intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Vật lý: Áp dụng EGSnrc trong việc tính phân bố liều quanh nguồn phóng xạ dùng trong xạ trị áp sát

Chia sẻ: Lavie Lavie | Ngày: | Loại File: PDF | Số trang:70

106
lượt xem
11
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Luận văn Thạc sĩ Vật lý: Áp dụng EGSnrc trong việc tính phân bố liều quanh nguồn phóng xạ dùng trong xạ trị áp sát được thực hiện nhằm tìm hiểu và áp dụng EGSnrc trong việc tính phân bố liều của một số nguồn được sử dụng trong xạ trị áp sát. Với các bạn chuyên ngành Vật lý thì đây là tài liệu hữu ích.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Vật lý: Áp dụng EGSnrc trong việc tính phân bố liều quanh nguồn phóng xạ dùng trong xạ trị áp sát

  1. THƯ BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH VIỆN TRẦN SỸ HUY ÁP DỤNG EGSnrc TRONG VIỆC TÍNH PHÂN BỐ LIỀU QUANH NGUỒN PHÓNG XẠ DÙNG TRONG XẠ TRỊ ÁP SÁT Chuyên ngành: VẬT LÝ NGUYÊN TỬ, HẠT NHÂN VÀ NĂNG LƯỢNG CAO Mã số: 60 44 05 LUẬN VĂN THẠC SĨ VẬT LÝ NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. NGUYỄN ĐÔNG SƠN Thành phố Hồ Chí Minh - 2010
  2. DANH MỤC CÁC KÝ HIỆU VÀ CÁC CHỮ VIẾT TẮT Các ký hiệu K a (d ref ) a : Suất kerma không khí đo trong không khí ở khoảng cách 1m tính từ nguồn. Sk (air kerma strength): cường độ kerma không khí để đặc trưng cho độ mạnh của nguồn. ΓX: hằng số suất liều chiếu của nguồn không bị lọc D : suất liều hấp thụ K (d ) : suất kerma không khí X (d ref ) : Suất liều chiếu f med : hệ số chuyển đổi.    x : hằng số suất liều đối với đồng vị của nguồn. an : hằng số dị hướng Λ: hằng số suất liều μ: hệ số suy giảm tuyến tính A (activity): Hoạt độ Aapp (apparent activity): Hoạt độ biểu kiến D: Liều hấp thụ F(r,θ): hàm dị hướng g(r): hàm liều xuyên tâm G(r,θ): hệ số hình học T(r) : hệ số hấp thụ mô
  3. Các chữ viết tắt CT: Computed Tomography EGS: Electron Gamma Shower HDR: High dose rate HVL: Half Value Layer IAEA: International Atomic Energy Agency ICRU: International Commission on Radiation Units and Measurement LDR: Low dose rate MCNP: Monte Carlo Neutron-Photon MRI: Magnetic resonance imaging SD: Standard deviation TG-AAPM: Task Group- The American Association of Physicists in Medicine WHO: World Health Organization XTAS: Xạ trị áp sát
  4. MỞ ĐẦU Xạ trị là kỹ thuật áp dụng bức xạ ion hóa trong điều trị bệnh ung thư. Cùng với phẫu thuật và hóa trị, xạ trị là một phương pháp điều trị ung thư quan trọng và hiệu quả. Với sự phát triển của khoa học kỹ thuật cùng với sự đầu tư những trang thiết bị hiện đại, ngành xạ trị với những ưu điểm riêng của mình càng được áp dụng rộng rãi trong việc điều trị bệnh ung thư. Xạ trị áp sát là kỹ thuật điều trị dùng nguồn đồng vị phóng xạ áp sát vị trí cần điều trị. Hiệu quả điều trị phụ thuộc vào việc tính toán chính xác phân bố liều trong cơ thể bệnh nhân. Kết quả tính toán phân bố liều phụ thuộc một phần quan trọng vào việc đánh giá chính xác độ mạnh của nguồn phát bức xạ. Theo khuyến cáo của IAEA, các nguồn phải được đo đạc trước khi sử dụng để đánh giá độ mạnh, dù đã có số liệu cung cấp bởi nhà sản xuất [13]. Việc đo đạc các nguồn này là không đơn giản, đặc biệt trong điều kiện thiếu thốn trang thiết bị thích hợp như ở Việt Nam. Bên cạnh các phép đo, độ mạnh của nguồn cũng có thể được ước lượng dựa trên tính toán Monte Carlo. Đề tài luận văn nhằm mục đích tìm hiểu về khả năng này. Trong số những chương trình Monte Carlo đang được sử dụng hiện nay, như PENELOPE, MCNP, GEANT4, EGSnrc,… thì EGSnrc được áp dụng cho vùng năng lượng phù hợp với việc tính liều và được thừa nhận rộng rãi như là một tiêu chuẩn để tính liều xạ trị. Đối với Việt Nam chương trình này hết sức mới mẻ. Chính vì thế mục đích của luận văn là tìm hiểu code EGSnrc với tinh thần học hỏi cách sử dụng để áp dụng trong tính liều xạ trị áp sát. Nội dung chủ yếu của luận văn là tìm hiểu và áp dụng EGSnrc trong việc tính phân bố liều của một số nguồn được sử dụng trong xạ trị áp sát.
  5. MỤC LỤC TỔNG QUAN .............................................................................................................7 CHƯƠNG 1: XẠ TRỊ ÁP SÁT VÀ PHƯƠNG PHÁP TÍNH LIỀU........................10 1.1. Giới thiệu tổng quan về kỹ thuật xạ trị áp sát ................................................10 1.1.1.Tổng quan .................................................................................................10 1.1.2. Tình hình phát triển xạ trị áp sát ở Việt Nam..........................................10 1.2. Đặc trưng nguồn bức xạ. ................................................................................12 1.2.1. Các đại lượng đặc trưng cho độ mạnh của nguồn ...................................12 1.2.2. Yêu cầu chung về nguồn bức xạ..............................................................13 1.2.3. Nguồn Ir-192 ...........................................................................................14 1.2.4. Nguồn Cs-137..........................................................................................15 1.3. Phương pháp tính suất liều của nguồn xạ dùng trong xạ trị áp sát ................17 1.3.1. Liều hấp thụ D và suất liều hấp thụ D ....................................................17 1.3.2. Công thức tính suất liều hấp thụ..............................................................17 1.3.3. Yêu cầu về độ chính xác trong việc cấp liều cho bệnh nhân...................22 CHƯƠNG 2: PHƯƠNG PHÁP MONTE CARLO TRONG VIỆC TÍNH LIỀU. CHƯƠNG TRÌNH EGSnrc ......................................................................................................................24 2.1. Phương pháp mô phỏng Monte Carlo ............................................................24 2.1.1. Giới thiệu tổng quan về phương pháp Monte Carlo................................24 2.1.2. Sự tạo số ngẫu nhiên................................................................................25 2.1.3. Quá trình tương tác photon......................................................................26 2.2. Mô phỏng Monte Carlo trong vận chuyển Photon.........................................27 2.2.1. Mô phỏng phóng xạ sơ cấp [4], [18] .......................................................27 2.2.2. Chọn loại tương tác [4]............................................................................28 2.3. Giới thiệu chương trình EGSnrc ....................................................................29 2.3.1. Giới thiệu chung. .....................................................................................29 2.3.2. DOSRZnrc ..............................................................................................31 CHƯƠNG 3: ÁP DỤNG CHƯƠNG TRÌNH EGSnrc CHO CÁC NGUỒN Ir-192 VÀ Cs-137 DÙNG TRONG XẠ TRỊ ÁP SÁT ........................................................................................38 3.1. Thiết lập các thông số và cấu trúc hình học cho các nguồn...........................38 3.1.1. Thành phần cấu tạo và cấu trúc của các nguồn .......................................38 3.1.2. Khai báo các thông số cho chương trình EGSnrc ...................................40 3.2. Tính giá trị g(r) và DF(r, θ) các nguồn...........................................................46 3.2.1. Kết quả của hàm g(r) ...............................................................................46 3.2.2. Kết quả của hàm DF(r, θ) ........................................................................51
  6. 3.2.3. Kết luận....................................................................................................55 KẾT LUẬN...............................................................................................................57 HƯỚNG PHÁT TRIỂN............................................................................................58 PHỤ LỤC..................................................................................................................59 TÀI LIỆU THAM KHẢO.........................................................................................69
  7. TỔNG QUAN Cho tới nay, bệnh ung thư đã trở thành nguyên nhân đứng thứ hai gây tử vong trong nhóm bệnh không lây nhiễm. Tại Việt Nam, theo số liệu thống kê về tình trạng bệnh ung thư tại bệnh viện K, bệnh viện Ung Bướu TP. Hồ Chí Minh là hai trung tâm chuẩn đoán và điều trị ung thư bằng bức xạ và một số tỉnh thành, ước tính mỗi năm ở nước ta có khoảng 150.000 trường hợp mới mắc và 75.000 người chết vì ung thư và con số này có xu hướng ngày càng gia tăng. Dự kiến của ngành y tế, đến năm 2020 mỗi năm ở Việt Nam có khoảng 200.000 trường hợp mới mắc và 100.000 trường hợp chết do ung thư [24]. Tuy nhiên, theo các chuyên gia, ung thư không phải là căn bệnh vô phương cứu chữa, nếu được phát hiện sớm và điều trị đúng phác đồ, bệnh nhân ung thư hoàn toàn có thể được chữa khỏi hoặc tăng thêm thời gian và chất lượng sống cho người bệnh. Hiện nay có 3 phương pháp chính để điều trị ung thư là: phẫu thuật, hoá trị và xạ trị. Việc lựa chọn phương pháp điều trị phụ thuộc vào nhiều yếu tố như điều kiện điều trị của bệnh viện, vị trí khối u, giai đoạn của bệnh và tình trạng của bệnh nhân. Trong những năm gần đây, xạ trị áp sát được phát triển rất mạnh mẽ trong đó phải kể đến sự ra đời của máy điều trị xạ trị áp sát suất liều cao (high dose rate, HDR) được sử dụng ở các nước phát triển trên thế giới. Ở nước ta, Bệnh viện Ung Bướu TP.HCM là đơn vị đầu tiên đã đưa vào hoạt động máy HDR cho việc điều trị ung thư cổ tử cung (từ năm 2000). Cho đến nay, hàng ngàn ca bệnh đã được điều trị và kết quả thu được qua các báo cáo tổng kết rất đáng phấn khởi [25]. Kể từ khi ra đời vào đầu thế kỷ 20, xạ trị áp sát và sự tiến hóa của nó đã có một mối liên kết chặt chẽ với vật lý y học. Lịch sử 50 năm của Hiệp hội Vật lý Y học Mỹ (AAPM) chỉ ra rằng không chỉ với sự xuất hiện của vật lý y học như là một nghề trưởng thành, cùng với sự đổi mới cách mạng thật sự trong vật lý bức xạ, bao gồm cả lò phản ứng hạt nhân, máy gia tốc hạt mới, hình ảnh 3D, và máy tính hỗ trợ điều trị trong việc lập kế hoạch, cùng với sự tiến bộ trong việc hiểu biết quá trình vận chuyển bức xạ và điều chế các phản ứng lâm sàng, … đó đã làm thay đổi đáng kể việc áp dụng kỹ thuật xạ trị áp sát [1]. Có lẽ tác động cao nhất sự tiến bộ công nghệ trong nửa cuối thế kỷ qua là đã điều chế được các đồng vị phóng xạ nhân tạo và hệ thống nạp nguồn sau vào xạ trị áp sát. Tiến bộ này đã làm giảm đáng kể chi phí, giảm sự tiếp xúc, và tăng tính linh hoạt kỹ thuật [2]. Xạ trị áp sát là phương thức điều trị trong đó nguồn phát bức xạ (nguồn đồng vị phóng xạ đóng gói) được đặt áp sát hay bên trong khối u. Ưu điểm của nó là cung cấp liều tập trung vào khối u và ít ảnh hưởng đến các mô lành, nhờ quy luật giảm theo bình phương khoảng cách. Tuy nhiên, do liều cung cấp cho bệnh nhân là khá lớn, bất kỳ một sai sót nào trong việc cấp liều cho bệnh nhân đều có thể dẫn đến những nguy hiểm cho các mô lành, do đó việc xác định chính xác liều trong xạ trị áp sát là một việc vô cùng quan trọng [4].
  8. Phương pháp tính liều hiện hành đối với xạ trị áp sát dựa trên hình thức TG AAPM-43, dựa vào sự chồng chập của các nguồn đơn thu được trong phantom nước với thể tích thích hợp cho sự tán xạ bức xạ [20]. Cách tiếp cận này được thông qua các hệ thống điều trị bằng máy tính thay thế cho các phương pháp cổ điển như hệ thống Manchester và Paris [19]. Một trong các bước quan trọng của quá trình xạ trị là tính phân bố liều trong cơ thể bệnh nhân, hiệu quả điều trị phụ thuộc nhiều vào khâu này. Có nhiều phương pháp để tính liều trong đó phương pháp Monte Carlo cho phép tính phân bố liều với độ chính xác cao, nhưng hạn chế chính của nó là thời gian tính toán lâu. Trong nửa đầu thế kỉ 20 đến những năm 1960, việc tính phân bố liều xạ trị áp sát lâm sàng được sử dụng bằng cách tra bảng dựa trên việc đo buồng ion hóa và tích phân Sievert. Vào năm 1971, dựa trên mô hình phân bố liều của nguồn xạ trị áp sát đối xứng trụ trong môi trường chất lỏng hay rắn, Krishnaswamy đã thiết lập nền móng cho việc mô phỏng việc tính liều trong xạ trị áp sát dùng phương pháp Monte Carlo [1]. Qua các thập kỷ áp dụng kỹ thuật mô phỏng Monte Carlo, việc mô phỏng phân bố liều quanh các nguồn trong xạ trị áp sát ngày càng đạt được mức độ chi tiết hơn, chẳng hạn việc tính hệ số chồng chập (build-up) đối với nguồn điểm đẳng hướng cho sự phân bố liều trong xạ trị áp sát bởi Berger, webb và Fox, và trong bài báo nổi tiếng của Meisberger [17]. Nhiều cách tiếp cận tinh vi hơn 3D được theo đuổi sau đó, trong đó đi đầu là Williamson [1]. Với việc tăng tốc độ xử lý máy tính, khả năng tiếp cận các hoạt động hệ thống và sử dụng rộng rãi hơn qua các nghiên cứu y tế, tính phân bố liều bằng phương pháp mô phỏng Monte Carlo đạt đến một ngưỡng quan trọng trong những năm 1990, trong đó có một báo cáo quan trọng của AAPM TG-43 năm 1995 [20]. Báo cáo này thiết lập hình thức luận tiêu chuẩn trong việc tính liều quanh nguồn xạ trị áp sát, đưa ra các tham số cho các dạng nguồn khác nhau của cùng đồng vị phóng xạ, thúc đẩy sự nhất quán sử dụng các thông số tính liều ở các tổ chức riêng biệt. Thông qua đó, nó nâng cao khả năng sử dụng rộng rãi của phương pháp Monte Carlo trong việc tính phân bố liều của các nguồn dùng trong xạ trị áp sát. Phương pháp Monte Carlo được mở rộng hơn bởi mã PTRAN của Williamson khi các loại nguồn và các khía cạnh khác của nguồn được kiểm tra. Kể từ sau Krishnaswamy, kỹ thuật mô phỏng Monte Carlo đã trở thành phương pháp chính trong việc tính toán phân bố liều cho nguồn xạ trị áp sát. Tuy nhiên, việc mô phỏng cần phải được cải tiến để ngày càng chính xác hơn, và kết quả cần phải luôn luôn so sánh với thực nghiệm. Kết quả mô phỏng Monte Carlo có thể không chính xác do sai khác giữa nguồn mô tả và nguồn thực tế, sự đơn giản hóa khi mô tả phổ bức xạ, v.v... Do đó, việc so sánh kết quả Monte Carlo và kết quả thực nghiệm là rất cần thiết để phát hiện ra sự khác biệt giữa lý thuyết và thực tế của hệ thống trong quá trình đo [1]. Một trong các chương trình Monte Carlo đang được sử dụng phổ biến trong nghiên cứu xạ trị là code EGSnrc. Mục đích của luận văn là tìm hiểu về chương trình EGSnrc, cụ thể là code DOSRZnrc và áp dụng nó để tính phân bố liều quanh các nguồn được sử dụng trong xạ trị áp sát, so sánh với thực
  9. nghiệm và rút ra kết luận về cách sử dụng code cũng như sự phân bố của liều qua các lớp vỏ nguồn khác nhau. Quá trình thực hiện trong luận văn này bắt đầu từ việc tìm hiểu tổng quan các kiến thức liên quan đến xạ trị và kỹ thuật tính liều, giới thiệu phương pháp Monte Carlo trong xạ trị; tìm hiểu các đặc điểm, thành phần, cơ sở vật lý của code EGSnrc, nhiệm vụ của code và cách thức sử dụng code DOSRZnrc; sau đó áp dụng nó để khảo sát một bài toán cụ thể đã được mô tả chi tiết trong một công trình trước đây về sự phân bố liều quanh nguồn Ir-192 và Cs-137 [3], xem xét sự phù hợp giữa kết quả thu được với kết quả đã có từ các công trình, chứng minh tính hữu dụng của chương trình và để rút ra những bài học về cách sử dụng code. Từ mục đích và nội dung công việc như trên, luận văn có bố cục như sau: Chương 1- Lý thuyết cơ sở Chương này trình bày những vấn đề liên quan đến xạ trị áp sát, tình hình xạ trị áp sát ở Việt Nam, các đại lượng đặc trưng cho độ mạnh của nguồn, nêu lên yêu cầu về độ chính xác trong việc tính liều hấp thụ trong cơ thể bệnh nhân. Chương này cũng giới thiệu công thức tính liều hấp thụ dựa trên hình thức luận AAPM-TG43 được sử dụng phổ biến hiện nay và một số nguồn phóng xạ dùng trong xạ trị áp sát, đặc biệt là hai nguồn Ir-192 và Cs-137 mà chúng tôi sẽ khảo sát ở chương sau. Chương 2- Lý thuyết chuyên sâu Chương này trình bày sự vận chuyển của photon trong vật chất theo phương pháp mô phỏng Monte Carlo, phương pháp Monte Carlo trong xạ trị áp sát, chương trình EGSnrc và code DOSRZnrc của chương trình. Chương này đóng vai trò quan trọng trong nội dung luận văn. Các kiến thức trình bày trong chương này là cần thiết để áp dụng EGSnrc và DOSRZnrc, như mô tả trong chương 3. Chương 3- Áp dụng chương trình EGSnrc để khảo sát sự phân bố liều quanh nguồn Ir-192 và Cs-137 Chương này trình bày nội dung công việc cũng như các bước cơ bản trong việc sử dụng mã DOSRZnrc của chương trình EGSnrc để tính liều hấp thụ từ đó rút ra các kết luận về sự phân bố liều quanh các nguồn Ir-192 và Cs-137. So sánh với thực nghiệm và công trình đã được công bố của C.Thomason, T.R.Mackie, M.J.Lindstrom và P.D.Higgins [3] nhằm chứng minh tính hữu dụng của chương trình.
  10. CHƯƠNG 1: XẠ TRỊ ÁP SÁT VÀ PHƯƠNG PHÁP TÍNH LIỀU Chương này trình bày những khái niệm cơ bản về kỹ thuật xạ trị áp sát, tình hình phát triển xạ trị áp sát ở Việt Nam, các chú ý trong việc sử dụng xạ trị áp sát và các nguồn thường được sử dụng trong xạ trị áp sát. Một số đại lượng và công thức quan trọng có liên quan đến việc tính liều cần cho các phần sau, cũng sẽ được giới thiệu. 1.1. Giới thiệu tổng quan về kỹ thuật xạ trị áp sát 1.1.1.Tổng quan Xạ trị áp sát (XTAS) là phương thức điều trị trong đó nguồn phát bức xạ (nguồn đồng vị phóng xạ đóng gói) được đặt áp sát hay bên trong khối u. XTAS có thể áp dụng cho nhiều trường hợp ung thư, nhưng thành công nhất cho phụ khoa và ung thư đầu và cổ. Ban đầu XTAS được phát triển để điều trị những khối u nằm sâu mà kỹ thuật xạ trị ngoài trong thời kỳ đầu không mang lại hiệu quả. XTAS trong hốc rất thích hợp trong điều trị phụ khoa, do có thể đưa nguồn vào qua âm đạo. XTAS trong kẽ thích hợp cho ung thư đầu và cổ do dễ tiếp cận qua đường miệng và mũi. Kỹ thuật cấy nguồn vĩnh viễn để điều trị ung thư tiền liệt tuyến cũng đang ngày càng phổ biến [21]. XTAS có thể được áp dụng độc lập (ung thư tuyến tiền liệt và ung thư vú giai đoạn đầu) hay kết hợp với xạ trị ngoài (ung thư phụ khoa, ung thư tuyến tiền liệt giai đoạn trễ, ung thư đầu và cổ). Cũng có thể được áp dụng sau phẫu thuật để diệt các phần còn sót lại của mô ung thư [21]. Trong một khoa xạ trị, thường khoảng từ 10% đến 20% bệnh nhân được điều trị bằng xạ trị áp sát [6]. XTAS được phát triển mạnh ở Châu Âu (Paris, Manchester, Stockholm). Trong nửa đầu thế kỷ 20, nguồn xạ được dùng là radium. Nguồn Ra-226 phát photon năng lượng cao, ít chịu tương tác quang điện trong xương, do đó thích hợp để điều trị những mô ung thư nằm gần xương mà không sợ bị hoại tử xương. Một ưu điểm khác là nguồn Ra-226 có chu kỳ bán rã lớn, nên không phải hiệu chỉnh và thay thế nguồn trong thời gian sử dụng. Ưu thế này về sau không còn quan trọng nữa do xạ trị ngoài có năng lượng cao được phát triển trong những năm 1950-1960. Radium sinh ra khí radon phóng xạ, làm chúng bị thay thế bởi nguồn cesium Cs-137, có hạt nhân con là chất rắn [21 ]. Ưu điểm: so với xạ trị từ xa thì XTAS cung cấp liều tập trung vào khối u và ít ảnh hưởng đến các mô lành, nhờ qui luật giảm bình phương theo khoảng cách của cường độ. Nhược điểm: Chỉ áp dụng được cho khối u tập trung và nhỏ, ngoài ra còn cần phải can thiệp vào cơ thể bệnh nhân, cần nhiều thời gian và công sức trong quá trình điều trị [6]. 1.1.2. Tình hình phát triển xạ trị áp sát ở Việt Nam Hiện nay, cùng với sự phát triển của công nghệ cơ-điện tử và máy tính, xạ trị áp sát đã đạt được các bước đột phá về phương tiện và kỹ thuật điều trị. Các máy xạ trị trong suất liều cao (High Dose Rate - HDR) đã được sử dụng hết sức rộng rãi tại hầu hết các cơ sở xạ trị trên thế giới. Quy trình xạ trị
  11. bằng máy xạ trị áp sát HDR, bao gồm cả quá trình chuẩn bị bệnh nhân, chỉ kéo dài khoảng vài giờ nên các đa phần các bệnh nhân sẽ được điều trị ngoại trú (ngoại trừ môt số bệnh lý cần phải theo dõi). Thêm vào đó, các phác đồ điều trị bằng máy HDR thường chỉ có ít số lần xạ trị, do vậy bệnh nhân sẽ giảm được rất nhiều chi phí nằm viện và đi lại. Về hiệu quả điều trị thì máy HDR cho thấy nhiều ưu thế vượt trội. Các đầu áp nguồn có thể đưa áp sát vào bướu, thời gian xạ trị ngắn (chỉ từ 5 đến 15 phút) và số lần xạ trị ít nên đã giảm được rất nhiều nguy cơ sai lệch phân bố liều phóng xạ do bệnh nhân khó có thể nằm bất động ở một tư thế quá lâu [25]. Ở nước ta, Bệnh viện Ung Bướu TP.HCM là đơn vị đầu tiên đã đưa vào hoạt động máy HDR cho việc điều trị ung thư cổ tử cung (từ năm 2000). Cho đến nay, hàng ngàn ca bệnh đã được điều trị và kết quả thu được qua các báo cáo tổng kết rất đáng phấn khởi. Mặc dù việc đầu tư cho máy HDR đòi hỏi tốn nhiều kinh phí và yêu cầu nguồn nhân lực với chuyên môn cao, nhưng trước tình hình quá tải bệnh nhân ung thư hiện nay, một số cơ sở xạ trị trong nước cũng đã dần dần trang bị máy HDR và đưa vào hoạt động [25]. * Một số chú ý khi áp dụng xạ trị áp sát: Mục tiêu của XTAS là tiêu diệt các mô ung thư, nhưng bên cạnh đó, nó cũng ít nhiều gây tổn hại đến các mô lành. Mức độ tổn thương mô lành phụ thuộc chủ yếu vào chất lượng của việc điều trị. Do đó việc bảo đảm chất lượng trong suốt quá trình xạ trị là rất cần thiết [11]. Kỹ thuật xạ trị nói chung đòi hỏi phải tuân thủ các khuyến cáo và qui định về thiết bị, phòng ốc, qui trình làm việc, an toàn bức xạ v.v... và đặc biệt cẩn thận khi điều trị bằng suất liều cao HDR [10], [12]. Cần chọn mô hình tính liều thích hợp đã được thiết lập vững chắc qua các thực nghiệm, áp dụng những kinh nghiệm đã tích lũy được và sử dụng những kết quả đã được công bố. Sử dụng các nguồn bức xạ đã được chuẩn. Ngoài ra, còn có một chương trình kiểm tra chất lượng để bảo đảm rằng việc điều trị được thực hiện đúng như kế hoạch. Lý do phải tuân thủ theo các điều trên là do liều giảm nhanh theo khoảng cách. Do đó việc đặt sai vị trí nguồn so với vị trí đã định trước sẽ dẫn đến những sai lệch đáng kể về sự phân bố liều. Vì vậy việc tính toán và định vị chính xác các nguồn trong trong cơ thể bệnh nhân là rất quan trọng. Ngoài sự giảm liều theo bình phương khoảng cách, do cấu trúc không đối xứng và do ảnh hưởng của các lớp vỏ bao bọc quanh nguồn, sự phân bố liều xung quanh nguồn cũng có tính không đồng nhất (tính dị hướng). Điều này cần được xét đến trong tính toán phân bố liều bên trong bệnh nhân [20]. Chính vì vậy, người ta cần dùng các chương trình mô phỏng để mô phỏng các tình huống có thể xảy ra trước trong các phantom, từ đó rút ra phương pháp tối ưu trong việc cung cấp liều thích hợp cho bệnh nhân. Ngoài ra, việc sử dụng nguồn xạ thích hợp trong XTAS cũng có vai trò quan trọng. Sau đây, chúng tôi sẽ trình bày một số tính chất và đặc trưng của một số nguồn dùng trong XTAS, đặc biệt là hai nguồn Ir-192 và Cs-137 mà chúng tôi sẽ dùng để khảo sát sự phân bố liều liều trong chương 3.
  12. 1.2. Đặc trưng nguồn bức xạ. 1.2.1. Các đại lượng đặc trưng cho độ mạnh của nguồn Việc tính liều phụ thuộc chủ yếu vào độ mạnh của nguồn phóng xạ, do đó cần phải xác định chính xác độ mạnh của nguồn để đảm bảo chính xác khi tính liều cho bệnh nhân. Độ mạnh của nguồn cần được mô tả bởi những đại lượng thích hợp, điều này sẽ giúp người tính liều hạn chế sai sót. Theo ICRU [14], độ mạnh của nguồn nên được đặc trưng bởi suất kerma không khí chuẩn (reference air kerma rate), ký hiệu K a (d ref ) a . Đó là suất kerma không khí, được đo trong không khí ở khoảng cách 1 m tính từ nguồn (khoảng cách qui chiếu). Định nghĩa này đã có tính đến sự suy giảm và tán xạ của photon trong không khí. Đơn vị của suất kerma không khí chuẩn trong hệ SI là Gy/s, nhưng người ta cũng thường dùng μGy/h trong XTAS suất liều thấp (low dose rate, LDR) và μGy/s hay mGy/h trong XTAS suất liều cao (high dose rate, HDR). Theo AAPM [20] thì nên dùng cường độ kerma không khí Sk (air kerma strength) để đặc trưng cho độ mạnh của nguồn. S K  K a (d ref ) a .d ref 2 , d ref  1m Sự khác nhau giữa hai đại lượng chỉ là đơn vị, chúng có giá trị về số bằng nhau. Ví dụ: K a (d ref )  a  1Gy.h 1  S K  1Gy.m 2 .h 1 Ký hiệu (AAPM TG 43): 1U  1Gy.m 2 .h 1  1cGy.cm 2 .h 1 Ngoài ra còn có các đại lượng đặc trưng cũ như: - Hoạt độ A: Khi biết A và hằng số suất liều chiếu ΓX của nguồn điểm, có thể tính ra suất liều A. chiếu tại một khoảng cách d trong không khí theo X (d )  2X . Khó khăn: phải hiệu chỉnh sự suy d giảm trong nguồn và vỏ bọc, hơn nữa ΓX thường không được biết chính xác vì phụ thuộc nhiều vào yếu tố môi trường như nhiệt độ, khí áp, độ ẩm. - Suất liều chiếu tại một khoảng cách cho trước X (d ref ) . Khi đó, suất liều chiếu tại khoảng cách  d ref 2     d trong không khí là X (d )  X (d ref ). 2  (nếu sự suy giảm trong không khí là không đáng kể).  d  Định nghĩa này giúp tránh được khó khăn gặp phải khi dùng hoạt độA. - Hoạt độ biểu kiến Aapp (apparent activity) Nếu nguồn được chuẩn theo suất liều chiếu tại khoảng cách 1 mét, thì độ mạnh của nó có thể được diễn tả theo Aapp.
  13. Theo định nghĩa, đó là hoạt độ của một nguồn điểm không bị lọc của cùng loại đồng vị phóng xạ, có thể tạo ra cùng một suất liều chiếu tại khoảng cách 1 m.  X (d ref )  Aapp     X    ΓX: hằng số suất liều chiếu của nguồn không bị lọc. 1.2.2. Yêu cầu chung về nguồn bức xạ. Đa phần các nguồn dùng trong xạ trị áp sát là nguồn phát photon, nhưng cũng có trường hợp dùng nguồn phát β hay neutron. Bức xạ photon được sử dụng là: - Tia γ từ nguồn đồng vị (thành phần chính). - Tia X đặc trưng do bắt e- và biến hoán trong. - Tia X đặc trưng và bức xạ hãm từ vỏ của nguồn. Các nguồn dùng trong xạ trị áp sát thường được bọc kín trong vỏ kim loại để: - Tránh sự thất thoát chất phóng xạ. - Bảo đảm nguồn không bị thay đổi hình dạng. - Hấp thụ các tia α hay β không mong muốn. Sau đây là tính chất của một số nguồn thường dùng (bảng 1.1) Bảng 1.1. Một số nguồn thường dùng trong xạ trị áp sát [9] Hằng số HVL- suất liều Năng lượng Nguyên tố Đồng vị Bán rã trong chì phát Dạng nguồn Ứng dụng lâm sàng (MeV) (mm) (  ) a Các nguồn cũ mang tính lịch sử 226 Radium Ra 0,83 1626 năm 16 8,25b Ống và kim LDR trong hốc và kẽ 222 b Khí bao bởi ống Radon Rn 0,83 3,83 ngày 16 8,25 Trong kẽ vĩnh viễn; tạm thời. vàng Các nguồn kín sử dụng hiện tại 137 Cesium Cs 0,662 30 năm 6,5 3,28 Ống và kim LDR trong hốc và kẽ Hạt; dây kim loại; 192 Trong kẽ LDR tạm thời; trong kẽ Iridium Ir 0,397 73,8 ngày 6 4,69 bao bọc nguồn trên HDR và hốc. dây cáp 60 Cobalt Co 1,25 5,25 năm 11 13,07 Bao bởi hình cầu Trong kẽ HDR 125 Iodine I 0,028 59,6 ngày 0,025 1,45 Hạt Trong kẽ vĩnh viễn 103 Palladium Pd 0,020 17 ngày 0,013 1,48 Hạt Trong kẽ vĩnh viễn 198 Vàng Au 0,412 2,7 ngày 6 2,35 Hạt Trong kẽ vĩnh viễn 90 Điều trị các tổn thương bề mặt Strontium Sr-90Y 2,24 βmax 28,9 năm -- -- Mảng của mắt Các nguồn đang phát triển 241 Americium Am 0,060 432 năm 0,12 0,12 Ống Trong hốc LDR 169 Ytterbium Yb 0,0093 32 ngày 0,48 1,80 Hạt Trong kẽ LDR tạm thời 252 Californium Cf 2,4 (neutron) 2,65 năm -- -- Ống Trong hốc High-LET LDR 131 Cesium Cs 0,030 9,69 ngày 0,030 0,64 Hạt Cấy ghép LDR vĩnh viễn 145 Samarium Sm 0,043 340 ngày 0,060 0,885 Hạt Trong kẽ LDR tạm thời a không qua lớp vỏ; đơn vị R x cm2 x mCi-1 x hr-1 b Qua lớp vỏ 0,5 mm platinum; đơn vị R/cm2/mCi-1/hr Nguồn được sử dụng đầu tiên trong xạ trị áp sát là Radium được phát hiện bởi Marie Curie vào năm 1898. Trong ba năm nghiên cứu nguồn này trong xạ trị áp sát thì bệnh nhân đầu tiên đã được điều trị với nguồn radium cấy vào khối ung thư của họ. Về sau người ta đã phát triển các nguồn khác thay
  14. thế nguồn radium như những nguyên nhân đã nêu ở trên. Các nguồn mới này có các tính chất rất thích hợp với xạ trị áp sát. Các tính chất đó như sau [2]: - Năng lượng photon từ thấp đến trung bình (0,03 – 0,5MeV) để giảm thiểu các vấn đề về an toàn bức xạ. - Có chu kỳ bán rã lớn phù hợp với việc điều trị cấy ghép nguồn vĩnh viễn. - Đồng vị có thể tạo hoạt độ đặc trưng cao. - Không tạo ra sản phẩm khí phóng xạ. - Các nguồn có dạng xác định, ít bị hư hỏng. Các nguồn đầu tiên được sử dụng thay thế cho radium là Co-60, Au-198, Cs-137 và Ir-192. Nguồn Cs và Ir vẫn được sử dụng rộng rãi trong các hệ thống nạp nguồn từ xa. Do đó, trong luận văn này chúng tôi sẽ đi tính phân bố liều cho hai nguồn Ir-192 và Cs-137theo phương pháp Monte Carlo bằng chương trình EGSnrc. Trước hết, chúng tôi sẽ tìm hiểu tổng quát về hai nguồn này. 1.2.3. Nguồn Ir-192 Ở Châu Âu [2], người ta sử dụng nguồn dây Ir-192 có chiều dài cuộn dây là 500mm được bao bởi platinum. Lõi là hợp chất Ir-Pt với chiều dày 0,1mm bọc bởi lớp platinum bề dày 0,1mm. Nguồn dây Ir-192 sẽ được cắt đến độ dài cần thiết và được đặt vào trong ống nhựa hoặc kim tiêm dưới da. Ở Mỹ [21], nguồn Ir-192 dạng hạt được thay thế cho nguồn dây, có hai loại nguồn dạng hạt Ir- 192 có mặt trên thị trường hiện nay và trong luận văn này chúng tôi cũng sẽ tính phân bố liều quanh hai loại nguồn này. Sau đây là cấu tạo của hai nguồn Ir-192: Một nguồn Ir có lớp vỏ bằng platinum, chiều dài vật lý 3mm và đường kính 0,5mm. Đường kính của lõi là 0,3mm (lõi bằng 90%Pt/10%Ir) với 0,1mm lớp vỏ Pt như hình vẽ (Hình 1.1b). Còn loại Ir có lớp vỏ stainless steel (thép không gỉ) có đường kính lõi là 0,1mm (lõi bằng 70%Pt, 30%Ir) và được bao bởi hai lớp vỏ stainless steel, mỗi lớp dày 0,1mm (Hình 1.1a). Hình 1.1. Cấu tạo nguồn Ir bao plantinum và bao stainless steel [23] Sau đây là các thông số về nguồn Ir-192 (bảng 1.2). Bảng 1.2. Thông số của nguồn Ir-192 [2]
  15. Được kích hoạt bởi neutron của đồng vị ổn định Ir-191, quá trình này cũng tạo Ir-194 nhưng có chu kỳ bán rã nhỏ chỉ có Sản phẩm 17h nên không có đóng góp đáng kể trong thời gian sử dụng trong bệnh nhân. Thời gian bán rã 73,83 ngày. 78 Pt  1 e   Ir  192 192 0 Sơ đồ phân rã 77 Năng lượng Beta Xác suất phát beta 0,079-0,672 MeV 0,1-48,1% Hiệu ứng năng lượng photon Năng lượng photon 0,37 MeV (không được bao) 0,2-1,06 MeV 0,4 MeV (được bao) Phát năng lượng photon đáng kể (>10%) 0,296 MeV 28,7% 0,308 MeV 29,8% 0,316 MeV 83,0% 0,468 MeV 47,7% Sự lọc Beta 0,1 mm platinum Bề dày giảm nửa 4,5mm trong chì 1.2.4. Nguồn Cs-137 Nguồn thu nhỏ hình trụ chứa nguồn Cs-137 được bao bằng thép không gỉ (stainless steel). Nguồn này thường được sử dụng cho hệ thống nạp nguồn sau từ xa cho việc điều trị phụ khoa trong xạ trị áp sát. Trong khuôn khổ luận văn này chúng tôi sẽ đi tính phân bố liều của nguồn Cs-137 có cấu tạo như sau: Nguồn Cs có chiều dài 5mm với đường kính ngoài 0,72mm, thành phần phóng xạ là một sợi dây vàng nhô ra với chiều dài 3mm và đường kính 0,3mm trong Cs (dưới dạng hợp chất CsCl3) được phân bố đồng nhất. Lõi hoạt tính được bao bởi 0,076mm (90%Pt/10%Ir) và 0,134mm vỏ stainless steel [3] (Hình 1.2).
  16. Hình 1.2. Cấu tạo nguồn Cs-137 [3] Sau đây là các thông số về nguồn Cs-137 (bảng 1.3). Bảng 1.3. Thông số của nguồn Cs-137 [2] Một lượng nhỏ sản phẩm phân hạch (Cs-134, với chu kỳ bán rã Sản phẩm khoảng 2 năm). Thời gian bán rã 30,17 năm. 56 Ba  1 e   Cs  137 137 0 Sơ đồ phân rã 55 Năng lượng Beta Xác suất phát beta 0,512 MeV 94,6% 1,173 MeV 5,4% Năng lượng photon Xác suất phát photon 0,662 MeV 90,1% Tia X Barium 0,032-0,038 MeV -7% Sự lọc Beta 0,5mm lớp platinum hoặc thép không rỉ (gỉ) Bề dày giảm nửa 6,5mm trong chì Sau khi đã tìm hiểu về đặc điểm một số nguồn được dùng trong XTAS, tiếp theo chúng tôi trình bày một số đại lượng và các công thức tính quan trọng trong luận văn này.
  17. 1.3. Phương pháp tính suất liều của nguồn xạ dùng trong xạ trị áp sát Trong phần này chúng tôi sẽ trình bày về liều hấp thụ, suất liều hấp thụ, công thức tính suất liều cũng như các đại lượng cần quan tâm sẽ được tính trong luận văn này. 1.3.1. Liều hấp thụ D và suất liều hấp thụ D Liều hấp thụ và suất liều hấp thụ là các đại lượng đặc trưng cho lượng năng lượng mà bức xạ bỏ ra trong vật chất. Khái niệm này được định nghĩa chung cho mọi môi trường và cho mọi loại bức xạ có khả năng ion hóa trực tiếp (hạt mang điện) hay gián tiếp (photon, neutron). A/ Liều hấp thụ D Liều hấp thụ là lượng năng lượng được hấp thụ trong một đơn vị khối lượng vật chất do bức xạ ion hóa gây nên D = ΔE/Δm = ΔE/(ρ.ΔV). trong đó ΔE là lượng năng lượng được hấp thụ trong thể tích ΔV của vật chất và Δm là khối lượng của thể tích ΔV đó. Định nghĩa trên có thể áp dụng cho mọi loại vật chất hấp thụ và mọi loại tia bức xạ ion hóa có năng lượng tùy ý. Khả năng hấp thụ năng lượng phụ thuộc loại vật chất được chiếu, nghĩa là với cùng một liều chiếu, các loại vật liệu khác nhau sẽ hấp thụ những lượng năng lượng khác nhau. Do đó khi đưa ra liều hấp thụ bao giờ người ta cũng phải cho biết loại vật chất đã hấp thụ lượng năng lượng đó. Trong xạ trị, liều hấp thụ trong nước là một trong những đặc trưng quan trọng nhất của chùm bức xạ, vì nước là môi trường có khối lượng riêng xấp xỉ mô của cơ thể người. Trong nghiên cứu lý thuyết và cả trong thực tế lâm sàng, việc xác định liều hấp thụ trong một phantom nước là một bài toán điển hình. Đơn vị của liều lượng hấp thụ trong hệ SI là gray: 1 gray (Gy) = 1 J/kg. Trong thực tế, người ta còn sử dụng đơn vị rad (radiation absorbed dose): 1 rad = 10-2 Gy = cGy 1 Gy = 100 rad. B/ Suất liều hấp thụ (Dose Rate) D Suất liều hấp thụ là liều lượng hấp thụ trong một đơn vị thời gian. Đơn vị của nó là gray/giây (Gy/s) và rad/s. 1.3.2. Công thức tính suất liều hấp thụ Có nhiều công thức và cách tính suất liều được đưa ra, Trong luận văn này chúng tôi sẽ tính suất liều theo công thức của hình thức luận AAPM TG-43 [20]. Ban đầu, hình thức luận này giới thiệu phương pháp tính truyền thống, sử dụng hằng số suất liều và hệ số hấp thụ mô. Theo phương pháp truyền thống thì suất liều D được xác định bằng công thức:
  18.   D (r )  Aapp f med    x 1/ r 2 T (r )an (1.1) Với Aapp là hoạt độ biểu kiến của nguồn. f med là hệ số chuyển đổi.    x hằng số suất liều đối với đồng vị của nguồn. T(r) là hệ số hấp thụ mô an là hằng số dị hướng. Mỗi đại lượng dùng để tính suất liều hấp thụ cần phải được đo hoặc tính đối với các nguồn riêng, vì độ lớn của chúng phụ phuộc vào cấu trúc, hình dạng và phổ năng lượng photon sơ cấp của nguồn. Một nhược điểm của công thức này là nó được tính dựa trên phổ năng lượng photon xung quanh nguồn trong không khí, trong khi đó các ứng dụng lâm sàng lại đòi hỏi sự phân bố liều trong một môi trường tán xạ (như cơ thể của bệnh nhân). Việc xác định sự phân bố liều 2 chiều trong môi trường tán xạ dựa trên sự phân bố 2 chiều của thông lượng photon chỉ dễ dàng được thiết lập đối với nguồn điểm đẳng hướng. Một nguồn dùng trong xạ trị áp sát thật sự luôn có tính dị hướng và đối với các nguồn này thì không thể xác định chính xác sự phân bố liều trong môi trường tán xạ từ sự phân bố thông lượng photon trong không khí. Do đó, hình thức luận AAPM TG-43 đã đề xuất công thức mới, sử dụng các đại lượng như hàm số dị hướng F(r,θ), hằng số suất liều Λ; hệ số hình học G(r,θ); hàm số liều xuyên tâm g(r); độ lớn kerma không khí Sk. Các đại lượng này dùng để thay thế cho các đại lượng cũ:  Hoạt độ biểu kiến Aapp được thay bởi độ lớn kerma không khí Sk.  Hằng số suất liều phát ra    x được thay bởi hằng số suất liều Λ.  (1/r2) được thay bởi hệ số hình học G(r,θ) (chỉ trong trường hợp 2 chiều)  Hệ số hấp thụ mô T(r) được thay bởi hàm liều xuyên tâm g(r).  Hằng số dị hướng an được thay bởi hàm dị hướng F(r,θ) (chỉ cho trường hợp 2 chiều). Phương pháp mới này cho phép tính liều xung quanh các nguồn đối xứng hình trụ trong trường hợp 2 chiều, trong khi phương pháp cũ chỉ tính được cho trường hợp một chiều và chỉ đối với nguồn điểm. Trong phương pháp mới này, có hai hàm phụ thuộc khoảng cách r và góc θ: Đó là hệ số hình học G(r,θ) dùng để tính sự phụ thuộc của thông lượng photon xung quanh nguồn trong không gian và hàm dị hướng F(r,θ) dùng để tính tính dị hướng do sự phân bố liều gây ra bởi nguồn trong môi trường tán xạ. Trong khi hàm liều xuyên tâm g(r) dùng để tính sự phụ thuộc vào độ sâu của liều trong môi trường tán xạ dọc theo trục vuông góc của nguồn thì hàm dị hướng F(r,θ) tính tính dị hướng của liều so với liều ở trục vuông góc của nguồn. Sau đây, chúng tôi sẽ nói rõ hơn về công thức và các đại lượng mới này.
  19. A/ Công thức tổng quát trong trường hợp 2 chiều Hình 1.3. Hình thức tính liều AAPM Xét nguồn đối xứng trụ như trong hình 1.3. Suất liều D (r , ) ở vị trí (r, θ) có thể được tính bằng công thức D (r ,  )  S k  G ( r ,  ) / G (ro ,  o )  g (r ) F (r ,  ) (1.2) Với hàm số dị hướng F(r,θ), hằng số suất liều Λ; hệ số hình học G(r,θ); hàm số liều xuyên tâm g(r); độ lớn kerma không khí Sk. Sau đây, chúng tôi sẽ giới thiệu một số đại lượng quan trọng sẽ tính trong luận văn này. 1. Điểm tham chiếu đối với việc tính liều Điểm tham chiếu (ro, θo) được chọn là điểm nằm trên đường vuông góc với nguồn ở khoảng cách 1cm tính từ tâm nguồn (nghĩa là ro = 1cm, θo = π/2). 2. Độ lớn kerma không khí Sk Độ lớn kerma không khí cho biết cường độ của nguồn xạ trị áp sát. Được định nghĩa bằng tích của suất kerma không khí ở khoảng cách d trong không gian K (d ) , đo dọc theo trục vuông góc của nguồn với bình phương khoảng cách d. S k  K (d )d 2 (1.3) 3. Hằng số suất liều Λ Hằng số suất liều được định nghĩa là suất liều đối với nước ở khoảng cách 1 cm trên trục vuông góc với nguồn có độ lớn kerma không khí bằng một đơn vị, đặt trong phantom nước. Cần chú ý rằng Λ là đại lượng tuyệt đối, không giống các đại lượng khác (chúng đều đã được chuẩn hóa).   D (ro , o ) / Sk (1.4) 4. Hệ số hình học G(r, θ) Hệ số hình học xét đến sự thay đổi của liều chỉ dựa trên sự phân bố không gian của hoạt độ bên trong nguồn, bỏ qua sự hấp thụ photon và tán xạ trong cấu trúc của nguồn.
  20.    (r )dV / r'  r  ' ' 2  G (r ,  )  V (1.5)   (r )dV ' ' V Với  (r ' ) là mật độ bức xạ ở điểm p(r ' )  p( x ' , y ' , z ' ) bên trong nguồn và V là thể tích tích phân tính trên toàn lõi của nguồn. dV ' là yếu tố thể tích ở vị trí r ' trong nguồn. Khi sự phân bố đồng vị phóng xạ có thể xấp xỉ được xem như nguồn điểm hay nguồn thẳng có chiều dài L thì G(r, θ) rút gọn lại còn G p (r ,  )  r 2 : đối với nguồn điểm (1.6)    Nếu θ ≠ 0o GL (r ,  )   Lr sin  : đối với nguồn thẳng dài L (1.7)   1  r 2  L2 / 4 Nếu θ = 0 o  5. Hàm liều xuyên tâm g(r) Hàm liều xuyên tâm g(r) xét đến hiệu ứng hấp thụ và tán xạ trong môi trường dọc theo trục vuông góc với nguồn. D (r , o ) GX (ro , o ) g X (r )  (1.8) D (ro ,  o ) GX (r ,  o ) Để tính các giá trị khác của g X (r ) dựa trên các giá trị đã đo được, người ta sẽ khai triển g X (r ) thành đa thức và xác định các hệ số tương ứng. Trong các kế hoạch điều trị người ta có thể sử dụng đến đa thức bậc 5. g X (r )  ao  a1r  a2 r 2  a3 r 3  a4 r 4  a5 r 5 (1.9) “X” được thay thế tương ứng với nguồn điểm, “P”, hoặc nguồn thẳng dài, “L”. Các hệ số ao đến a5 cần phải được xác định theo phương pháp bình phương tối thiểu với sai số nhỏ hơn ± 2%. Hàm liều xuyên tâm chỉ áp dụng cho trục vuông góc (θo = π/2). Hàm này xác định sự giảm của suất liều dọc theo trục vuông góc do sự hấp thụ và tán xạ trong môi trường. Nó có thể bị ảnh hưởng bởi sự hấp thụ photon của lớp vỏ và vật liệu nguồn. 6. Hàm dị hướng F(r, θ) Hàm dị hướng tính xét đến sự dị hướng của sự phân bố liều xung quanh nguồn, bao gồm hiệu ứng hấp thụ và tán xạ trong môi trường. D (r , ) GL (r ,  o ) F (r , )  (1.10) D (r ,  o ) GL (r , ) Hàm này đưa ra sự thay đổi của suất liều theo các góc ở từng khoảng cách do sự tự lọc (selffiltration), sự lọc xiên (oblique filtration) của photon sơ cấp khi xuyên qua lớp vỏ vật chất và sự tán xạ của photon trong môi trường. Vai trò của hệ số hình học là nhấn mạnh đến sự ảnh hưởng của định luật bình phương nghịch đảo đối với phân bố liều xung quanh nguồn.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2