intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Hiện tượng phương sai sai số thay đổi

Chia sẻ: Dangvan Chinh | Ngày: | Loại File: DOC | Số trang:8

274
lượt xem
31
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Khi gải thiết phương sai số đông đều bị vi phạm thì mô hình hồi qui gặp phải hiện tượng này nguyên nhân do vản chất của vấn đề kinh tế, do kỹ thuật thu thập và xử lý dữ liệu..

Chủ đề:
Lưu

Nội dung Text: Hiện tượng phương sai sai số thay đổi

  1. HIỆN TƯỢNG PHƯƠNG SAI THAY ĐỔI I – Lý thuyết 1. Định nghĩa • Phương sai sai số thay đổi sảy ra khi giả thiết: Var(Ui) = σ2 bị vi phạm Khi giả thiết phương sai sai số đồng đều bị vi phạm thì mô hình hồi quy gặp phải hiện tượng này. 2. Nguyên nhân • Do bản chất của vấn đề kinh tế • Do kỹ thuật thu thập và sử lý số liệu • Con người rút được kinh nghiệm từ quá khứ • Có các quan sát ngoại lai (quan sát khác biệt rất nhiều với các quan sát khác trong mẫu) • Mô hình định dạng sai, bỏ sót biến thích hợp hoặc dạng giải tích của hàm là sai. 3. Hậu quả • Các ước lượng bình phương nhỏ nhất β^ là ước lượng tuyến tính không chệch nhưng không hiệu quả. • Các ước lượng của các phương sai là các ước lượng chệch => Làm giá trị của thông kê T& F mất ý nghĩa. • Các bài toán về ước lượng & kiểm định dự báo khi sử dụng thông kê T&F là không đáng tin cậy 4. Phương pháp phát hiện • Phương pháp đồ thị phần dư • Sử dụng tiêu chuẩn kiểm định – Kiểm định Park – Kiểm định Glejser – Kiểm định White No cross terms (Kiểm định White không lát cắt)
  2. Phương pháp đồ thị phần dư • Ta hồi quy mô hình hồi quy gốc Yi=β1+ β2X2i+β3X3i+….+βkXki+Ui Ta thu được phần dư ei Vẽ đồ thị phần dư ei(ei2) đối với Xi(hoặc với Ŷi trong trường hợp hồi quy nhiều biến) Nếu độ rộng của biểu đồ phần dư tăng hay giảm khi X tăng thì giả thiết về phương sai hằng số có thể không thỏa mãn Kiểm định Park • Hồi quy mô hình gốc để thu được phần dư ei Ước lượng mô hình hồi quy sau: lnei2 = β1+ β2ln Xi +νi Trường hợp có nhiều biến giải thích thì ước lượng hồi quy này với từng biến giải thích hoặc với Ŷi Kiểm định giả thiết Ho : β2 = 0 . Nếu giả thiết Ho bị bác bỏ thì có thể kết luận về sự tồn tại của hiện tượng phương sai sai số thay đổi Kiểm định Gleijser • Đầu tiên cũng hồi quy mô hình gốc để thu phần dư ei • Hồi quy một trong các mô hình sau | ei | = β1 + β2Xi + vi | ei | = β1 + β21/Xi + vi | ei | = β1 + β2√Xi +vi | ei | = β1 + β21/√Xi +vi • Tương tự như kiểm định Park, ta cũng kiểm định giả thiết Ho : β2 = 0 . Nếu giả thiết này bị bác bỏ thì có thể kết luận có hiện tượng phương sai sai số thay đổi Kiểm định white • Ước lượng bằng OLS . Từ đó thu được các phần dư ei • Ước lượng mô hình sau : ei2=α1+α2X2+α3X3+α4X22+α5X32+α6X2X3+vi
  3. • Với H0 : Phương sai của sai số không đổi , có thể chỉ rằng nR2 có phần xấp xỉ χ2 (df) , df bằng số hệ số của mô hình không kể hệ số chặn • Nếu nR2 không vượt qua giá trị χ2 (df) ,thì giả thiết H0 không có cơ sở bị bác bỏ. Trong trường hợp ngược lại thì giả thiết Ho bị bác bỏ. 5. Phương pháp khắc phục Như chúng ta đã biết phương sai của sai số thay đổi làm cho các ước lượng không còn là ước lượng hiệu quả nữa. Vì thế biện pháp khắc phục là hết sức cần thiết. Việc chữa chạy căn bệnh này phụ thuộc chủ yếu vào liệu σ i2 , được biết hay chưa. Ta phân biệt hai trường hợp. 1. σ i đã biết 2 Khi σ i2 đã biết, chúng ta có thể dễ dàng khắc phục căn bệnh đó bằng cách sử dụng phương pháp bình phương nhỏ nhất có trọng số đã trình bày ở trên. 2. σ i chưa biết 2 Trong nghiên cứu kinh tế việc biết trước σ i2 nói chung là hiếm. Vì vậy nếu chúng ta muốn sử dụng phương pháp bình phương nhỏ nhất có trọng số thì chúng ta cần có những giả thiết nhất định về σ i2 và biến đổi mô hình gốc sao cho mô hình đã được biến đổi này thoả mãn giả thiết phương sai của sai số không đổi. Phương pháp bình phương nhỏ nhất sẽ được áp dụng cho mô hình đã được biến đổi như đã chỉ ra trước đây, phương pháp bình phương nhỏ nhất có trọng số là phương pháp bình phương nhỏ nhất áp dụng cho tập số liệu đã được biến đổi. Chúng ta sẽ minh hoạ cho các phép biến đổi này qua việc sử dụng mô hình hồi quy 2 biến mà ta gọi là mô hình gốc: Yi = β1 + β 2 Xi + Ui Giả sử mô hình này thoả mãn các giả thiết của mô hình hồi quy tuyến tính cổ điển trừ giả thiết phương sai của sai số không đổi. Chúng ta xét 1 số giả thiết sau về phương sai của sai số. Những dạng này tuy chưa bao quát được tất cả nhưng phổ biến. Giả thiết 1: Phương sai của sai số tỉ lệ với bình phương của biến giải thích: E( U i2 ) = σ 2 X i2 (1) Nếu bằng phương pháp đồ thị hoặc cách tiếp cận Park hoặc Glejser… chỉ cho chúng ta rằng có thể phương sai Ui tỉ lệ với bình
  4. phương của biến giải thích X thì chúng ta có thể biến đổi mô hình gốc theo cách sau: Chia 2 về của mô hình gốc cho Xi (Xi ≠ 0) β1 1 Yi Ui = X + β 2 + X = β 1 X + β 2 + Vi (2) Xi i i i Ui Trong đó vi = X là số hạng nhiễu đã được biến đổi, và rõ ràng rằng E(vi)2 i = σ 2 , thực vậy: 2 σ 2 X i2 U  1 E(vi) = E  i  = 2 E(Ui)2 = 2 = σ2 X  Xi X i2 i  Như vậy tất cả các giả thiết của mô hình hồi quy tuyến tính cổ điển được thoả mãn đối với (2) vậy ta có thể áp dụng phương pháp bình phương nhỏ nhất cho phương trình đã được biến đổi ( 1 Yi e 2 = α 1 + α 2 X 2 + α 3 X 3 + α 4 X 2 + α 5 X 32 + α 6 X 2 X 3 + Vi ). Hồi quy 2 theo X . Xi i Giả thiết 2: Phương sai của sai số tỉ lệ với biến giải thích X E(Ui)2 = σ 2 Xi Nếu sau khi ước lượng hồi quy bằng phương pháp bình phương nhỏ nhất thông thường, chúng ta vẽ đồ thị của phần dư này đối với biến giải thích X và quan sát thấy hiện tượng chỉ ra phương sai của sai số liên hệ tuyến tính với biến giải thích thì mô hình gốc sẽ được biến đổi như sau: Với mỗi i chia cả 2 vế của mô hình gốc cho X i (với Xi >0) β1 1 Yi Ui + β 2 X i + X = β 1 X + β 2 X i + vi = (3) Xi Xi i i Ui Trong đó vi = X và có thế thấy ngay rằng E(vi) = σ 2 i Giả thiết 3: Phương sai của sai số tỉ lệ với bình phương của giả trị kỳ vọng của Y, nghĩa là E( U i2 ) = σ 2 ( E ( Yi ) ) 2 Khi đó thực hiện phép biến đổi biến số như sau: β1 β2 Yi Ui = E (Y ) + E (Y ) X 1 + E (Y ) E (Yi ) i i i 1 1 = β1 E (Y ) + β 2 E (Y ) X i + Vi (4) i i
  5. Ui Trong đó Vi = E (Y ) , Var(Vi) = σ 2 . i Nghĩa là nhiễu Vi có phương sai không đổi. Điều này chỉ ra rằng hồi quy (4) thoả mãn giả thiết phương sai không đổi của mô hình hồi quy tuyến tính cổ điển. Tuy nhiên phép biến đổi (4) vẫn chưa thực hiện được vì bản chất E(Yi) phụ thuộc vào β1 và β 2 trong đó β1 và β 2 lại chưa biết. Lúc này ta làm theo 2 bước sau: • Bước 1: Ước lượng hồi quy ban đầu bằng phương pháp bình ˆ ˆ phương bé nhất thông thường, thu được Yi . Sau đó sử dụng Yi để biến đổi mô hình gốc thành dạng như sau: 1  Xi  Yi = β 1  ˆ  + β 2  ˆ  + Vi (5) Y  Y  ˆ Yi  i  i Ui Trong đó Vi = ˆ Yi ˆ Bước 2: Ước lượng hồi quy (5), dù Yi không chính xác là E(Yi), • chúng chỉ là ước lượng vững nghĩa là khi mẫu tăng lên vô hạn thì chúng hội tụ đến E(Yi). Giả thiết 4: Hạng hàm sai Đôi khi thay cho việc dự đoán về σ i2 người ta định sạng lại mô hình. Chẳng hạn thay cho việc ước lượng hồi quy gốc có thể chúng ta sẽ ước lượng hồi quy: InYi = β1 + β 2 InX i + U i (6) Việc ước lượng hồi quy (6.46) có thể làm giảm phương sai của sai số thay đổi do tác động của phép biến đổi loga. Một trong ưu thế của phép biến đổi loga là hệ số góc β 2 là hệ số co dãn của Y đối với X.
  6. II – Bài tập Bài 1. Bảng số liệu gồm 3 biến  obs Y X Z 1 66.00000 6.000000 7.000000 2 72.00000 7.000000 6.000000 3 78.00000 7.000000 5.000000 4 82.00000 8.000000 5.000000 5 74.00000 8.000000 6.000000 6 90.00000 10.00000 6.000000 7 102.0000 11.00000 5.000000 8 108.0000 12.00000 5.000000 9 112.0000 12.00000 4.000000 10 118.0000 13.00000 4.000000 (Nguồn: Tổng cục thống kê) Yêu cầu: Hãy phát hiện phương sai thay đổi và tìm cách khắc phục Bài 2. Sử dụng số liệu dưới đây  Bảng số liệu gồm 3 biến obs Y X Z 1 500.0000 300.0000 0.000000 2 700.0000 200.0000 1.000000 3 800.0000 400.0000 0.000000 4 1000.000 700.0000 0.000000 5 1000.000 400.0000 1.000000 6 1200.000 500.0000 1.000000 7 1500.000 700.0000 0.000000 8 2000.000 800.0000 1.000000
  7. 9 2500.000 1500.000 0.000000 10 2500.000 1000.000 1.000000 11 3000.000 1500.000 1.000000 12 5000.000 3000.000 0.000000 13 6000.000 3000.000 0.000000 14 8000.000 4000.000 1.000000 15 10000.00 3000.000 1.000000 Bài 3 Bảng số liệu gồm 3 biến obs Y X Z 1 5.170000 1.000000 7.000000 2 4.600000 2.000000 4.000000 3 5.370000 3.000000 0.000000 4 5.640000 3.000000 5.000000 5 4.270000 4.000000 1.000000 6 5.260000 6.000000 0.000000 7 7.140000 7.000000 7.000000 8 8.740000 8.000000 5.000000 9 7.110000 9.000000 0.000000 10 6.530000 9.000000 2.000000 11 6.530000 9.000000 6.000000 12 6.360000 11.00000 1.000000 13 9.730000 12.00000 7.000000 14 6.850000 14.00000 0.000000 15 7.880000 16.00000 1.000000 16 8.170000 16.00000 2.000000 17 11.80000 16.00000 7.000000 18 6.060000 19.00000 0.000000 19 14.69000 20.00000 7.000000 20 9.010000 22.00000 1.000000 21 18.13000 22.00000 2.000000 22 8.850000 24.00000 2.000000 23 7.200000 25.00000 0.000000 24 18.72000 25.00000 5.000000 25 9.800000 25.00000 3.000000 26 13.80000 26.00000 2.000000 27 6.200000 26.00000 0.000000 28 9.120000 28.00000 5.000000
  8. 29 18.54000 29.00000 7.000000 30 22.52000 29.00000 4.000000
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2