Nhằm giúp các em học sinh dễ dàng tiếp cận với nội dung của tài liệu, mời các em cùng tham khảo nội dung tài liệu dưới đây. Ngoài ra, để nâng cao kỹ năng giải bài tập, mời các em cùng tham khảo thêm các dạng Bài tập về đạo hàm và ứng dụng. Hoặc để chuẩn bị tốt và đạt được kết quả cao trong kỳ thi tốt nghiệp THPT Quốc gia sắp tới, các em có thể tham gia khóa học online Luyện thi toàn diện THPT Quốc gia môn Toán năm 2017 trên website HỌC247.
Bài 8 trang 46 SGK Giải tích 12
Cho hàm số
f(x) = x³ – 3mx² + 3(2m – 1) x + 1 (m là tham số)
a) Xác định m để hàm số đồng biến trên tập xác định
b) Với giá trị nào của tham số m, hàm số có một cực đại và một cực tiểu
c) Xác định m để f”(x) > 6x
Hướng dẫn giải bài 8 trang 46 SGK Giải tích 12:
a) Tập xác định D = R
Đạo hàm f'(x) = 3x² – 6mx + 3(2m – 1) ≥ 0, ∀x ∈ R
⇔Δ = 9m² – 9(2m – 1) = 9(m-1)² ≥ 0 ⇔ m = 1
Hàm số đồng biến trên tập xác định nếu m = 1
b) Hàm số bậc ba có một cực đại một cực tiểu khi tam thức bậc hai đạo hàm có hai nghiệm phân biệt, tức là phải có Δ = 9(m – 1)² > 0 ⇔ m # 1
c) f”(x) = 6x – 6m
f” > 6x ⇔ 6x – 6m > 6x ⇔ m < 0
Bài 9 trang 46 SGK Giải tích 12
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ là nghiệm của phương trình f”(x) = 0
c) Biện luận theo tham số m số nghiệm của phương trình x4 – 6x² + 3 = m
Hướng dẫn giải bài 9 trang 46 SGK Giải tích 12:
a) Tập xác định D = R
Bảng biến thiên:
Đồ thị
b) f”(x) = 6x² -6 = 0 ⇔ x = ±1
Phương trình tiếp tuyến với đồ thị tại điểm (-1;1) là:
y = f'(-1)(x +1) – 1 ⇔ y = 4x + 3
Phương trình tiếp tuyến của (C) tại điểm (1;-1) là:
y = f'(1)(x – 1) – 1
⇔ y = -4x + 3
c) Ta có x 4 – 6x² + 3 = m
⇔ 1/2×4 – 3x² + 3/2 = m/2
Từ đồ thị ta suy ra:
Bài 10 trang 46 SGK Giải tích 12
Cho hàm số:
y = -x4 + 2mx² – 2m + 1 (m là tham số) có đồ thị là (Cm)
a) Biện luận theo m số cực trị của hàm số
b) Với giá trị nào của m thì (Cm) cắt trục hoành?
c) Xác định m để (Cm) có cực đại, cực tiểu.
Hướng dẫn giải bài 10 trang 46 SGK Giải tích 12:
a) y’ = -4x³ + 4mx = 4x(-x² + m)
y’ = 0 ⇔ x = 0 hoặc -x² + m = 0
– Nếu m ≤ 0: phương trình y’ = 0 có 1 nghiệm, hàm số có 1 cực trị
– Nếu m > 0 phương trình y’ = 0 có 3 nghiệm hàm số có 3 cực trị
b)
Đồ thị (Cm) cắt trục hoành nếu phương trình
-x4 + 2mx² – 2m + 1 = 0 (1) có nghiệm
Đặt x² = t ≥ 0 thì (1) trở thành:
t² + 2mt – 2m + 1 = 0 (2)
(1) có nghiệm ⇔ (2) có nghiệm không âm. Điều này xảy ra ít nhất trong các trường hợp sau:
Kết hợp i) và ii) ta thấy với mọi m, đồ thị (Cm) luôn cắt trục hoành
c) (Cm) có cực đại, cực tiểu khi đạo hàm y; = 0 có 3 nghiệm. Điều này xảy ra nếu phương trình -x² + m = 0 có 2 nghiệm, tức là khi m > 0
Bài 11 trang 46 SGK Giải tích 12
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số y = (x+3)/(x+1)
b) Chứng minh rằng với mọi giá trị của m, đường thẳng y = 2x + m luôn cắt (C) tại 2 điểm phân biệt M và N
c) Xác định m sao cho độ dài MN nhỏ nhất
d) Tiếp tuyến tại 1 điểm S bất kì của (C) cắt 2 tiệm cận của (C) tại P và Q. CHứng minh rằng S là trung điểm của PQ
Hướng dẫn giải bài 11 trang 46 SGK Giải tích 12:
a) Tập xác định D = R {-1}
=> Đồ thị có tiệm cận đứng x = -1
lim y = 1 => Đồ thị có tiệm cận ngang y = 1
y’ = -2/(x+1)² < 0, ∀x ∈ D
Bảng biến thiên
Đồ thị
b) Phương trình hoành độ giao điểm của đường thẳng y = 2x + m với (x+3)/(x+1) = 2x + m
(C) là: 2x² + (m +1)x + m -3 = 0 và x + 1 ≠ 0 (*)
Biệt thức của (*)
Δ = (m +1)² – 8(m -3)
= m² – 6m + 25
= (m -3)² + 16 > 0, ∀m nên phương trình (*) luôn có 2 nghiệm phân biệt tức là đường thẳng y = 2x + m luôn cắt (C) tại 2 điểm phân biệt
c) Tọa độ các giao điểm M,N của 2 đường cong là:
với Δ = (m -3)² + 16. Độ dài đoạn thẳng MN là:
Từ biểu thức của MN suy ra độ dài MN nhỏ nhất bằng 2√5 khi m = 3
d)
Để xem nội dung chi tiết của tài liệu các em vui lòng đăng nhập website tailieu.vn và download về máy để tham khảo dễ dàng hơn. Bên cạnh đó, các em có thể xem cách giải bài tập của bài tiếp theo:
>> Bài tiếp theo: Hướng dẫn giải bài 12 trang 47 SGK Giải tích 12