intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

HƯỚNG DẪN GIẢI ĐỀ TỰ ÔN SỐ

Chia sẻ: Abcdef_6 Abcdef_6 | Ngày: | Loại File: PDF | Số trang:3

80
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'hướng dẫn giải đề tự ôn số', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: HƯỚNG DẪN GIẢI ĐỀ TỰ ÔN SỐ

  1. ð ki m tra ñ nh kỳ s 01 – khóa LTðH ñ m b o – th y Phan Huy Kh i HDG ð KI M TRA ð NH KỲ S 1 Bài 1 (2ñi m): Tính th tích kh i t di n ABCD, bi t: AB=a và AC = AD = BC = BD = CD = a 3 . Gi i: G i I, J theo th t là trung ñi m c a CD, AB. Do ∆ACD, ∆BCD ñ u. ⇒ AI ⊥ CD, BI ⊥ CD ⇒ CD ⊥ ( ABI ) Suy ra CI là ñư ng cao c a hình chóp C.ABI. 1 a3 Ta có: VABCD = VCABI + VDABI = CD.SABI = SABI . 3 3 AD 3 3a ⇒ AB ⊥ IJ và IJ 2 = AI 2 − AJ 2 = 2a 2 ⇒ IJ = a 2 Vì : AB = BI = = 2 2 a3 6 3 31 ⇒ VABCD = a SABI = a . a.a 2 = 3 32 6 Bài 2 (2 ñi m): Cho hình chop tam giác S.ABC có ñáy là tam giác ñ u c nh 7a, c nh bên SC vuông góc v i m t ph ng (ABC) và SC=7a. Tính kho ng cách gi a hai ñư ng th ng SA và BC? Gi i: *) Cách d ng ño n vuông góc chung:  AM ⊥ BC - G i M, N là trung ñi m c a BC và SB ⇒  ⇒ BC ⊥ ( AMN )  MN ⊥ BC - Chi u SA lên AMN ta ñư c AK (K là hình chi u c a S lên (AMN)) - K MH ⊥ AK ⇒ ðo n vuông góc chung chính là MH. 1 1 1 1 4 ⇒ MH = a 21 *) Ta có: = + = + 2 2 2 (7 a ) 3(7 a ) 2 2 MH MK MA Hocmai.vn – Ngôi trư ng chung c a h c trò Vi t 1
  2. ð ki m tra ñ nh kỳ s 01 – khóa LTðH ñ m b o – th y Phan Huy Kh i Bài 3 (2 ñi m ): Cho hình chóp S.ABCD có ñáy ABCD là hình ch nh t có c nh AB=a, c nh SA ⊥ ( ABCD ) , c nh bên SC h p v i ñáy góc α và h p v i m t bên (SAB) m t góc β. a2 a) CMR: SC 2 = cos 2α − sin 2 β b)Tính th tích hình chóp. Gi i: a) Ta có: SA ⊥ ( ABCD ) ⇒ ∠SCA = α . Mà BC ⊥ ( SAB ) ⇒ ∠BSC = β BC x ð t: BC=x ⇒ SC = (*) = sin β sin β AC 2 = AB 2 + BC 2 ⇒ AC = a 2 + x 2 . a2 + x2 AC Mà SC = (**) = cosα cosα x2 a2 + x2 a 2 sin 2 β x2 a 2 sin 2 β ⇒ x2 = ⇒ SC 2 = T (*) và (**) ⇒ = = sin 2 β cos 2α cos 2α − sin 2 β sin 2 β cos 2α − sin 2 β 3 1 SABCD.SA = 1 AB.BC.SA = 1 a sin α sin2β SA = SC sin α ⇒ V = b) 3 cos 2α − sin β 3 3 Bài 4 (2 ñi m): Cho hình h p ch nh t ABCD.A’B’C’D’ có AB=a, AB h p v i m t ph ng (A’D’CB) m t góc α, ∠BAC ' = β . a3 tan α VABCD. A ' B ' C ' D ' = sin( β + α ) sin( β − α ) CMR : cos α cos β Gi i: T A k AH ⊥ BA ' Mà CB ⊥ ( ABB ' A ') ⇒ CB ⊥ AH ⇒ AH ⊥ ( A ' D ' CB ) Suy ra : BH chính là hình chi u vuông góc c a AB lên (A’D’CB) ⇒ ∠ABH = α Hocmai.vn – Ngôi trư ng chung c a h c trò Vi t 2
  3. ∆ABA ' vuông ⇒ AA ' = AB tan α = a tan α AB ⊥ ( BCC ' B ') ⇒ AB ⊥ BC '. ∆ABC 'vuông ⇒ BC ' = AB tan β ∆BCC 'vuông ⇒ CB = C ' B 2 − CC '2 = a (tan β + tan α )(tan β − tan α ) a sin( β + α ) sin( β − α ) CB = cos α cos β a 3 tan α ⇒ VABCD. A ' B ' C ' D ' = AB.BC.BB ' = sin( β + α ) sin( β − α ) cos α cos β Câu 5 ( 2 ñi m): Trên ñư ng th ng vuông góc t i A v i m t ph ng ch a hình vuông ABCD c nh a ta l y ñi m S v i SA=2a. G i B’,D’ là hình chi u vuông góc c a A lên SB và SD. M t ph ng (AB’D’) c t SC t i C’. Tính th tích hình chóp S.AB’C’D’ Gi i: AB ' ⊥ SB   ⇒ AB ' ⊥ SC . Tương t AD ' ⊥ SC ⇒ SC ⊥ ( AB ' C ' D ') ⇒ SC ⊥ AC ' Ta có: AB ' ⊥ CB  Do tính ñ i x ng ta có: VS . AB ' C ' D ' = 2VS . AB ' C ' . Áp d ng tính ch t t s th tích cho 3 tia: SA,SB,SC, ta có: VS. AB ' C ' = SB ' . SC ' = SB '.SB . SC '.SC = SA . SA = 4a . 4a = 8 2 2 2 2 2 2 2 2 2 2 VS . ABC SB SC SB 5a 6 a 15 SC SB SC 2 3 3 3 3 1a 8a 8a 16a a MàVS . ABC = . .2a = ⇒ VS . AB ' C ' = . = ⇒ VS . AB ' C ' D ' = 32 3 15 3 45 45 ………………….H t………………… Hocmai.vn Ngu n: Hocmai.vn – Ngôi trư ng chung c a h c trò Vi t 3 Page 3 of 3
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
10=>1