intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Lecture Probability & statistics: Chapter 6 - Bùi Dương Hải

Chia sẻ: Minh Hoa | Ngày: | Loại File: PDF | Số trang:19

32
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Lecture "Probability & statistics - Chapter 6: Continuous probability" has contents: Continuous random variable, density function, parameter, uniform distribution, normal distribution, cutoff point. Invite you to consult the content.

Chủ đề:
Lưu

Nội dung Text: Lecture Probability & statistics: Chapter 6 - Bùi Dương Hải

  1. Lecture 6. CONTINUOUS PROBABILITY  Continuous Random Variable  Density Function  Parameter  Uniform Distribution  Normal Distribution  Cutoff point  [1] Chapter 6. pp. 255 - 294 PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 1
  2. 6.1. Continuous Random Variable  Continuous Random Variable: uncountable values  Available value is one interval: = ( , )  Maybe: = −∞; = +∞  Probability that one point: = =0  Consider Probability at one interval: ( < < ) PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 2
  3. 6.2. Density Function  Discrete  Continuous X … X ( , ) Prob. … Density ( )  ∑ =1 ∫ =1 p f(x) PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 3
  4. Density Function  ≥0  ∫ =1  < < =∫  Cutoff point level denoted by : > = f(x) a b PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 4
  5. 6.3. Parameter  Expected Value: = =∫  Variance: =∫ − =∫ −  Standard Deviation = ( )  Cutoff point level , denoted by : > = PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 5
  6. Example Example 6.1. Waiting time (hour), with density function 2 ∈ [0,1]  = 0 ∉ [0,1] (a) Prob. of waiting more than a half of hour? (b) Prob. of waiting from 20 to 40 minutes? (c) The average and variance of waiting time? (d) Cutoff point level 10%? PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 6
  7. Example . f(x)  (a) > 0.5 = ∫ 2 . /  (b) < < = ∫/ 2 . 0.5 f(x)  (c) =∫ .2 . =∫ .2 . − 1/3 2/3 PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 7
  8. 6.4. Uniform Distribution  ~ ( , ) if ∈[ , ]  = 0 ∉[ , ] a c d b  = ; =  < < = Ex. Temperature is Uniform Distribution in the interval of (20, 30)oC. What is the probability that temperature is between 23 and 28 degree? PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 8
  9. 6.5. Normal Distribution  , = 0.5 : = 10; 20; 100  Normality 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0.025 0.025 0.02 0.02 0.015 0.015 0.01 0.01 0.005 0.005 0 0 1 6 111621263136414651566166717681869196 0 20 40 60 80 100 PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 9
  10. Normal Distribution  Density Function: =  Denoted: ~ ( , )  =  =  = 1 σ 2π f(x) μ μ’ PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 10
  11. Normal Distribution  Carl Friedrich Gauss (1777-1855) in 1809 0.6  ~ 3,1 0.5  ~ 6,1 0.4 0.3  ~ (8,0.5 ) 0.2 0.1 0 0 1 2 3 4 5 6 7 8 9 10 PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 11
  12. Standardized Normal Variable 0.5  ~ , 0.4  = 0.3 0.2  ~ (0,1) 0.1 0 -4 -3 -2 -1 0 1 2 3 4  Table 1  < 1 = 0.8413  < 1.25 =  >2 =  −1 < < 1.3 = 0.5 1.5 2.5 3.5 -4 -3 -2 -1 -3.5 -2.5 -1.5 -0.5 0 1 2 3 4 PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 12
  13. Probability formula  ~ , − − − < = < = < Ex. ~ 100,16  < 104 =  > 92 =  94 < < 102 =  Probability that X differ from the mean not more than standard deviation = PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 13
  14. Example Example 6.2. Return ($mil) of project A is normality with mean of 8 and variance of 9. Calculate the probability: (a) Return of A higher than 10 (b) Loss money (c) Return of A between 5 and 12  Return of project B is normality with mean of 10 and variance of 25. A and B are independent. Calculate the probability that: (c) Both gain positive return (d) Total return of A and B greater than 20 PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 14
  15. 3-sigma Rule  − < < + = 68.26%  −2 < < +2 = 95.44%  −3 < < +3 = 99.75% PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 15
  16. Cutoff point  Cutoff point level , or “critical value”  Denoted: > =  > 1.96 = 0.025  . = 1.96  > 1. 64 = 0.0505  . = 1.64  > 1. 65 = 0.0495  . = 1.65  Keys: . = . ; . = . PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 16
  17. 6.6. Binomial vs Normal  Binomial: ~ ( , ) with ≥ 100   approximate: ( , )  With: = ; = (1 − ) Example 6.3. Probability that visitor buy good in the shopping mall is 0.3. In 400 visitors, what is the probability  (a) There are at least 100 buyers  (b) Number of buyers is from 90 to 150 PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 17
  18. 6.7. Cutoff Point  Normal Distribution:  Student Distribution:  df: Degree of freedom  Table 2 (p.976)  . = 1.833; . = 2.086  ≈  Chi-square Distribution:  Table 3 (p.979)  . = 3.94 ; . = 24.996 PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 18
  19. Key Concepts  Continuous variable  Density function  Normal distribution Exercise [1] Chapter 6:  (270) 3, 5  (281) 11, 12, 17, 19, 23, 24, 31  (292) 41, 44, 49 PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai 19
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2