 Re 0,8 Prf0, 43 ⎜ f ⎟ ε 1 khi Re > 2300 (ch¶y rèi), ⎜ pr ⎟ fd ⎝ w⎠ ⎛1 ⎞ 4f trong ®ã: [t ] = t f ; [l] = d = , ε1 lµ hÖ sè hiÖu chØnh theo chiÒu dµi, ε1 = f ⎜ , Re Ì ⎟ ⎝d u ⎠ cho theo b¶ng ë phÇn phô lôc. NÕu èng cong víi b¸n kÝnh cong R nh− ë ®o¹n cót hoÆc èng xo¾n ruét gµ th× hÖ sè to¶ nhiÖt trong èng cong lµ: ⎛ d⎞ α R = α t ε R = α t ⎜1 + 1,77 1 ⎟ , R⎠ ⎝ trong ®ã: α 1 lµ hÖ sè to¶ nhiÖt khi èng th¼ng tÝnh theo c¸c c«ng thøc trªn. 115
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2