intTypePromotion=3
Array
(
    [0] => Array
        (
            [banner_id] => 140
            [banner_name] => KM1 - nhân đôi thời gian
            [banner_picture] => 964_1568020473.jpg
            [banner_picture2] => 839_1568020473.jpg
            [banner_picture3] => 620_1568020473.jpg
            [banner_picture4] => 994_1568779877.jpg
            [banner_picture5] => 
            [banner_type] => 8
            [banner_link] => https://tailieu.vn/nang-cap-tai-khoan-vip.html
            [banner_status] => 1
            [banner_priority] => 0
            [banner_lastmodify] => 2019-09-18 11:11:47
            [banner_startdate] => 2019-09-11 00:00:00
            [banner_enddate] => 2019-09-11 23:59:59
            [banner_isauto_active] => 0
            [banner_timeautoactive] => 
            [user_username] => sonpham
        )

)

Giáo trình Toán kinh tế: Phần 2 - Bùi Minh Trí

Chia sẻ: Na Na | Ngày: | Loại File: PDF | Số trang:89

0
480
lượt xem
138
download

Giáo trình Toán kinh tế: Phần 2 - Bùi Minh Trí

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Giáo trình Toán kinh tế: Phần 2 trình bày các nội dung trong phần mô hình toán kinh tế. Phần này gồm 4 chương, trình bày các vấn đề như mô hình kinh tể và mô hình toán kinh tế, phương pháp cân đối liên ngành, phương pháp sơ đồ mạng lưới (pert), mô hình phục vụ đám đông.

Chủ đề:
Lưu

Nội dung Text: Giáo trình Toán kinh tế: Phần 2 - Bùi Minh Trí

  1. Phần II MÔ HÌNH TOÁN KINH TẾ MỞ ĐẨU M ỏ hình là một Irong nhũìiíi CỎIIÍỈ cụ quan Irọns lìihất c ủ a n hậ n thức khoa học, là hình ánh c ó tính ước iệ của đối lượng nshien cứu h a y điều khiển. Phư ơn a p h á p m ô hình hoá là một quá Irình hao iiổim; - Xây clựìio lììô /lình dựa l}'cn sự /Ìíỉhic/I iiiìi J(> IIÙ ỈIIO I - P h á n tích niô lììiì/i \ r lìiặ! tlìực Iì'^lii{'iìì vù /v liiíiii - So sánh kết q u á và sửa lạ i lìió líutli Mô hình được "ọi là irừu tượng (quan nicin). liay 'vât chất (vậl Iv, kinh tế) tuỳ thuộc nó là hệ Ihống nliư Ihc nào. lức là pliụ ihuoc' vào việc lựa chọn mô hình hoá. Một c ách ticp c ạ n khác của phu' 0'iiiỉ pháp Mò hìiihi h o á là qu y h o ạ ch ihực nghiệm khi không đủ thông lin để xáy dựii” Iiíiay mo l-ihih íiiải tích. Người ta phái tiên hà nh thực n g h i ệ m từ kết quá iliực iic',hiC'iii d ự toán d ạ n a m ô hình, s a u đ ó d ù n g p h ư ơ n g p h á p b ì n h p h ư o ì i g c ự c IICLI dc’ nliiận đ ư ợ c m ô h ì n h b i ể u diễn gần đúng tốt nhất đối tượnc; thực, cuối cùnu l ì dùno; phương pháp thốns kê kiêm định mô hình Ihu được, ở mức cao lì(yn. Iiíỉ iời ta dùnơ mô phỏng ghi lại irên M7'ĐT quá trình xay ra tronc thực lố và phàn lích k.ết quả để hiểu quy luật 185
  2. tác động của hệ thống, dự đoán hành vi của hệ thống, dự đoán hiệu quả và các biện pháp cũng như chiến lược điều khiển mà ta có thể áp dụng, từ đó chọn ra giải pháp thích hợp nhất. M ô hình toán học là một trong các mô hình trừu tượng gồm một hệ thống các biểu thức toán học mô tả các đặc trưng của đối tượng được mô hình hoá. Mô hình vật chất là các hình mẫu thu nhỏ các mô hình hoạt động của các dụng cụ và thiết bị, mô hình nhà cửa trong thiết kế cấu trúc, các mô hình kinh tế. Khoa học kinh tế từ lâu đã biết sử dụng mô hình. Một irong những mô hình kinh tế lớn đầu tiên là mô hình thống nhất sản xuất và tiêu dùng của F. Quesnay (1758), các mô hình tái sản xuất của Mác (1863) và Lênin (1893). Sự phát triển về sau của việc mô hình hoá các quá trình kinh tế gắn với các mô hình toán kinh tế, Có thể kể ra các tác giả tiêu biểu của các m ô hình toán kinh tế tương ứng: L. Walras, V.Pareto (cuối thế kỷ XIX) I.M.Keynes, V.Neumann (những năm 30 của thế kỷ X X ) C.A.Peldman (1 9 2 8 -1 9 2 9 ), v x . Nemtsinov (1963) Trong thời gian gần đây là các tác giả Leontieí, Erlango Wilson, Harrod - Domar. Phần 11 gồm 4 chương: Chương 1: Mô hình kinh tế và mô hình toán kinh tế Chương II: Phương pháp cân đối liên ngành Chương ỈU: Phương pháp sơ dồ mạng lưới (PERT) Chương IV: Mô hình phục vụ đám đông 186
  3. Chương I MÔ HÌNH KINH TẾ VÀ MÔ HÌNH TOÁN KINH TẾ §1. MÒ HÌNH KINH TẾ Khi nghiên cứu mô hình kinh tế naưòi ta phân loạii ra: - Mô hình kinh tế lớn (macro) - M ô hình kinh tế nhỏ (micro) - Mô hình kinh tế phái triển 1.1. MÒ hinh kinh tế lớn (macro) Mô hình kinh tế lớn là khái niệm được hình thức hoá bằng toán học về vận hành kinh tế quốc dân xem như mộl Ihé toàn vcn thống nhất. Mục đích chính của các mô hình macro hiện đại là: - Ph â n tích c ơ c ấ u và độ n g thái nén kinh tế quốc cilân - D ự đ o á n sự ph át triển của nền kinh tê quốc (iàn i(2ồ m cả n ghiên cứu tiến trình các chu kỳ kinh tế tư bản chủ nỉỊhĩa) - L à m sá ng tỏ h iệu q uá của việc diéu tiết kinh te b ằ n g n h à nước - Tạo cơ sở để xây dựng các phương án tối ưu (cho k ế hoạch phát triển nền kinh tế quốc dân Phân loai mô hình kinh tế lớn: 187
  4. D ấ u hiệu phân loại C á c kiểu m ô hình kinh tế lớn cơ bản 1. Cơ sở phương pháp luận khoa học Học thuyếl Mác - Lênin. các học của mô hình thuvết iư sản và cái lương. 2. Hệ thống kinh tế ~ xã hội được Kinh lế tư bán phát Iriển. kinh tê xã phản ánh hội chú nghĩa, kinh tế các nước đans phát iriển, các mó hình kinh tế lớn trừu tượng. 3. Mục đích của mô hình kinh tế lớn Phàn tích lý thuyết, dự báo (gđn và xa), điều tiêì tập trung nền kinh tế, kế hoạch hoá tối ưu nền kinh tế quốc dán xã hội chủ nghĩa. 4. Vấn đề cơ bản được đề cập Điều kiện cân bằng nền kinh tế. điều kiện tăng trưởna tưcTiia đối. các luồng hàng hoá, các luồn" tài chính, phân công lao động xã hội. quv đạo phát Iriển theo đường lớn. 5. Tính chất đôns Mô hình lĩnh, mô hình độna, mô hình động lực. 6. Giả thiết về tính chất của loạ độ Thời điểm rời rạc (phương trình sai thời gian phân hữu hạn), thời gian liên lục (phưưng trình vi phán). 7. Kích thước mô hình Một khu vực, hai khu vực (hai bộ phận trong nền sản xuất xã hội). 8. Dạng phụ thuộc hàm Tuyến tính, phi tuyến tính (bậc hai, hàm mũ,...). 9. Đơn vị đo Theo hiện vật, giá trị (theo giá cô định và giá hiện hành), hao phí lao động. 188
  5. \ iệc xây dựne các mỏ hình kinh ic lớn có ihó chia thành các giai đoạn như sau; 1) Phân tích kinh tế - xã h(M nhãiii \'ach ra các' mối liên hệ nhân quả, nguyên lắc lý luận, các quv luật ổn định có lính đCn sự phân chia thành các phân hệ và các mối liên hệ với hệ trên cua hẽ kinh té. 2) Xây dựna (trên cơ sở kết quá cua uiai đoan thứ nhất) mô hình hình thức hoá dưới dạng m ột hệ Ihốntỉ đốn 2 nhấ! thức, phương trình và bất phương trình, cù n s với việc phân chia các hién thành biến nội, biến ngoại và biến tiền định. 3) Biến đổi m ô h ìn h n h ằ m ước lưựne giá liị các t h a m s ố bằ ng c ách biểu diễn các biến nội q u a c á c biến ngoại và biên licn dịnh, 4) K iểm tra tính p h ù h ọ p cúa m ô hình ticn iư liẹu thực nghiệm . 5) Lựa chọn các biến chiến lược (màu chốt) và tìm các phương án của quyết định kinh tế. 6) Xây dựno thuật toán và eiai mô hình kinh tế Ikín nhờ kinh tế tính toán thích hợp. 7) Phân lích tính chấp nhận được của lời eiai đã tì m ra. Bảng kinh tế của nhà kinh tế nsưừi Phap F'. Qidcsnay (1758) cần phải được xem là liền thân của các mô hình kinh lé lón hiệni đại. Lần đầu tiên trong lịch sử, F. Quesnay đã xem đời sống kinh lẽ cua ca nước như một quá trình thống nhất sản xuất và tiêu dùna các sản phani, tuân theo những quy luật số lượng nhất định. Có thể xem báng Qucsiiay như thí nghiệm đầu tiên phân tích kinh lế lớn một cách khoa liục, Uong di) kliai niệiii lổn« sán phẩm xã hội chiếm vị trí trung lâm. Việc đưa vào phân lích phạrii trù ' du' thừa kinh tê^’ có mộl giá trị đặc biệt. Tư tưởng này đã được c . Mác phát lĩiển trong học thuyết giá trị thặng dư của mình. Vào năm 1863 c . Mác đã lập phưííns án đầu tiẽìa của sơ đồ tái sản xuất giản đơn (trên cơ sở hai khu vực: I và II) và đũ thict lậ p cho nó đẳng thức nền tảng; V, + 1 1| = C ||. V ề s a u c . M á c đã xâv dựng sơ d ồ tái sản xuất m ở rộng, T trong đó công thức: V, + m, - C|| = A{C| + C||). Ý nghĩa lịch sử của những lược đồ của Mác đã được mọi người thừa nhận. V.I. Lênin (1893) đã nêu một 189
  6. phương án mở rộng những lược đồ này, bằng cách chú ý đến những điều kiện tiến bộ kỹ thuật và sự tăng cấu tạo hữu cơ của chi phí xã hội liên quan tới tiến bộ đó. Tư tưởng của Mác và Lênin đã được sử dụng để xây dựng bảng cân đối kinh tế quốc dân đầu tiên của Liên X ô (1923 - 1924). Mô hình kinh tế lớn hình thức hoá bằng toán học đầu tiên của nền kinh tế xã hội chủ nghĩa được nhà kinh tế X ô Viết C.A. Peldman xây dựng (công bố vào năm 1928 - 1929). Trong m ô hình đã phát triển nguyên lý của Mác về tái sản xuất giản đofn và mở rộng. Đ ồng thời đã xây dựng hàm sản xuất toàn cục và nghiên cứu những đặc điểm khác nhau của nó. Trong mô hình Peldman đã nêu ra các nguyên tắc tối ưu hoá (nhịp tăng cực đại của tiêu dùng nhân dân); đã nghiên cứu cân bằng kinh tế, cũng như các nhân tố phá vỡ cân bằng của hệ thống. Các nhà kinh tế tư sản thế kỷ XIX đã xây dựng chủ yếu là lý thuyết cân bằng kinh tế. Các mô hình toán học tương ứng đã được xây dựng bởi L. Walras (1874 - 1877), V. Pareto (1890) và nhiều đại biểu khác thuộc trường phái toán học của chính trị kinh tế học tư sản. Nhà kinh tế học Anh là J.M. Keynes (những năm 30 của thế kỷ XX) đã chú ý nhiều tới các vấn đề động thái kinh tế; ông đã đề nghị một mô hình kinh tế lớn dựa trên các tư tưởng kết hợp cơ chế tự động của thị trường tư bản với sự điều tiết của nhà nước. Keynes đã áp dụng rộng rãi khái niệm nhân tử, bộ tăng tốc, khuynh hướng giới hạn và tiết kiệm,.... Một bước tiến đáng kể là m ô hình kinh tế phát triển của nhà toán học iỗi lạc Von Neumann (1937), trong đó khái niệm nhịp tăng “công nghệ” và “kinh tẽ" của sản xuất xã hội đã được định nghĩa chính xác bằng toán học. M ô hình Neumann mang tính chất trừu lượng và chỉ thích hợp để nghiên cứu bằng toán học sự vận hành của các hệ thống bằng chế độ tối ưu. Tuy thế mô hlnh nùy được dùng làm mẫu để xây dựng các mô hình phù hợp với thực tế hơn. Các lược đồ tái sản xuất tư bản của c . Mác là cơ sở phương pháp luận của lược đồ sản xuất xã hội trong xã hội chủ nghĩa mà v . x . Nemtsinov đã xây dựng (1963). Trong lược đồ này, thu nhập quốc dân được xét đồng thời theo ba khía cạnh; vật chất, ngành và giá trị. Một đặc điểm quan trọng khác của mô hình kinh tế lớn này là cách tiếp cận tối ưu. Tiêu chuẩn tối ưu là cực đại sản phẩm cuối cùng dành cho tiêu dùng, vốn đầu tư ròng, xuất khẩu và các nhu cầu chung của nước nhà. 190
  7. Cơ sở của mô hình kinh tế lớn vói hiii Rh'j Vựv: bân của sản xuất xã hội là ba phương trình: Y = e z , + (1 + 02)Z 2, Z | = 022, + ẦY, Z2 = ( l - 0 , ) Z , + ( 1 - Ằ ) Y . trong đó: Y ; sản phẩm xã hội cuối cùng 0,: tỷ sô' thu nhập thuần tuý quy ước và sanphẩm hàng hoá ngoài ngành của khu vực I 02: khối lượng cưn 2 ứns ngoài naành cua khu vực I vào II, tính theo tỷ lệ phần sản phẩm hàng hoá ngoài ngành của khu vực II Z| và Z 2. khối lượng cung ứng ngoài ngành của các ngành X: tỷ lộ khu vực I trong sản phẩm cuối cùng Xem Y và Ằ những đại lượng cho irước. ta thu được lời giải sau đây của hệ phương trình đã nêu đối với Z| và 2,: z = M ! ^ y , l-q .d -q ,) z ' 1 -0 3 (|-^ 0 |) Như vậy, khối lượng cunn ứng ngoùi Iicàntl '. à z , là hàm của sản phẩm xã hội cuối cùng (Y) và hai tham sô' xae dinh ihùnli ph;ần hiện vật (X) và thành phần giá trị (0) của sản phẩm cuối cìuig. Phan !ích hé thống phương trình cho thấy rằna; các hàm Z| và đạt được ”iá Iri cuv trị khi c á c tham số của phương trình xấp xỉ với các giá trị bicn của chúng. Nhờ các mô hình kinh tế lớn v . x . Ncnitsinov đã nghiên cứu tính toán cân đối của nền kinh tế quốc dân, tiềm năng tái sán xuáì mỏi' rộng và các nguyên tắc định giá hợp lý. Bước tiếp theo là mỏ hình lao dộnig sản phẩm của v . x . Nemtsinov, trong đó đề ra bài toán mô hình hoá việc phiân công lao động xã hội trong chế độ lao động xã hội chủ nghĩa. Toàn bộ ỵồm niăm mồ hình riêng lẻ: 191
  8. a) Mô hình mấu chốt cân đối sán phẩm - lao độn«; b) Mô hình hao phí lao động xã hội cần thiết; c) Mô hình phân côn e lao động theo naành và lãnh thổ; d) Mô hình phân hoá sản phẩm tronc nội hộ ngành; e) Mô hình phân công lao động giũ'a các xí nghiệp nội bộ ngành. Các mô hình kinh tế lớn về nền kinh tế xã hội chú nghĩa đã được nghiên cứu trong nhiều công trình của các nhà kinh tế. Bỏ qua những mâu thuẫn cơ bản của hệ thống tư bán chủ nghĩa, các mô hình kinh tế lớn của các tác giả tư sản về thực chất chỉ hạn ch ế bởi sự mô tả các hiện tưọng bề ngoài và các quá trình “lý tưởng hoá”: a) Điều kiện cân bằng thị trường; b) Biết sử dụng thu nhập dân cư vào các mục đích tiêu dùng và để dành; c) Tính tuần hoàn của các chu kỳ; d) Các điều kiện tăng trưởng kinh tế. Trong phần lớn trường hợp, tác giải các mô hình kinh tế lớn xuất phát từ sự cần thiết phải có sự can thiệp của nhà nước nhằm mục đích ổn định kinh tế và duy trì sự tãng trưởng ít nhiều đều đặn. Dưới đây sẽ xét các mô hình chu kỳ và tăng trưởng kinh tế điển hình trong chủ nghĩa tư bản hiện đại. Đ ể phản ánh chu kỳ tư bản chủ nghĩa có thể xét mô hình kinh tế lớn tuyến tính đơn giản được mô tả bởi ba phương trình: C = (1^S)Y + A , DK = v(vY - K), D Y = X{c + DK ~ Y) trong đó: Y: thu nhập quốc dân thực tế C: tiêu dùng thực tế K: khối lượng vốn c ố định D: toán tử vi phân (d/dt) A, s, V. V và X: các hằng sô' dương (S < 1). 192
  9. Iham sò s bằnii phan thu nhập lãiií: ilieiTi dùng để tích luỹ (“khuynh hướng giới han vê tiét kiệm”), 'rhain só A
  10. Mô hình trên đây cho hai lược đồ có thể của chu kỳ kinh tế; theo lươc đồ thứ nhất hệ thống sinh ra những dao động tắt dần; lược đồ thứ hai dự báo trong nền kinh tế tư bản chủ nghĩa có những dao động kiểu bùng nổ, biên độ những dao động này giới nội (trên) bởi năng lực sản xuất. Mô hình kinh tế lớn của chu kỳ rất sơ lược và không cho thấy những nguyên nhân cội rễ của khủng hoảng kinh tế. Các mô hình tăng trưcnig kinh tế được chia thành các mô hình với giả thuyết sử dụng hết sức lao động (hiển nhiên là còn khác xa với thực tiễn) và các mô hình có điều tiết nạn thất nghiệp. Hàm sản xuất, hàm tiêu dùng, và hàm cung ứng lao động là những thành phần chủ yếu của mô hình tăng trưởng “tân cổ điển”. Quy mô đầu tư cần đảm bảo cung ứng lao động. Hàm sản xuất được chọn ở dạng khái quát: L = e-"F(Y, K), trong đó: L: sô' lượng lao động Y : thu nhập quốc dân K; khối lượng vốn r: hàna số dương. Hàm F được coi là liên tục và thuần nhái bậc một. Mô hình khép kín bởi các phương trình; c = (l - S ) Y , L, = L„e^'’ Y = c + DK L = Ls trone đó C: tiêu dùne L^; cung ứng lao động L(,: hằng số dương. 194
  11. H ệ p h ư ơ n g trình đã n ê u x á c đ ịn h q u ỹ (!;)■,. íh;!' đ.ổi c ủ a c á c b i ế n Y , c, K, V L. ÌI V í dụ: Lo = 100; r = 0.04; Y„ = 141 va K “ 2 8 2 . N ế u đ ịn h mức tích luỹ s = 0,1 thì đại lượng L và K thay đổi như sau: Năm Y K 1 0 141 282 5 180 I 1 360 10 283 465 1 20 384 767 Trong các mò hình tàng trưởng khóna sư dụng hẽít sức lao động thì người ta tìm một giải pháp thoả hiệp giữa thất nghiệp và lạm p)hát. Muốn thế trong mô hình mô tả trên người ta đưa thêm vào phươns trình p)hản ánh các chính sách ngán sách và tài chính tín dụng khác nhau. Mỏ hình đ iều tiết kinh tế phức tạp hoá như vậy đã không được thực tiễn thừa nhận. Nhữinơ nghiên cứu mới nhất nhằm khảo sát các tính chất tiệm cận của các mò hình lăng trưởng kinh tế. Nói chung, tuy cũng đáng chú ý về phương diện hình thức hoá và phương pháp luận tính toán, nhưng mô hình kinh tê lớn tronu cáic lý thuyết tư sản chỉ có giá trị lác n g h iệ p rất hạn chế, Tất nhiên là bản thân các mô hình kiiiii tó lóìi tC)àn cuc không thê phản ánh loàn bộ sự đ a d ạ n g của các quá trình phái, inèn kinih tế; m ô hình đ ó chỉ có thể dừng làm cơ sở và xuất phát điểm để xày dụìig hê tlhông mô hình phân cấp. Đồng thòi, nếu không có mỏ hình kinh lê ỉ(vn tiiốim njhất thì tổng thể các inô hình nhỏ có thổ m à t línli loàn lliổ vìi iíiili Iiliai 1|U;II1 V mặt logic. T r o n g điều (ề kiện nền kinh lê có kê hoạch, loàn bộ phức hơp ncn kinh tế lớn tối ưu hoá động, cùng với các mô hình kinh lố nhó tương ứna, tao nên hệ thống mô hình nhất thể hoá cho phép để ra các quyct định C() càn cứ kiioa lioc về kế hoạch hoá tối ưu và quản lý q u ố c dân xã hội chủ nghĩa. 1.2. Mô hinh kinh tê nhỏ (micro) Mò hình các thành phần cục bộ của hệ thốna kinh tế, thông thường là các m ô hình lập kê hoạch, hoặc các m ô hình quản Iv xí nslhiệp hay phức hợ p k inh tê, các h àm sản xuất của từng bộ phận kinh tế iiên 2 bũệt,... c ũ n g n h ư c ác m ô 195
  12. hình về quá trình kinh tế - xã hội được xét tươna đôi lách biệt với môi trường thể hiện, chẳng hạn việc nshiên cứu cơ câu liêu dùníz của một gia đình thuộc loại nhất định phụ thuộc vào sự thay đổi thu nhập hay giá cả, sự hình thành các khuynh hướng nghề nghiệp của các học sinh thuộc loại nhất định..... Khác với mô hình kinh tế lớn, mô hình kinh tế nhỏ có đặc điểm là bao gồm các chi tiôu tách và có một số đáng kể những tham số quan trọng. Đôi khi những mô hình kinh tế trừu tượng được xây dựng với giá thiết tránh nhóm gộp càng nhiểu càng tốt các đại lượng biến thiên và các tham sô cấu trúc, cũng được gọi là các mô hình kinh tế nhỏ. 1.3. Mò hình kinh tế phát triển Về lịch sử mà nói là một trong những mô hình đầu tiên về động thái kinh tế, đã trở thành đối tượng để phân tích toán học sâu sắc. Mô hình do nhà toán học nổi tiếng John Von Neumann lập ra và khảo sát (năm 1937). Mô hình gồm n sản phẩm và m phương pháp sản xuất chúng. Đối với mỗi phương pháp j, với một đơn vị cường độ trong một đơn vỊ thời gian sẽ sản xuất ra một bộ phận sản phẩm = (b,j, b„ị); đồng thời phải chi phí một bộ phận sản phẩm = (a,j, a 2j,..-, j = 1. 2,..., m. Giả thiêt rằng mọi phương pháp đều có thể sử dụns với cường độ không âm bất kỳ, các chi phí và sản phẩm tỷ lệ với cường độ. Từ các vectơ CỘI n chiểu aj và bj, j = 1, 2,..., m ta thành lạp ma trận chi phí A = (ay) và ma trận sản phẩm B = (b,j). Một quỹ đạo (phương án) chấp nhận được là một dày các veclơ cường độ m chiều |z thoá mãn hệ thức cân đối sau: A Z ,, 1>BZ, z>0 (1.1) Quỹ đạo dừng là một dãy thoả mãn z, = a'z. Trên các quỹ đạo dừng tỷ lệ dùng các phương pháp là khônạ thay đổi. nền kinh tế tăng với hệ số tãng trưởng không đổi (nhịp độ bằng 100(a - 1)). Từ (1) suy ra rằng nhịp độ a và các tỷ lệ z cần phải thoả mãn điều kiện; aAZ0 (1.2) Đáng chú ý hơn cả là quỹ đạo dừng tương ứng với nhịp độ lớn nhất - nhịp tăng trưởng sản xuất cực đại. Có thể tìm được nhịp đó bằng cách giải bài loán quy hoạch toán học: a -> max với điều kiện (2). 196
  13. V e c l ơ c ư ờ n a đ ộ z tại dó dạl được CIÍC (lai gọi l;i \'Cclơ N e ư m a n n . Hê thống các hệ thức cán dố, (1) tưarig ứng vứi một hê thống đối ngẫu các hệ thức về giá trị P ,A >P ,„B , p ,> 0 b i c u lliỊ 2 Ìá irị c u a s a n p h ắ m k h ô n g clưoL vưoi C á g i á trị c ủ a c h i p h í. Q u y ỊU đạo dừng cua các giá là mộl dãy các giá p, sao cho p --= p 'P. Từ điều kiện (3) suy ra ráng ppA > pB Đána chú ý hơn ca là quỹ dao dừng cỏ gia tri cưc tiểu. Các giá trị p tương ứng được gọi là giá Neumann. Nếu các mo hình k.nh tế là không chia tách được, tưc lli để sản xuất m(M sán phẩm bất kỳ đều phái dùng đên trực tiêp hay ơián tiếp mọi sản phẩm, thì có định lý dối ngầu sau đây: m a x a = nnn|3 = a,, Đôiig thời vối vectơ cường độ bất kỳ thì số cua giá trị sản phẩm (theo giá trị cố định p) VỚI giá trị chi phí k h ỏ n g vượi quá a„ và b á n g a „ tại vectơ c ường độ Viêc nohiên cứu các quỹ đạo dừng là môl cóng cụ mạnh rà phổ biên để phân lích kir^i tế. Giả thiết về tính dừng cho phép phát hiên những quy luật và nhữna mối licn hệ cơ ban nhất cua đối lương nghiên cứu. Chẳng hạn có thê lihan \ c t răn« c á c giá N e u m a n n trong mo hình can d o ĩ li ên Iigùnlì đ ộ n g với tiêu chuan san xilat là môl biến dạng cua giá san xuất. Giá san phẩm bao gồm các chi phí ưực tiếp, lu-ơng cóng nhân tỷ lé với phán gia tiỊ vốn đem s ử dụng. ^ Gia Ihiếl vé lính dừiiii là có căn cứ kỉii ma các quỹ đao tối ưu gần với quỹ dao dừng, tức là gần đưừng lứn. Các định lý dưừng lỚ đã được chứng minh d to Ti một loạn iiô hình kinh tố mở rông. VỚI o,;, tliicl vcctơ điều kiện ban địm dương > 0. h à m m ụ c l i ê u u( Z | ) = ( d . Z | ) là iLiycn lính, với m ò t s ố g i ả t h i ế t v ề m a trân A và ma trận B, trong đó quan trong nhất là ui;:i ihiết tồn tai duy nhất các vectơ giá Neumann p và cường dỏ z , và các giá là dương, thì tỷ lệ của các cường độ và giá tối ưu là xấp xi vỏì ty lẽ Ncumann hầu khắp nơi, cùng lăm chi trừ ra một sô' khoảng thời gian ở đầu và cuối kỳ kc hoạch. Tông so đọ dai cua các khoảns đó không phụ ihucX' vào độ dài cúa kỳ kẽ hoạch. * Phát Iriển tiếp theo của mô hình V. Neumann là mô hình tăng trương kinh tế Harrod-Domar. 197
  14. M ô hình nghiên cứu sự tãng trưởng của các chỉ tiêu kinh tế y- mô th e o thời gian t: - Thu nhập quốc dàn Y(t) (GDP) - Vốn K(t) - Đầu tư I(t) - Lao động L(t) a) Các mối quan hệ (1) K(t) = vY(t), 0
  15. .--^ ^ S Y (t)= v í^ (5) dt dt i’ Từ (5) ta có nhịp tăng trưởng của thu nháp q i í 'c la.n dY(t) dt _ s Y(t) Ký hiệu a = — từ (5) ta có phương trình \ i phan: í^ -a Y =0 ^ dt dY = adt ^ InY = Ơ + !nC ,1 Y l n ^ = at Y(t) = Cc‘" c Lấ>' t = 0 là thời kỳ gốc ta có; Y, = Y ( 0 ) = c Y = Yoe“' Từ (1) ta được K(t) = V Y„e“' (với K„ = v\'„ < K(t) = Koe“' Từ (3) ta có ĩ(t) = SY„e“' (với l„ = SY,,) -->1(1) - loc"' Vậy nhịp tăng trưởng của K(t) và ỉ(t) cùng là a . • Bâỵ giờ la xét mô hình kinh tỉ hiín đa, n h ầ , khi bưác sang th í kỷ XXI là nền kinh tế tri thức. Kinh tế tri thức là nền kinh tế (tược x a y rlưnpỊ trên cơ sớ sản xuất phân phối va sư dụng trí thức và ihông tin. Nói cá :h ^ ^" tế trong đó s 7 s ả n sinh ra, phổ cáp và sử đụng tri ihức phải g ữ v m ^ định nhất đối với sự phát triển kinh tế. lạo ra của cả i, nâng cao chất Ị ư ^ g cuộc sốn
  16. ,........'• /«>/ ( hiiyciì sano xã hội tỉìôiìo Ịị/ì .1 ' ! * sẽ liến v k ) Ihòi k ỳ h ạ u c ó n g ngliiỊ.n. v à o " “ "8 " '“ i l'"h lúc 'à lìiộl II ng Ihõlò tin * cnuc và gia đinh. Iv: ! ! " ! ' * ' í " ’* s 2 ) C ó s ự c ìm y ê u â ổ i lớ n về c ư cấn c ủa nền k in h t ế , ! ĩ ! ' ĩ " " ■“ " ® “ • >?Ò V 1 i S . „ 1 n „„ ’ ' ì ' ? " í! ’"® '5"“ 1 ' i'™ ’“ q ^ r g ia í, z , ''’'™ ý™ 'M c khoa học s cóng nghẹ tức là dựa v ío các nguổr lực có khá níiiig liĩi sinh v'i lự smh san. . V Tlmm!! ,„,v
  17. Sự xuấl h iệ n ihườne x u y ê n các sán Ị)tiain mới dủ ỉ oại bỏ nhữ ng sán p h ẩ m khổng c òn thích hợp nĩra ra khỏi nhu cáu. Nen sán xuất s ố lượrìíĩ nhỏ, c h ủ n g loai nhicu ihay thế nền san xuất sỏ \u’ơ\Ỵ2 ló'n chiỉỊìí: Itìai ít. 4. Sự quá dộ pììát ĩriểìì Ịừcììiừii rọỉỉ
  18. Vai trò của các chính phủ quốc gia ngày càng giảm bớt, xu hưóng liên kết, tự do hoá thương mại ngày càng mở rộng như cộng đồng kinh t ế Châu Âu đã có đồnơ tiền riêng, nhất thể hoá thuế quan và tài chính. Đ ó chính là quá trình xã hội hóa sản xuất tiến tới quốc tế hóa, là một quá trình mang tính qui luật trong sự phát triển của sản xuất trên thế giới nói chung và từng quốc gia nói riêng thể hiện trên ba lĩnh vực: thương mại (đầu tư nước ngoài tãng nhanh), tài chính (ngân hàng điện tử với xa lộ thông tin toàn cầu), công nshệ và sản xuất (chia sẻ liên kết và uỷ quyền công nghệ). ổ. Trong nền kinh t ế tri thức, xã hội tlĩônẹ tin là một x ã hội học tập Yếu lố giáo dục và đào tạo sẽ là nguồn lực chủ yếu tạo thế cạnh iranh của các nước trên phạm vi toàn cầu. Hướng tổno quát nhất của nền giáo dục đi vào phục vụ nền kinh tế tri thức là tri thức phải thành kĩ năng, tri thức phải thành trí lực và suy rộng ra giáo dục phải đào tạo nhân lực và nhân tài. Chính các nước công nghiệp phát triển đang sử dụng cơ hội này, dựa trên nền kinh tế tri thức để đột phá vào các công nghệ cao mà không phải đầu tư quá lớn. Trong vài thập kỷ tới, sự phát triển của đất nước ta bước vào công nghiệp hóa, hiện đại hóa và ta cần phải giải quvết tốt mối quan hệ giữa công nghiệp hóa, hiện đại hóa với nẻn kinh tế tri thức để đẩy nước ta tiến nhanh hơn, rút ngắn khoảng cách với các nước phát triển. §2. MÒ HÌNH TOÁN KINH TẾ 2.1. Khái niệm Việc mô hình hóa toán học dựa trên hai khái niệm; đồng cấu và đẳng cấu * Đồng cấu là quan hệ tươntỉ đương của các hệ về phương diện cấu trúc hay vận hành (thường không đơn trị). V í dụ: Tập hợp các điểm thuộc mặt phẳng Đêcac với quan hệ nằm bên trái chẳng hạn là đồng cấu với quan hệ nhỏ hơn trong tập các số thực: M| nằm bên trái M 2 tương đương với X| < X, (có thể có rất nhiều điểm Mi nằm bên trái M,). 202
  19. M, * Đ ẳne cấu là quan hệ đồng nhất về cáu trúc hay chức năng nào đó giữa các hệ thống. V í dụ: tập hợp các điểm Irên đường tháng (Irục Ihực) trong quan hệ thứ tự (điểm M, nằm bên trái M, trên trục) là đáng càu \ ới táp các số thực trong quan hệ nhỏ hơn X, < X,- Mi M2 0 X, Xt Từ hai khái niệm đồng cấu và đẳn2 cấu ta có liai mức mô hình hoá toán học. Mức thứ nhất: xây dựns mô hình đồng cấu cua đối tượng thực (chỉ phản ánh một số yếu tố quan trọno nhất của đối tượng thực), còn gọi đây là mô hình định lính cúa đối tượng. Mức thử hai: xây dimg mô hình (loán học) itãng cấu với ảnh đồng cấu đã xây dựng được cúa đối tượng nghiên cứu. Mô hình thu được sẽ phu thuộc vào: - Quan hệ giữa biến số và tham só ~ T h e o sự b iế n th iê n củ a b iế n số (lic n lục, I (';i rạc. n g u y ê n ) - Theo lính chất của thông tin. 2.2. Các bước xây dựng mò hình toán học cho m ột vân đề thực tế t Việc mô hình hoá toán học cho một vấn dể thực tế được chia ra làm bốn bước (xem chi tiết §2 chuxmg 1, phần I). 203
  20. §3. HÀM SẢN XUẤT 3.1. Mô hình chung và các khái niệm Khi xét một phức hợp sán xuất bất kỳ như mộl hệ ihôna mò' (đầu vào là nhũng chi phí về tài nguyên, nhân lực và \'ật lực, còn đầu ra là sán phám), hàm sản xuất biểu thị quan hệ định lưọns ổn định liiũa đầu vào và đầu ra: y = f ( x | , x , ............ x„) (3.1) trong đó: X,. X,, x„ là c á c chi phí tài n s u y ê n ( y ế u l ố sán xuất); V là k h ố i i ư ợ n ơ s ả n p h ẩ m f là tập các quá trình cônơ nshộ biến tập các yếu tô san xuâì thành san phẩm Phương trình (3.1) có khi viết dưới dạna ẩn: F(y, X,........ x„) = 0 (3.2) 3.2. Hàm đẳng câ'p Xél hàm y= Í'(X|. X,...... x„) Định nghĩa: Hàm í'được uọi là hàm đẳng cấp bộc h nếu ta có: Í'(XX|. Ã x , , . . . , Â x j = Â ' ' f ( X| , X , ........x„) Giá sử có hàm sản xuấl k| yếu tố đáu vào, k2 san phám ra, tức là: F(v, x) = F(z) irona đó z = (y, x) Hàm F(z) được gọi là đẳng cấp bậc k| k^k, nếu la cỏ: F( Ằ^' y. Ầ^- x) = >>’ F(Z) ’ Đối với hàm thuần nhất hậc k| k,k- thoá mãn hệ thức Euler có dạig sau: 5F Sy, ri < Đối với độ co siãn toàn bộ của sán xuấl; _ ap y, _ í'!' X, n, e , = ổy. F ' ax, F 204

CÓ THỂ BẠN MUỐN DOWNLOAD

AMBIENT
Đồng bộ tài khoản