giáo trình truyền động điện , chương 2
lượt xem 225
download
dựa vào đặc tính cơ tự nhiên và nhận xét về dạng đặc tính của động cơ điện một chiều kích từ song song. số liệu cho trước: động cơ loại làm việc dài hạn,cấp điện áp 220V,công suất định mức 6.6KW,tốc độ 2200 vòng/phút. dòng điện 35A. điện trở mạch phần ứng gồm điện trở cuộn dây phần ứng và cực từ phụ 0,26.....
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: giáo trình truyền động điện , chương 2
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) Chương 2 CÁC TR NG THÁI HO T NG C A NG CƠ I N 2.1 Khái ni m chung 2.2 ng cơ i n m t chi u kích t c l p (song song) 2.3 ng cơ i n m t chi u kích t n i ti p 2.4 ng cơ i n không ng b 2.5 Các c tính công tác c a ng cơ ng b 2.1 Khái ni m chung - TC c a máy s n xu t (t i) Mc(ω) : bi t trư c - TC c a ng cơ i n M(ω): T nhiên/ nhân t o - H ơn v tương i. 2.2 ng cơ i n m t chi u kích t c l p (kích t song song) 2.2.1 Sơ n i dây c a ng cơ m t chi u kích t c l p và kích t song song a) b) Hình 2.1 2.2.2 Phương trình c tính cơ ( TC) a) Các phương trình chính - Phương trình cân b ng i n áp ph n ng và m ch kích t : di Laplace u u = e + R ut .i u + L ut . u U u = E u + R ut (1 + Tu .p).Iu → dt di Laplace u kt = R kt .i kt + L kt . kt U kt = R kt (1 + Tkt .p).Ikt → dt trong ó: Rut = Ru+Rfu; Lut=Lu+Lfu; Tu = Lut/Rut; Tkt = Lkt/Rkt - Theo lý thuy t máy i n: 1 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) pN Eu = kφ.ω và M = kφ.Iu trong ó k = 2π.a φ = c.Ikt - Phương trình chuy n ng: dω Laplace M − Mc = J t . M − M c = J t .p.ω → dt - Sơ c u trúc ng cơ: Mc Uu 1 1 Iu M - 1 ω - R ut 1 + Tu .p J t .p Eu kφ k Ukt 1 1 Ikt φ c R kt 1 + Tkt .p - Trong trư ng h p m ch kích t ã xác l p: Mc Uu 1 1 Iu M - 1 ω kφ - R ut 1 + Tu .p J t .p Eu kφ -T c quay roto: U 1 + Tu .p ω = u − R ut .Iu phương trình c tính cơ- i n có xét quá kφ kφ U 1 + Tu .p ω = u − R ut .M phương trình TC có xét quá kφ ( kφ ) 2 - Tr ng thái xác l p t = ∞ hay p = 0: U u R u + R fu ω= − Iu (2-4) kφ kφ Phương trình “ c tính cơ i n” bi u th quan h ω = f(Iu) và: U u R u + R fu ω= − .M (2-6) kφ (kφ)2 Phương trình“ c tính cơ” bi u th quan h ω = f(M) 2 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) b) ư ng c tính cơ và c tính cơ i n φ ≈ const ⇒ ω = f(Iu) và ω = f(M) tuy n tính Hình 2-2 - Khi Iu = 0, M = 0: Uu ω= = ω0 “t c không t i lý tư ng” (2-7) kφ - Khi ω = 0: Uu Iu = = I nm “dòng i n ng n m ch” (2-8) R u + R fu Uu và M= .kφ = I nm .kφ = M nm “momen ng n m ch” (2-9) R u + R fu T (2-6) ta xác nh ư c c ng c tính cơ: β= dM =− (kφ) 2 (2-10) dω R u + R fu hay β= dM = (kφ)2 dω R u + R fu c) Các d ng khác c a phương trình TC - D ng 1: ω0 ω = ω0 - ∆ω (2-11) A ∆ω ω trong ó: R u + R fu ∆ω = .I u (2-12) kφ “ s tt c ” - D ng 2: M 3 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) 1 ω = ω0 − .M (2-13) β - D ng 3: M = kφ. Uu − (kφ)2 .ω hay M = M − βω (2-14) nm R u + R fu R u + R fu - D ng 4 ( ơn v tương i) * * * * U u R u + R fu * ω = − .I u (2-15) * * φ φ U* R * + R * ω = *u − u * 2 fu .M* * (2-16) φ (φ ) trong ó: ω* = ω/ω0; Uu* = Uu/U m; φ* = φ/φ m = kφ/kφ m; Iu* = Iu/I m; M* = M/M m; Ru* = Ru/R m; Rfu* = Rfu/R m; U dm v i R dm = (2-17) I dm ng v i M = Mc (xác l p) s có t c xác l p ωxl: Iu = Ic = Mc/kφ : “dòng i n t i” 2.2.3 c tính t nhiên (Rfu = 0, Uu = U m; φ = φ m) - Phương trình: U dm Ru ω= − M (2-18) kφdm (kφdm )2 U R ω = dm − u I u (2-19) kφdm kφdm -T c không t i và c ng TC t nhiên: U ωo = ®m (2-20) kφ®m (kφdm )2 β tn = (2-21) Ru 1 β* = tn (2-22) R* u - V TC t nhiên t các s li u catalog: P m [kW], n m [vòng/phút], U m [V], I m [A], η m, Ru [Ω],...: 1. i m không t i [0, ω0]. 2. i m nh m c [M m, ω m] ho c [I m, ω m]. 3. i m ng n m ch [Mnm,0] ho c [Inm, 0]. 4 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) U dm ω0 = ω kφdm ω0 1 2 U − R u I dm ωm v i kφ dm = dm ωdm P .1000 M dm = dm ωdm ho c M m = kφdm.Idm 3 U 0 I nm = ®m Im Inm I R− Mm Mnm M U M nm = kφdm . dm Ru ho c P .1000 Idm = dm , A (2-23) ηdm .U dm U R u ≈ 0,5.(1 − ηdm ) dm , Ω (2-24) I dm 2.2.4 Các c tính nhân t o T phương trình (2-6): U R + Rf − ω= − − − .M (2-6) kφ ( kφ ) 2 ⇒ Rfư, Uư, φ có th thay i. a) c tính nhân t o “bi n tr ”: (Uu = U m, φ = φ m) - Phương trình: U R + Rf − ω = ®m − − M (2-25) kφ®m ( kφ )2 ®m U ®m R − + R f − ω= − .I − (2-26) kφ®m kφ®m - T c không t i: U ω0 = ω0.tn = ®m = const (2-27) kφ®m - s tt c Mc hay Ic: R− + Rf − R + Rf − ∆ωc = .M c = − .I c ~ R f − (2-28) ( kφ ) 2 kφ®m ®m R− Rf − ∆ωc = .M c + .M c = ∆ωc.tn + ∆ωc.Rf ( kφ®m ) 2 ( kφ®m ) 2 5 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) ω0 ∆ωc.tn TN, Rfư=0 ∆ωc ∆ωc.Rf NT, Rfu - c ng TC: Mc βtn = ( kφ®m )2 ~ 1 (2-29) R − + Rf − Rf − - Dòng i n ng n m ch: U ®m 1 I nm = ~ (2-30) R − + Rf − Rf − - Momen ng n m ch: 1 M nm = kφ®m .I nm ~ (2-31) Rf − Tăng Rfư …. b) c tính nhân t o khi thay i i n áp ph n ng Uư: (Rfư = 0, φ = φ m) - Phương trình: U− R− ω= − M (2-32) kφ®m ( kφ )2 ®m U− R ω= − − .I − (2-33) kφ®m kφ®m - T c không t i: U− ω0 = ~ U− (2-34) kφ®m - s tt c Mc hay Ic: 6 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) R− R− ∆ωc = .M c = .I c = ∆ωc.tn = const (2-35) ( kφ®m ) 2 kφ®m - c ng TC: β= ( kφ®m )2= βtn = const (2-36) R− - Dòng i n ng n m ch: U I nm = − ~ U − (2-37) R− - Momen ng n m ch: U− M nm = kφ®m .I nm = kφ®m ~ U− (2-38) R− ⇒ Khi gi m Uư < U m … 7 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) b) c tính nhân t o khi thay i t thông φ: (Rfư = 0, Uư = U m) - Phương trình: U R− ω = ®m − M (2-39) kφ ( kφ ) 2 U ®m R − ω= − .I (2-40) kφ kφ − - T c không t i: U 1 ω0 = ®m ~ (2-41) kφ φ - s tt c Mc hay Ic: R− 1 ∆ωc = .M c ~ (2-42) ( kφ ) 2 φ2 - c ng TC: β= ( kφ ) 2 ~ φ2 (2-34) R− - Dòng i n ng n m ch: U I nm = ®m = I nm.tn = const (2-30) R− - Momen ng n m ch: M nm = kφ.Inm ~ φ (2-31) ⇒ Khi gi m φ < φ m … φ2 < φ1 < φ m φ2 < φ1 < φ m Chú ý: Vì không th tăng ikt trên giá tr nh m c, nên ch có th t o φ < φ m. Do ó, các c tính cơ i n nhân t o u có v trí cao hơn c tính t nhiên; tương t , trong vùng ph t i Mc cho phép t c trên các c tính nhân t o l n hơn t c trên c tính cơ t nhiên. 8 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) * Ví d 1: D ng c tính cơ t nhiên và nh n xét v d ng c tính c a ng cơ i n m t chi u kích t song song. S li u cho trư c: ng cơ lo i làm vi c dài h n, c p i n áp 220V, công su t nh m c 6,6kW; t c nh m c 2200 vòng/phút; dòng i n nh m c 35A; i n tr m ch ph n ng g m i n tr cu n dây ph n ng và c c t ph : 0,26Ω. Gi i: + D ng c tính cơ t nhiên d a vào 2 trong 3 i m: 1. i m không t i [0, ω0]. 2. i m nh m c [M m, ω m]; ho c [I m, ω m] cho c tính cơ i n t nhiên. 3. i m ng n m ch [Mnm,0]; ho c [Inm, 0] cho c tính cơ i n t nhiên. T c nh m c: n 2200 ω ωdm = dm = = 230,3 [rad/s] ω0 1 9,55 9,55 ωm 2 Momen nh m c: Pdm .1000 6,6.1000 M dm = = = 28,6 [Nm] ωdm 230,3 Như v y ta ã xác nh ư c i m nh m c [28,6 ; 230,3]. 3 T thông ng cơ: 0 U dm − I dm .R u 220 − 35.0,26 Im Inm I kφ dm = = = 0,91 [Wb] Mm Mnm M ωdm 230,3 T c không t i lý tư ng: U dm 220 ω0 = = = 241,7 [rad/s] kφ dm 0,91 Như v y ta ã xác nh ư c i m không t i [0 ; 241,7]. Dòng i n ng n m ch: U dm 220 I nm = = = 846 [A] Ru 0,26 Mômen ng n m ch: M nm = kφ dm .I nm = 0,91.846 = 770 [Nm] Như v y ta xác nh ư c i m ng n m ch [770 ; 0]. T 2 i m trong 3 i m: i m không t i và i m nh m c ho c i m ng n m ch ta có th d ng ư c c tính cơ như hình bên. + ánh giá ư ng c tính cơ: - s t t c khi có t i nh m c (so v i t c không t i lí tư ng): ∆ωc = ω0 - ω m = 241,7 – 230,3 = 11,4 [rad/s] ∆ωc 11,4 ∆ωc % = 100% = .100% = 4,7% (< 5%) ω0 241,7 - c ng c tính cơ t nhiên: β= (kφdm )2 = 0,912 = 3,18 [Nm.s] Ru 0,26 9 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) Bài t p 2.1: D ng c tính cơ t nhiên và nh n xét v d ng c tính c a ng cơ i n m t chi u kích t song song. S li u cho trư c: ng cơ lo i làm vi c dài h n, c p i n áp 220V, công su t nh m c 4,4kW; t c nh m c 1500 vòng/phút; hi u su t nh m c 0,85. áp án. 2.2.5 Các tr ng thái hãm c a ng cơ m t chi u kích t cl p - Tr ng thái ng cơ: là tr ng thái mà mômen ng cơ sinh ra h tr vi c quay. Hay chi u c a momen ng cơ cùng chi u v i chi u c a t c quay. + M (Iư) và ω cùng chi u => Pcơ = M.ω = Mc.ω > 0 + ng cơ làm vi c các góc ¼ th I (ω>0; M và I > 0) và góc ¼ th III (ω0, I0, U0, U>0, U>E U E U E II P = M.ω0 I P = U.I0 II I III IV M, I I Ch ng cơ Ch máy phát I M
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) Uu R u ω= + . | Iu | phương trình c tính cơ i n kφ kφ U R ω = u + u .| M | phương trình c tính cơ kφ (kφ)2 Hãm tái sinh x y ra khi h t i c n tr c, máy nâng h có t i tr ng n ng, ho c khi i u ch nh i n áp ph n ng gi m t ng t làm ω0 < ω và ω chưa k p gi m. 2 1 1 ω ω0 2 Mh Mc b) Hãm ngư c: Hãm ngư c x y ra khi ng cơ (dư i tác ng c a th năng ho c ng năng tích lu trong cơ c u công tác) quay ngư c chi u t c không t i lí tư ng. Có hai trư ng h p x y ra hãm ngư c: + Thêm Rfư l n vào m ch ph n ng ng cơ: 11 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) Ch ng cơ Ch hãm ngư c P Pcơ P Pcơ U.I C M.ω U.I C M.ω ∆P ∆P +∆PRfu K K I I Ru Rfu Ru Rfu U E U E I IV U u R u + R fu ω= − .M , kφ (kφ)2 R u + R fu Uu trong ó ∆ω = .M > ω0 = , do ó ω
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) Ch ng cơ Ch hãm ngư c P Pcơ P Pcơ U.I C M.ω U.I C M.ω ∆P ∆P +∆PRfu K K I I Ru Rfu Ru Rfu U E U E I IV | U u | R u + R fu ω=− + . | M | , M ω0 = , do ó ω >0. (kφ)2 kφ Chú ý: tr ng thái hãm ngư c, i n áp ngu n cùng chi u v i s E, nên dòng i n Iư có th r t l n. h n ch Iu ngư i ta thư ng n i thêm i n tr ph Rh khá l n vào m ch ph n ng. c) Hãm ng năng: Hãm ng năng x y ra khi t c không t i ω0 = 0. Ru + Rh R +R ω=− .I u = − u 2 h .M ch n Rh sao cho Ih ≤ Icp = (2÷2,5)I m kφ (kφ) 13 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) | β |= (kφ)2 Ru + Rh Ti p ví d 1: Xác nh tr s i n tr hãm u vào m ch ph n ng hãm ng năng ng cơ i n m t chi u kích t song song v i yêu c u mômen hãm l n nh t Mhmax = 2M m. Trư c khi hãm ng cơ làm vi c i m nh m c, s d ng sơ hãm kích t c l p. Gi i: Ta s d ng sơ hãm ng năng kích t c l p, trong ó m b o φ = φ m. i m làm vi c trư c khi hãm là i m nh m c, ta có: Ic = Iư = I m = 35A, tương ng v i momen nh m c M m; ωa = ω m = 230,3 [rad/s] ωa S c a ng cơ trư c khi hãm: Ea = U m – Iư.Rư = 220 – 35.0,26 = 210,9 [V] momen (dòng i n) hãm l n nh t s t i th i i m ban u c a quá trình hãm, ngay khi chuy n i m ch i n làm vi c sang m ch hãm ng năng. Ihmax = Ihb hay Mhmax = Mhb Mhmax Mc = M m Ihmax Vì φ = φ m = const nên m b o Mhmax = 2 M m thì Ihb = 2I m = 2.35 = 70 [A] kφ.ω kφωa E 210,9 i n tr t ng m ch ph n ng: R ut = = = a = = 3,01Ω Iu I hbd I hbd 70 V y i n tr hãm u vào m ch ph n ng là: Rh = Rut – Ru = 3,01 – 0,26 = 2,75 [Ω] 2.3 ng cơ i n m t chi u kích t n i ti p 2.3.1 Phương trình và d ng c tính cơ c a ng cơ m t chi u kích t n i ti p U = E + (Ru+ Rf).I Ru = ru + rcf + rct + rkích t E= kφω M = kφ.I Uu R u + Rf ω= − .I kφ kφ U R +R ω = u − u 2 f .M kφ (kφ) φ ≈ c.Ikt = c.I Uu R u + R f A ω= − .I = 1 − B k.c.I k.c.I I “phương trình c tính cơ - i n” 14 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) Uu R + Rf A ω= − u = 2 −B k.c .M k.c M “phương trình c tính cơ” trong ó U Ru + Rf A1 = B= k.c k.c A 2 = A1. k.c 2.3.2 c tính v n năng c a ng cơ m t chi u kích t n i ti p ω* = ω/ω m TT I* M* ω* I = I*.I m M = M*.M m ω = ω*.ω m 1 I*1 2 I*2 3... I*3 15 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) 2.3.3 Các c tính nhân t o c a ng cơ m t chi u kích t n i ti p “ c tính nhân t o bi n tr ” ư c xác nh d a trên c tính t nhiên (Rf = 0): L y m t giá tr I1 nào ó, dóng lên c tính này ta có t c tương ng ω1. Có th bi u th ω1 theo công th c: U − I1 .R u ω1 = kφ1 Trên c tính cơ nhân t o i n tr ph Rf, t c ng cơ dòng i n I1 là: U − I1.(R u + R f ) ωnt1 = kφ1 Chia 2 t ng v công th c trên ta có ư c: U − I1 ( R u + R f ) ωnt1 = ω1 . U − I1R u Như v y v i I1 ã ch n và ω1 tra ư c trên c tính cơ t nhiên, s tính ư c giá tr ωnt1 trên ư ng c tính cơ nhân t o c n tìm. Làm tương t v i các giá tr I2, I3,… ta s có ωnt2, ωnt3,… và cu i cùng ta v ư c c tính cơ nhân t o có i n tr ph Rf. 16 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) 2.3.4 Các tr ng thái hãm c a ng cơ m t chi u kích t n i ti p Do ω0 -> ∞ nên ng cơ m t chi u kích t n i ti p không có hãm tái sinh. a) Tr ng thái hãm ngư c: x y ra khi t c quay c a ng cơ ngư c chi u v i t c không t i lí tư ng (ω0 = +/- ∞). + ưa thêm i n tr ph Rf l n vào m ch ng cơ khi t i th năng. Trên o n c tính cd, có M >0 và ω
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) b) Tr ng thái hãm ng năng (ω0 = 0): 2.3.5 Nh n xét v ng cơ m t chi u kích t n i ti p - V c u t o, ng cơ m t chi u kích t n i ti p có cu n kích t ch u dòng l n, nên tiêt di n to và s vòng ít. Nh ó d ch t o hơn và ít hư h ng hơn so v i ng cơ m t chi u kích t song song. - Có kh năng quá t i l n v mômen. Khi có cùng h s quá t i dòng kI thì mômen c a ng cơ kích t n i ti p l n hơn kI l n so v i mômen ng cơ kích t song song. - Mômen không ph thu c vào s t áp trên ư ng dây t i i n. - Có kh năng t i u ti t giá tr t c khi ph t i thay i gi cho công su t ng cơ g n như không i nh c tính cơ d ng hybecbol. 2.3.6 c i m, c tính cơ và các tr ng thái hãm c a ng cơ m t chi u kích t h n h p φ = φs + φn thư ng φs = (0,75÷0,85)φ m khi Mc = M m thì Iư = I m, tương ng φn = (0,25÷0,15)φ m ω0 ≈ (1,3÷1,6)ω m 18 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) 2.4 ng cơ i n không ng b 2.4.1 c tính cơ i n ω = f(I1) ho c ω = f(I2) c tính cơ và c tính cơ i n c a ng cơ không ng b , i lư ng t c ư c bi u th thông qua i lư ng “h s trư t” s: ω0 − ω 2πf s= v i ω0 = ω0 p U1 I '2 = ⇒ I2’= f(s) 2 R '2 + (X1 + X '2 ) 2 R1 + s trong ó X1 + X2’ = Xnm R2’= R2.Ke2; X2’= X2.Ke2; E1 Ke = - h s bi n is c i n ng c a dây qu n stato và rôto (giá tr pha), và có th E 2 nm.f xác nh g n úng: 19 GV: Hà Xuân Hòa October 7, 2006
- Môn h c: i u khi n ng cơ i n (Truy n ng i n) U1 K e ≈ 0,95. E 2nm.f E2nm.f - s c i n ng pha roto khi h m ch và rôto ng yên. Bi u th c tính cơ i n theo quan h I1 = f(ω): 1 = 2’ + µ Vi t theo modul: 1 1 I1 = U 1 + R µ + Xµ 2 2 2 R '2 R1 + + X2 s nm U1 - Khi không t i lí tư ng, s = 0 thì I1 = Iµ = R µ + Xµ 2 2 - Khi ng n m ch s = 1, thì I1nm = Iµ + I2nm 2.4.2 c tính cơ Công su t i n t chuy n t stato sang rôto: P12 = Pcơ + ∆P trong ó P12 = M t.ω0 Pcơ = M.ω M t≈M ∆P ≈ 3.I2’2.R2’ ω0 − ω ⇒ Mω0 = Mω + 3.I2’2.R2’ hay 3.I2’2.R2’ = M(ω0 - ω) = Mω0 = Mω0.s ω0 3R '2 I '22 M= s.ω0 20 GV: Hà Xuân Hòa October 7, 2006
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình Truyền động điện tự động: Chương 5 - Quá trình quá độ truyền động điện
0 p | 275 | 109
-
Giáo trình Truyền động điện: Phần 1 - Trương Xuân Linh
63 p | 196 | 48
-
Giáo trình Truyền động điện - Nghề: Điện công nghiệp - Trình độ: Cao đẳng nghề (Tổng cục Dạy nghề)
206 p | 86 | 18
-
Giáo trình Truyền động điện (Ngành: Điện công nghiệp) - CĐ Công nghiệp Hải Phòng
20 p | 39 | 9
-
Giáo trình Truyền động điện (Nghề Điện Công nghiệp - Trình độ Cao đẳng): Phần 1 - CĐ GTVT Trung ương I
98 p | 31 | 8
-
Giáo trình Truyền động điện (Nghề: Điện công nghiệp - Trình độ: Trung cấp) - Trường Cao đẳng Cơ giới và Thủy lợi (Năm 2020)
160 p | 18 | 8
-
Giáo trình Truyền động điện (Nghề: Điện công nghiệp - Trình độ CĐ/TC) - Trường Cao đẳng Nghề An Giang
64 p | 26 | 7
-
Giáo trình Truyền động điện (Nghề Điện công nghiệp - Trình độ Trung cấp): Phần 1 - CĐ GTVT Trung ương I
73 p | 35 | 7
-
Giáo trình Truyền động điện (Nghề: Điện công nghiệp - Cao đẳng) - Trường Cao đẳng Cơ điện Xây dựng Việt Xô
86 p | 16 | 5
-
Giáo trình Truyền động điện (Nghề Điện công nghiệp - Trình độ Trung cấp): Phần 2 - CĐ GTVT Trung ương I
61 p | 40 | 5
-
Giáo trình Truyền động điện (Nghề: Điện công nghiệp - Cao đẳng) - Trường Cao đẳng Gia Lai
184 p | 9 | 5
-
Giáo trình Truyền động điện (Nghề Điện Công nghiệp - Trình độ Cao đẳng): Phần 2 - CĐ GTVT Trung ương I
98 p | 25 | 5
-
Giáo Trình Truyền động điện – Trường Trung cấp Kinh tế Kỹ thuật Quận 12
120 p | 35 | 4
-
Giáo trình Truyền động điện (Nghề: Điện công nghiệp - Trung cấp): Phần 1 - Trường TC nghề Đông Sài Gòn
102 p | 25 | 3
-
Giáo trình Truyền động điện (Nghề: Cơ điện tử - Cao đẳng): Phần 1 - Trường CĐ nghề Việt Nam - Hàn Quốc thành phố Hà Nội
113 p | 23 | 3
-
Giáo trình Truyền động điện (Nghề: Điện công nghiệp - Cao đẳng): Phần 1 - Trường CĐ nghề Việt Nam - Hàn Quốc thành phố Hà Nội
87 p | 28 | 3
-
Giáo trình Truyền động điện (Nghề: Điện công nghiệp - Trung cấp): Phần 2 - Trường TC nghề Đông Sài Gòn
40 p | 27 | 3
-
Giáo trình Truyền động điện (Nghề: Điện công nghiệp - Trung cấp): Phần 1 - Trường CĐ Nghề Kỹ thuật Công nghệ
106 p | 33 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn