Luận án tiến sĩ Kỹ thuật: Nghiên cứu giảm dao động xoắn của trục máy bằng bộ hấp thụ dao động
lượt xem 7
download
Mục đích của luận án nhằm xây dựng các chương trình tính toán trên phần mềm để đánh giá, so sánh và kiểm chứng sự khác biệt thông qua đáp ứng đầu ra của mô hình mô phỏng trong trường hợp hệ chịu kích động điều hòa, kích động va chạm và kích động ngẫu nhiên với bộ tham số tối ưu.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận án tiến sĩ Kỹ thuật: Nghiên cứu giảm dao động xoắn của trục máy bằng bộ hấp thụ dao động
- BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- VŨ XUÂN TRƯỜNG NGHIÊN CỨU GIẢM DAO ĐỘNG XOẮN CHO TRỤC MÁY BẰNG BỘ HẤP THỤ DAO ĐỘNG LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ & CƠ KỸ THUẬT Hà Nội - 2018
- BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- VŨ XUÂN TRƯỜNG NGHIÊN CỨU GIẢM DAO ĐỘNG XOẮN CHO TRỤC MÁY BẰNG BỘ HẤP THỤ DAO ĐỘNG Chuyên ngành: Cơ kỹ thuật Mã số: 62 52 01 01 LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ & CƠ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. PGS.TS Khổng Doãn Điền 2. TS Nguyễn Duy Chinh Hà Nội - 2018
- i LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi, các số liệu, kết quả nghiên cứu trong luận án là trung thực và chưa từng được ai công bố trong bất kỳ công trình nào khác. Tác giả luận án Vũ Xuân Trường
- ii LỜI CẢM ƠN Tác giả xin chân thành cám ơn PGS.TS Khổng Doãn Điền và TS. Nguyễn Duy Chinh, đã tận tình hướng dẫn, truyền cảm hứng và niềm say mê nghiên cứu khoa học đã giúp đỡ tôi hoàn thành luận án. Tác giả xin chân thành cảm ơn các thầy giáo, cô giáo đã tham gia giảng dạy và đào tạo trong quá trình tác giả học tập tại Học viện Khoa học và Công nghệ. Đặc biệt, tác giả xin chân thành cảm ơn GS.TSKH Nguyễn Đông Anh và TS Lã Đức Việt đã đóng góp nhiều ý kiến có giá trị cao, hiệu quả và động viên tác giả hoàn thành luận án. Đồng thời tác giả cũng xin chân thành cảm ơn Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam, Viện Cơ học, Khoa Cơ học kỹ thuật và Tự động hóa, Trường Đại học Sư phạm Kỹ thuật Hưng Yên, Khoa Cơ khí -Trường Đại học Sư phạm Kỹ thuật Hưng Yên đã tạo mọi điều kiện thuận lợi cho tác giả làm việc trong suốt thời gian học tập tại Học viện. Cuối cùng tác giả ghi nhớ sự hỗ trợ về vật chất và động viên tinh thần của bạn bè, đồng nghiệp và những người thân trong gia đình trong suốt quá trình hoàn thành luận án này. Tác giả luận án Vũ Xuân Trường
- iii DANH MỤC CÁC KÝ HIỆU A Hàm khuếch đại biên độ-tần số AN Hàm khuếch đại biên độ-tần số của bậc tự do thứ N B Ma trận hệ thống C Ma trận cản ca Hệ số cản nhớt của bộ hấp thụ dao động (Ns/m) cs Hệ số cản môi trường của hệ chính (kgm2/s) ctđ Hệ số cản tương đương det Định thức của ma trận DOF Số bậc tự do DVA Bộ hấp thụ động lực DVA-FPM Bộ hấp thụ động lực với thiết kế tối ưu sử dụng phương pháp hai điểm cố định DVA-MQT Bộ hấp thụ động lực với thiết kế tối ưu sử dụng phương pháp cực tiểu mô men bậc hai DVA-MEVR Bộ hấp thụ động lực với thiết kế tối ưu sử dụng phương pháp cực đại độ cản tương đương. DVA-MKE Bộ hấp thụ động lực với thiết kế tối ưu sử dụng phương pháp cực tiểu hóa năng lượng. E Ma trận đơn vị E Phần năng lượng truyền từ hệ chính sang bộ hấp thụ DVA e1 Khoảng cách lắp lò xo bộ hấp thụ so với tâm trục (m) e2 Khoảng cách lắp cản nhớt bộ hấp thụ so với tâm trục (m) FPM Phương pháp hai điểm cố định F Véc tơ lực kích động Hf Véc tơ định vị của kích động ngẫu nhiên Jr Mô men quán tính khối lượng của trục (rotor) (kgm2) Jri Mô men quán tính khối lượng của bậc tự do thứ i (kgm2) Ja Mô men quán tính khối lượng của bộ hấp thụ (kgm2) K Ma trận độ cứng
- iv ks Độ cứng xoắn của trục (Nm/rad) ksi Độ cứng xoắn của bậc tự do thứ i (Nm/rad) ka Độ cứng lò xo của bộ hấp thụ (N/m) L Phiếm hàm năng lượng M Ma trận khối lượng MDOF Hệ nhiều bậc tự do MEVR Phương pháp cực đại độ cản tương đương. MQT Phương pháp cực tiểu mô men bậc hai MKE Phương pháp cực tiểu hóa năng lượng M Mô men kích động (Nm) Meqv Ma trận cản tương đương Mˆ Mô men kích động phức (Nm) mr Khối lượng của trục (kg) ma Khối lượng bộ hấp thụ dao động (kg) N Số bậc tự do của hệ chính n Số bộ lò xo-cản nhớt sử dụng P Ma trận mô men bậc hai Q Ma trận trọng số q Véc tơ tọa độ suy rộng SDOF Hệ chính có một bậc tự do Sf Mật độ phổ của kích động ngẫu nhiên ồn trắng. T Động năng của cơ hệ (kgm2/s2) y0 Véc tơ trạng thái ban đầu. α Tỷ số giữa tần số riêng của DVA và trục αopt Tỷ số tối ưu giữa tần số riêng của DVA và trục β Tỷ số giữa tần số lực và tần số riêng của trục βopt Tỷ số tối ưu giữa tần số lực và tần số riêng của trục γ Tỷ số giữa vị trí lắp lò xo và bán kính quán tính của trục θ Góc xoắn giữa hai đầu trục (rad) θi Góc xoắn của bậc tự do thứ i (rad)
- v θN Góc xoắn của bậc tự do thứ N (rad) ˆ Biên độ phức của dao động xoắn của trục (rad) ˆN Biên độ phức của dao động xoắn của bậc tự do thứ N (rad) ˆ Biên độ thực của dao động xoắn của trục (rad) ˆN Biên độ thực của dao động xoắn của bậc tự do thứ N (rad) η Tỷ số bán kính quán tính của DVA và trục λ Tỷ số giữa vị trí lắp cản nhớt và bán kính quán tính của trục μ Tỷ số khối lượng của DVA và trục ξ Tỷ số cản nhớt ξopt Tỷ số cản nhớt tối ưu ρa Bán kính quán tính đĩa bị động của bộ hấp thụ (m) ρr Bán kính quán tính của trục (m) φa Góc quay tương đối giữa DVA và trục (rad) ˆa Biên độ phức của góc quay tương đối giữa DVA và trục (rad) φr Góc quay của trục (rad) φri Góc quay của bậc tự do thứ i (rad) ˆr Biên độ phức của góc quay của trục (rad) ˆri Biên độ phức của góc quay của bậc tự do thứ i (rad) ω Tần số của kích động (s-1) Ωs Tần số dao động riêng của trục (s-1) Ω0 Tốc độ quay của trục, s-1 ∏ Thế năng của cơ hệ (kgm2/s2) ϕ Hàm hao tán của cơ hệ ϕs Hàm hao tán của cản môi trường tác dụng lên hệ chính ϕa Hàm hao tán của cản nhớt bộ hấp thụ DVA
- 1 MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii DANH MỤC CÁC KÝ HIỆU iii MỤC LỤC 1 DANH MỤC CÁC BẢNG 4 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ 5 MỞ ĐẦU 8 1. Lý do chọn đề tài. 8 2. Mục đích nghiên cứu của luận án. 9 3. Đối tượng và phạm vi nghiên cứu của luận án. 9 4. Phương pháp nghiên cứu. 10 5. Những đóng góp mới của luận án. 10 6. Bố cục của luận án. 11 CHƯƠNG 1. TỔNG QUAN NGHIÊN CỨU GIẢM DAO ĐỘNG XOẮN VÀ CÁC PHƯƠNG PHÁP XÁC ĐỊNH THAM SỐ TỐI ƯU 12 1.1. Tổng quan về các nghiên cứu giảm dao động xoắn. 12 1.2. Tổng quan về bộ hấp thụ dao động DVA và các phương pháp tính toán giảm dao động. 18 1.2.1 Giới thiệu chung. 19 1.2.2 Nguyên lý cơ bản của bộ hấp thụ dao động thụ động. 20 1.2.3. Tính bộ hấp thụ dao động thụ động cho hệ chính không có cản nhớt. 23 1.2.4. Tính bộ hấp thụ dao động thụ động cho hệ chính có cản nhớt. 40 1.2.5.Tính toán tham số tối ưu trong trường hợp hệ chính có nhiều bậc tự do 42 1.2.6. Một số tiêu chuẩn để xác định bộ hấp thụ dao động thụ động. 45 1.3. Kết luận chương 1. 46
- 2 CHƯƠNG 2 . PHƯƠNG TRÌNH VI PHÂN DAO ĐỘNG XOẮN CỦA TRỤC MÁY CÓ LẮP ĐẶT HỆ THỐNG GIẢM DAO ĐỘNG DVA 47 2.1. Phân tích mô hình tính toán dao động xoắn của trục máy có gắn bộ hấp thụ dao động được nghiên cứu trong luận án. 47 2.2. Thiết lập phương trình vi phân dao động. 49 2.3. Mô phỏng số dao động xoắn của trục máy có lắp bộ hấp thụ DVA. 55 2.4. Kết luận chương 2 58 CHƯƠNG 3. NGHIÊN CỨU, PHÂN TÍCH, TÍNH TOÁN VÀ XÁC ĐỊNH CÁC THAM SỐ TỐI ƯU CỦA BỘ HẤP THỤ DAO ĐỘNG DVA 59 3.1. Xác định tham số tối ưu trong trường hợp trục máy chịu kích động điều hòa 60 3.2. Xác định tham số tối ưu trong trường hợp trục máy chịu kích động ngẫu nhiên 71 3.3. Xác định tham số tối ưu trong trường hợp trục máy chịu kích động va chạm 75 3.4. Các bước thiết kế bộ hấp thụ dao động DVA giảm dao động xoắn cho trục. 79 3.5. Kết luận chương 3 80 CHƯƠNG 4. TÍNH TOÁN, MÔ PHỎNG SỐ HIỆU QUẢ GIẢM DAO ĐỘNG VÀ PHÁT TRIỂN CHO HỆ CHÍNH NHIỀU BẬC TỰ DO 81 4.1. Tính toán, mô phỏng số hiệu quả giảm dao động xoắn cho trục máy 82 4.1.1. Mô phỏng số trường hợp hệ chịu tác dụng của kích động điều hòa. 83 4.1.2. Mô phỏng số trường hợp trục máy chịu tác dụng của kích động va chạm. 90 4.1.3. Mô phỏng số trường hợp hệ chịu tác dụng của kích động ngẫu nhiên 94 4.2. Phát triển kết quả nghiên cứu cho trường hợp hệ chính nhiều bậc tự do 99 4.2.1. Mô hình nghiên cứu và phương trình vi phân dao động xoắn của trục máy nhiều bậc tự do 99
- 3 4.2.2. Nghiên cứu xác định tham số tối ưu của bộ hấp thụ dao động giảm dao động xoắn cho trục máy nhiều bậc tự do 102 4.2.3. Tính toán mô phỏng số các kết quả nghiên cứu cho hệ chính nhiều bậc tự do 116 4.3. Kết luận chương 4. 126 KẾT LUẬN VÀ KIẾN NGHỊ 128 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ 132 TÀI LIỆU THAM KHẢO 133
- 4 DANH MỤC CÁC BẢNG Bảng 1.1. Các thông số tối ưu của bộ hấp thụ dao động cho cơ hệ một bậc tự do không có cản ............................................................................................................................. 28 Bảng 1.2. Một số bộ thông số tối ưu của bộ hấp thụ dao động thụ động cho hệ một bậc tự do không cản chịu kích động ồn trắng. ..................................................................... 28 Bảng 1.3. Bảng số liệu đầu vào cho phép hồi quy toán học. ........................................ 43 Bảng 4.1. Tham số tối ưu của bộ hấp thụ DVA theo các phương pháp khác nhau ...... 81 Bảng 4.2. Dữ liệu số của các tham số tối ưu ................................................................. 83 Bảng 4.3. Tần số cộng hưởng của hệ ............................................................................ 87 Bảng 4.4. Hiệu quả giảm dao động của các thiết kế DVA khi hệ chính chịu kích động tuần hoàn với tần số cộng hưởng. .................................................................................. 89 Bảng 4.5. Hiệu quả giảm dao động của các thiết kế DVA khi hệ chính chịu kích động va chạm .......................................................................................................................... 93 Bảng 4.6. Hiệu quả giảm dao động của các thiết kế DVA khi hệ chính chịu kích động ngẫu nhiên...................................................................................................................... 98 Bảng 4.7. Tham số tối ưu α theo số bậc tự do của hệ chính .......................................113 Bảng 4.8. Tham số tối ưu ξ theo số bậc tự do của hệ chính........................................116 Bảng 4.9. Giá trị hàm khuếch đại A tại các tần số cộng hưởng của hệ khi thay đổi tỷ số cản nhớt . ...................................................................................................................117 Bảng 4.10. Các thông số mô phỏng cho trường hợp hệ chính nhiều bậc tự do. .........118 Bảng 4.11. Giá trị của các đại lượng không thứ nguyên.............................................118 Bảng 4.12. Giá trị các tham số tối ưu α và ξ theo số bậc tự do của hệ chính. ............118
- 5 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1. Mô hình bộ hấp thụ dao động xoắn CPVAs. ................................................. 12 Hình 1.2. Mô hình bộ hấp thụ dao động CDR. ............................................................. 14 Hình 1.3. Mô hình bộ hấp thụ dao động. ....................................................................... 16 Hình 1.4. Mô hình bộ hấp thụ dao động dạng con lắc ly tâm. ...................................... 17 Hình 1.5. Mô hình bộ hấp thụ dao động dạng con rãnh trượt tròn. ............................... 18 Hình 1.6. Bộ hấp thụ dao động và hệ chính. ................................................................. 19 Hình 1.7. Sơ đồ của hệ chính tương đương. .................................................................. 22 Hình 1.8. Mô hình hệ chính không cản có lắp bộ TMD................................................ 23 Hình 1.9. Hệ số A theo biến β với μ=0.05, α=1.0. ........................................................ 24 Hình 1.10. Sự xấp xỉ hệ chính [20]. .............................................................................. 41 Hình 2.1. Mô hình trục máy có lắp bộ hấp thụ dao động DVA. ................................... 48 Hình 2.2. Mô hình bộ hấp thụ dao động DVA. ............................................................. 49 Hình 2.3. Dao động xoắn của trục khi hệ chịu kích động điều hòa .............................. 56 Hình 2.4. Dao động xoắn của trục khi hệ chịu kích va chạm ........................................ 56 Hình 2.5. Dao động xoắn của trục khi hệ chịu kích động ngẫu nhiên .......................... 57 Hình 3.1. Đồ thị hàm khuếch đại biên độ - tần số với α=0.9, μ=0.04, η=1, γ=0.5, λ=0.8 và n=4. ........................................................................................................................... 67 Hình 4.1. Dao động xoắn của trục trong giai đoạn chuyển tiếp ban đầu với tần số ω = 62.8 s-1 của kích động .................................................................................................... 84 Hình 4.2. Dao động xoắn của trục trong giai đoạn bình ổn với tần số kích động ω = 62.8 s-1 của kích động ............................................................................................. 85 Hình 4.3. Đồ thị mô tả năng lượng E với tần số ω = 62.8 s-1 của kích động ................ 86 Hình 4.4. Đáp ứng của hệ khi lắp và không lắp DVA-FPM ......................................... 88 Hình 4.5. Đồ thị mô tả năng lượng E với DVA-FPM, hệ chính không cản. ................. 88
- 6 Hình 4.6. Đồ thị mô tả năng lượng E với DVA-FPM, hệ chính có cản, cs=22.5 kgm2/s ....................................................................................................................................... 89 Hình 4.7. Đáp ứng giảm dao động của DVA-MKE khi hệ chính không cản chịu kích động va chạm ................................................................................................................. 91 Hình 4.8. Năng lượng E khi lắp DVA-MKE với hệ chính không cản chịu kích động va chạm............................................................................................................................... 91 Hình 4.9. Đáp ứng giảm dao động của DVA-MKE khi hệ chính có cản chịu kích động va chạm .......................................................................................................................... 92 Hình 4.10. Năng lượng E khi lắp DVA-MKE với hệ chính có cản chịu kích động va chạm............................................................................................................................... 93 Hình 4.11. Đáp ứng giảm dao động của DVA-MQT khi hệ chính không cản chịu kích động ngẫu nhiên............................................................................................................. 94 Hình 4.12. Đáp ứng giảm dao động của DVA-MQT khi hệ chính có cản chịu kích động ngẫu nhiên............................................................................................................. 95 Hình 4.13. Đáp ứng giảm dao động của DVA-MEVR khi hệ chính không cản chịu kích động ngẫu nhiên..................................................................................................... 96 Hình 4.14. Đáp ứng giảm dao động của DVA-MEVR khi hệ chính có cản chịu kích động ngẫu nhiên............................................................................................................. 97 Hình 4.15. Năng lượng E với DVA-MQT khi hệ chính không cản chịu kích động ngẫu nhiên .............................................................................................................................. 97 Hình 4.16. Năng lượng E với DVA-MEVR khi hệ chính không cản chịu kích động ngẫu nhiên...................................................................................................................... 98 Hình 4.17. Mô hình trục máy nhiều bậc tự do lắp bộ hấp thụ dao động DVA ............. 99 Hình 4.18. Sự thay đổi của đường cong khuếch đại biên độ khi thay đổi tỷ số cản với N = 2, = 0.02, = 1, = 0.5, = 0.8, n = 6 và = 0.2 ...............................................111 Hình 4.19. Sự thay đổi của đường cong khuếch đại biên độ khi thay đổi tỷ số cản với N = 3, = 0.02, = 1, = 0.5, = 0.8, n = 6 và = 0.2 ............................................111
- 7 Hình 4.20. Hàm khuếch đại biên độ-tần số với các giá trị khác nhau của tỷ số cản nhớt với N=2, µ = 0.02, η = 1, γ = 0.5, λ= 0.8, n = 6 and α = αopt = 0.708 ...........117 Hình 4.21. Dao động xoắn của hệ chính 2 bậc tự do tại tần số = 0.04....................119 Hình 4.22. Dao động xoắn của hệ chính 3 bậc tự do tại tần số = 0.04....................120 Hình 4.23. Hàm khuếch đại biên độ với = opt và = 0 với trường hợp hệ chính có 2 bậc tự do ......................................................................................................................120 Hình 4.24. Dao động xoắn của hệ chính 2 bậc tự do tại tần số = 0.88....................121 Hình 4.25. Dao động xoắn của hệ chính 2 bậc tự do tại tần số = 0.46....................122 Hình 4.26. Dao động xoắn của hệ chính 2 bậc tự do tại tần số = 1.58....................123 Hình 4.27. Hàm khuếch đại biên độ với = opt và = 0 hệ chính có 3 bậc tự do ....124 Hình 4.28. Dao động xoắn của hệ chính 3 bậc tự do tại tần số = 0.36....................124 Hình 4.29. Dao động xoắn của hệ chính 3 bậc tự do tại tần số = 0.77....................125
- 8 MỞ ĐẦU 1. Lý do chọn đề tài. Cùng với quá trình phát triển của lịch sử loài người, công nghệ cũng từng bước phát triển đột phá. Một trong những giai đoạn quan trọng nhất mở ra những khởi đầu sớm của kỷ nguyên hiện đại là cuộc cách mạng công nghiệp. Trong thời gian này, ngành công nghiệp máy móc đã được sinh ra, đóng một vai trò quan trọng trong hoạt động hỗ trợ sản xuất. Máy móc cho phép sản xuất hàng loạt các mặt hàng khác nhau, không chỉ đạt hiệu quả về tốc độ mà còn đạt hiệu quả cao vượt lên trên năng lực của con người. Ngoài ra, máy móc hoạt động tốt hơn trong những công việc dài hạn và đạt độ thống nhất cao. Chất lượng công việc của con người có thể thay đổi khi bị ảnh hưởng bởi các yếu tố cảm xúc, sức khỏe,… Bên cạnh đó, máy móc giúp thực hiện các công việc nguy hiểm khác nhau thay cho con người. Máy được sử dụng rộng rãi trong các lĩnh vực khác nhau như: sản xuất, xây dựng, nông nghiệp, công nghiệp, khai thác mỏ,… Ngày nay, nhiều máy thậm chí còn được thiết kế để hoạt động mà không có con người. Với sự giúp đỡ của máy móc, thế giới đang hiện đại hóa và ngày càng phát triển, đặc biệt trong bối cảnh cuộc cách mạng công nghiệp 4.0 đang dần phát triển mạnh trên toàn thế giới, tác động đến nền kinh tế của toàn cầu. Việc nghiên cứu chế tạo và nâng cao tuổi thọ, khả năng làm việc của máy móc thiết bị, góp phần quan trọng trong công cuộc cách mạng công nghiệp. Trục là một trong những chi tiết máy quan trọng của máy, nó có tác dụng truyền mô men xoắn và chuyển động quay từ bộ phận này sang bộ phận khác của máy thông qua các chi tiết máy khác lắp trên trục chẳng hạn như bánh răng, bánh đai, then, khớp nối trục… Chuyển động đặc trưng của trục là chuyển động quay. Trong quá trình làm việc trục chịu tác động của mô men xoắn do động cơ hoặc hệ thống lắp với trục truyền vào [21], [22], [25], [26], [28], [35], bản thân trục nói riêng và các chi tiết máy khác nói chung được tạo thành từ những vật liệu đàn hồi, nên dưới tác động của mô men xoắn, trục sẽ chịu biến dạng xoắn. Biến dạng này thay đổi theo thời gian và lặp đi lặp lại theo mỗi chu kỳ quay của trục gọi là dao động xoắn của trục. Dao động này đặc biệt có hại, không mong muốn, nó gây ra phá hủy mỏi, ảnh hưởng đến tuổi thọ và khả năng làm việc của trục và máy [21], [22], [25], [26], [28], [35]. Cụ thể nó gây ra rung động, tiếng
- 9 ồn cho máy, và phá hủy mỏi cho trục; vì không những chỉ ảnh hưởng đến chính bản thân trục mà còn gây hại cho những tiết máy quan trọng khác lắp trên trục, từ đó gây hại cho máy. Việc nghiên cứu giảm dao động cho trục là một việc làm có ý nghĩa quan trọng và mang tính thời sự [21], [22], [25], [26], [28], [35]. Với mong muốn được kế thừa và phát triển những kết quả nghiên cứu trước đây và các kết quả nghiên cứu có thể được áp dụng vào trong thực tế để nâng cao tuổi thọ, khả năng làm việc, độ chính xác của trục nói chung và máy nói riêng. Nên tác giả chọn đề tài: “Nghiên cứu giảm dao động xoắn của trục máy bằng bộ hấp thụ dao động” để nghiên cứu trong luận án của mình. 2. Mục đích nghiên cứu của luận án. Như đã phân tích ở trên, dao động xoắn đặc biệt có hại với độ bền, tuổi thọ và khả năng làm việc của trục nói chung và máy nói riêng. Trong quá trình làm việc nó gây ra rung động và tiếng ồn, không những ảnh hưởng đến tuổi thọ và khả năng làm việc của trục, máy móc mà còn trực tiếp ảnh hưởng đến chất lượng của chi tiết gia công trên máy. Đặc biệt, chưa có nghiên cứu nào sử dụng phương pháp giải tích tính toán tối ưu thông số của bộ hấp thụ dao động cho mô hình hệ chính dao động xoắn. Bởi vậy, mục đích của luận án là nghiên cứu giảm dao động xoắn cho trục máy bằng bộ hấp thụ dao động DVA (dynamic vibration absorber) dạng đĩa khối lượng – lò xo – cản nhớt. 3. Đối tượng và phạm vi nghiên cứu của luận án. Đối tượng nghiên cứu Đối tượng nghiên cứu của luận án là các tham số tối ưu của bộ hấp thụ dao động thụ động DVA giảm dao động cho xoắn cho trục máy khi chịu tác dụng của các loại kích động khác nhau: kích động điều hòa, kích động va chạm, kích động ngẫu nhiên. Phạm vi nghiên cứu Trong phạm vi nghiên cứu của luận án này, tác giả tìm các thông số tối ưu của bộ hấp thụ dao động DVA để giảm dao động xoắn cho trục máy có 1 bậc tự do cho trường hợp hệ chính không cản và phát triển phương pháp điểm cố định cho bậc tự do thứ N của mô hình trục máy có nhiều bậc tự do.
- 10 Luận án chỉ tập trung nghiên cứu giảm dao động xoắn của trục máy, không xét đến các dao động khác, chẳng hạn dao động dọc trục, dao động uốn, … Việc tính toán khi kể đến các dao động này được tác giả đề cập trong phần hướng nghiên cứu tiếp theo của Luận án. 4. Phương pháp nghiên cứu. Trên cơ sở các trục máy trong thực tế, tác giả chuyển về mô hình lý thuyết có lắp bộ hấp thụ dao động DVA. Từ mô hình tính toán của trục máy có lắp bộ DVA, tác giả sử dụng phương trình Lagrange loại II để thiết lập phương trình vi phân dao động của hệ. Từ hệ phương trình vi phân dao động thu được, tác giả tiến hành nghiên cứu, phân tích tính toán để giảm dao động xoắn cho trục máy, tìm nghiệm giải tích của hệ bằng các phương pháp: Phương pháp hai điểm cố định, phương pháp cực tiểu mô men bậc hai, phương pháp cực đại độ cản tương đương và phương pháp cực tiểu hóa năng lượng. Để thực hiện các tính toán và đánh giá hiệu quả giảm dao động của kết quả nghiên cứu của luận án tác giả xây dựng các chương trình máy tính trên phần mềm Maple để mô phỏng dao động của hệ để người đọc có cái nhìn trực quan về hiệu quả của bộ hấp thụ dao động. Đây là phần mềm được các nhà khoa học trên thế giới chuyên dùng và cho kết quả tin cậy. 5. Những đóng góp mới của luận án. - Tính toán tìm được các thông số tối ưu của bộ hấp thụ dao động DVA giảm dao động xoắn cho trục máy có một bậc tự do theo các phương pháp khác nhau. Tham số tối ưu được biểu diễn dưới dạng giải tích tường minh. - Xây dựng các chương trình tính toán trên phần mềm để đánh giá, so sánh và kiểm chứng sự khác biệt thông qua đáp ứng đầu ra của mô hình mô phỏng trong trường hợp hệ chịu kích động điều hòa, kích động va chạm và kích động ngẫu nhiên với bộ tham số tối ưu. - Đã phát triển các kết quả nghiên cứu cho trường hợp hệ chính có nhiều bậc tự do. Đưa ra các biểu thức giải tích của tham số trong trường hợp tối ưu cho hệ có 1, 2 và 3 bậc tự do.
- 11 6. Bố cục của luận án. Luận án gồm phần mở đầu, bốn chương và phần kết luận, hướng nghiên cứu tiếp theo với 139 trang, 12 bảng và 45 hình vẽ và đồ thị. Chương 1 trình bày tổng quan về nghiên cứu giảm dao động xoắn và các phương pháp tính toán xác định tham số tối ưu của bộ hấp thụ dao động. Chương 2 thiết lập mô hình tính toán và xác định hệ phương trình vi chuyển động mô tả dao động của cơ hê. Chương 3 giải quyết bài toán tính toán giảm dao động xoắn cho trục máy và xác định tham số tối ưu của bộ hấp thụ động lực DVA theo các phương pháp khác nhau. Chương 4 phân tích, đánh giá hiệu quả giảm dao động theo các kết quả tối ưu được xác định tại chương 3, mô phỏng số các kết quả nghiên cứu giảm dao động xoắn cho trục máy. Phát triển các kết quả nghiên cứu cho trường hợp trục máy có nhiều bậc tự do. Các kết quả chính, những đóng góp mới và hướng nghiên cứu tiếp theo của luận án được tóm tắt trong phần kết luận. Danh sách công trình đã được công bố thuộc luận án bao gồm 06 bài báo, trong đó: Bài báo số 1 được công bố trên tạp chí Journal of Multibody Dynamics (thuộc danh mục ISI, Impact Factor 1.242). Bài báo số 2 được công bố trên Tạp chí Khoa học Công nghệ, các Trường Đại học Kỹ thuật, ISSN 2354-1083. Bài báo số 3 được công bố trên Tạp chí Kết cấu và Công nghệ xây dựng, Hội Kết cấu và Công nghệ Xây dựng Việt Nam, ISSN 1859-3194. Bài báo số 4 được công bố tại Tuyển tập Công trình khoa học Hội nghị Cơ kỹ thuật và Tự động hóa lần 2 tổ chức tại Trường Đại học Bách khoa Hà Nội ngày 7,8/10/2016, ISBN 978-604-95-0221-7. Bài báo số 5 công bố trên Tạp chí Khoa học Công nghệ, Trường ĐH Sư phạm Kỹ thuật Hưng Yên, ISSN 2354-0575. Bài báo số 6 được công bố trên Kỷ yếu Hội nghị Quốc tế RCMME 2014, ISBN 978-604-911-942-2.
- 12 CHƯƠNG 1. TỔNG QUAN NGHIÊN CỨU GIẢM DAO ĐỘNG XOẮN VÀ CÁC PHƯƠNG PHÁP XÁC ĐỊNH THAM SỐ TỐI ƯU 1.1. Tổng quan về các nghiên cứu giảm dao động xoắn. Dao động xoắn của hệ thống quay chủ yếu là do việc truyền tải mô men không đều (mô men thay đổi theo thời gian) giữa các bộ phận quay của máy. Sự dao động xoắn quá mức trong hệ thống cơ học dẫn đến tiếng ồn hoặc phá hủy mỏi. Do đó, chúng cần được ngăn chặn hoặc kiểm soát ngay lập tức để đảm bảo độ tin cậy của hệ thống. Kiểm soát dao động thụ động đã được áp dụng thường xuyên do sự đơn giản của nó trong một miền rộng của mô men xoắn và hiệu quả là chấp nhận được. Trong số các kỹ thuật kiểm soát thụ động, bộ hấp thụ dao động dạng con lắc ly tâm CPVA (centrifugal pendulum vibration absorber) là một trong những phương pháp được sử dụng rộng rãi nhất, có thể tìm thấy trong các máy móc hạng nặng khác nhau, ví dụ máy bay trực thăng và động cơ đốt trong. Các nghiên cứu này đề cập đến việc tối ưu hóa thiết kế của biên dạng rãnh trượt của CPVA để giảm thiểu dao động xoắn trong một hệ thống trục. Hình 1.1. Mô hình bộ hấp thụ dao động xoắn CPVAs. Bộ hấp thụ dao động xoắn CPVA bao gồm khối lượng gắn trên một rotor theo cách để chúng có thể tự do di chuyển theo các đường dẫn quy định liên quan đến các hệ thống quay. Chuyển động của các khối lượng được sử dụng để chống lại các mô men xoắn do đó giảm được dao động xoắn cho các tiết máy quay [54], [65]. Một trong những
- 13 thiết kế đầu tiên của về CPVA được giới thiệu và công bố bởi Kutzbach, ở đó cấu tạo của CPVA gồm những khối lượng chuyển động trong các rãnh chữ U chứa đầy chất lỏng (Hình 1.1). Năm 1929, Carter phát triển một dạng CPVA dùng cho động cơ diesel [25]. Sau đó, CPVA với thiết kế khác nhau đã được giới thiệu để sử dụng cho một phạm vi rộng hơn của các điều kiện hoạt động của hệ thống. Taylor [57] đã đề xuất CPVA để sử dụng trong động cơ máy bay với điều kiện tốc độ thay đổi. Trong nghiên cứu này, trọng lượng của khối lượng ly tâm được thiết kế sao cho lực phục hồi thay đổi theo tốc độ. Sarazin [53] giới thiệu CPVA, bao gồm một con lắc thiết kế nhỏ gọn với các con lăn áp dụng cho động cơ máy bay. Cho đến đầu năm 1980, phần lớn các thiết kế của CPVAs đã sử dụng các biên dạng tròn [21], [34]. Sau đó, các dạng đường dẫn không tròn khác nhau đã được xem xét cho thiết kế CPVA, chẳng hạn như đường xiclôít [40], epi- xiclôít [26], [38] và các đường đẳng thời (tautochronic curve) [28], [41]. Mayet và Ulbrich [41] trình bày thiết kế theo các đường đẳng thời cho bộ hấp thụ đơn để có được các phương trình trung bình của chuyển động cho trạng thái ổn định. Họ cũng thu được các phương trình tuyến tính và phi tuyến tính và tối ưu cho các CPVA có dạng đường dẫn đẳng thời bằng cách sử dụng công thức Hamilton trung bình [42]. Bên cạnh các nghiên cứu lý thuyết, các nghiên cứu thực nghiệm về CPVA cũng đã được thực hiện. Shaw và cộng sự [34], [48], [54] đã thí nghiệm hiệu quả của các đặc tính mô men dao động đối với trạng thái ổn định của một hệ thống trục-CPVA thông qua các thí nghiệm. Các nghiên cứu tính toán này chỉ ra rằng các khối lượng chuyển động trong các rãnh trượt tròn có tâm trùng với tâm của trục là tốt nhất, đặc biệt số bộ CPVA sử dụng là số chẵn thì hiệu quả giảm dao động xoắn sẽ là tốt nhất (hình 1.1). Mayet và các cộng sự [43], [44] tiến hành thí nghiệm thử nghiệm trạng thái ổn định và đáp ứng tức thời của tốc độ góc của hệ thống quay với CPVA. Ngày nay, các nghiên cứu về CPVA đang gia tăng sự quan tâm do sự gia tăng liên tục nhu cầu về hiệu suất nhiên liệu cao hơn, lượng phát thải thấp hơn, và hoạt động
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt Luận án Tiến sĩ Kỹ thuật: Tích hợp GIS và kỹ thuật tối ưu hóa đa mục tiêu mở để hỗ trợ quy hoạch sử dụng đất nông nghiệp
30 p | 178 | 27
-
Tóm tắt Luận án Tiến sĩ Kỹ thuật: Nghiên cứu lựa chọn một số thông số hợp lý của giá khung thủy lực di động dùng trong khai thác than hầm lò có góc dốc đến 25 độ vùng Quảng Ninh
27 p | 202 | 24
-
Luận án Tiến sĩ Kỹ thuật: Thuật toán ước lượng các tham số của tín hiệu trong hệ thống thông tin vô tuyến
125 p | 126 | 11
-
Tóm tắt Luận án Tiến sĩ Kỹ thuật: Nghiên cứu tác động của quá trình đô thị hóa đến cơ cấu sử dụng đất nông nghiệp khu vực Đông Anh - Hà Nội
27 p | 143 | 10
-
Tóm tắt Luận án Tiến sĩ Kỹ thuật: Nghiên cứu định lượng kháng sinh Erythromycin trong tôm, cá bằng kỹ thuật sóng vuông quét nhanh trên cực giọt chậm và khả năng đào thải
27 p | 158 | 8
-
Tóm tắt luận án Tiến sĩ Kỹ thuật: Nghiên cứu trạng thái ứng suất giới hạn trong nền đất tự nhiên dưới tác dụng của tải trọng nền đường đắp và bệ phản áp
27 p | 134 | 7
-
Tóm tắt luận án Tiến sĩ Kỹ thuật: Nghiên cứu ứng dụng công nghệ trắc địa hiện đại trong xây dựng và khai thác đường ô tô ở Việt Nam
24 p | 167 | 7
-
Luận án Tiến sĩ Kỹ thuật xây dựng công trình giao thông: Nghiên cứu ứng xử cơ học của vật liệu và kết cấu áo đường mềm dưới tác dụng của tải trọng động trong điều kiện Việt Nam
162 p | 16 | 6
-
Luận án Tiến sĩ Kỹ thuật năng lượng: Nghiên cứu mô hình dự báo ngắn hạn công suất phát của nhà máy điện mặt trời sử dụng mạng nơ ron hồi quy
120 p | 14 | 6
-
Luận án Tiến sĩ Kỹ thuật ô tô: Nghiên cứu chế độ cháy do nén hỗn hợp đồng nhất (HCCI) sử dụng nhiên liệu n-heptan/ethanol/diesel
178 p | 14 | 6
-
Luận án Tiến sĩ Kỹ thuật điều khiển và tự động hóa: Nghiên cứu giải pháp nâng cao an toàn thông tin trong các hệ thống điều khiển công nghiệp
145 p | 12 | 5
-
Luận án Tiến sĩ Kỹ thuật: Nghiên cứu tối ưu hóa một số thông số công nghệ và bôi trơn tối thiểu khi phay mặt phẳng hợp kim Ti-6Al-4V
228 p | 9 | 4
-
Luận án Tiến sĩ Kỹ thuật ô tô: Nghiên cứu áp dụng công nghệ dầu từ trường trong hệ thống phanh bổ trợ ô tô
202 p | 13 | 3
-
Luận án Tiến sĩ Kỹ thuật điều khiển và tự động hóa: Nghiên cứu thiết kế hệ điều khiển ổ từ dọc trục có xét ảnh hưởng dòng xoáy
161 p | 10 | 2
-
Luận án Tiến sĩ Kỹ thuật hóa học: Nghiên cứu tổng hợp một số hợp chất furan và axit levulinic từ phế liệu gỗ keo tai tượng
119 p | 9 | 2
-
Luận án Tiến sĩ Kỹ thuật điện tử: Nghiên cứu hệ thống thông tin quang sử dụng điều chế đa mức dựa trên hỗn loạn
141 p | 6 | 2
-
Luận án Tiến sĩ Kỹ thuật ô tô: Nghiên cứu điều khiển hệ thống động lực nhằm cải thiện hiệu quả sử dụng năng lượng cho ô tô điện
150 p | 7 | 1
-
Luận án Tiến sĩ Kỹ thuật: Nghiên cứu ứng dụng lý thuyết độ tin cậy phân tích ổn định hệ vỏ hầm thủy điện và môi trường đất đá xung quanh
157 p | 8 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn