intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Năng lượng (Năng lượng và công)

Chia sẻ: Nguyen Phuonganh | Ngày: | Loại File: PDF | Số trang:16

84
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Năng lượng và công Có thể định nghĩa một cách đơn giản nhất năng lượng là khả năng tạo nên công hoặc gây nên những biến đổi đặc biệt. Do đó, tất cả các quá trình lý, hoá là kết quả của việc sử dụng hoặc vận động của năng lượng. Tế bào sống thực hiện ba loại công chủ yếu, tất cả đều cần thiết cho các quá trình sống.

Chủ đề:
Lưu

Nội dung Text: Năng lượng (Năng lượng và công)

  1. Năng lượng (Năng lượng và công) 16.1. NĂNG LƯỢNG 16.1.1. Năng lượng và công Có thể định nghĩa một cách đơn giản nhất năng lượng là khả năng
  2. tạo nên công hoặc gây nên những biến đổi đặc biệt. Do đó, tất cả các quá trình lý, hoá là kết quả của việc sử dụng hoặc vận động của năng lượng. Tế bào sống thực hiện ba loại công chủ yếu, tất cả đều cần thiết cho các quá trình sống.  Công hoá học, bao gồm việc tổng hợp các phân tử sinh học phức tạp từ các tiền chất đơn giản hơn. Năng lượng ở đây được dùng để nâng cao tính phức tạp phân tử của tế bào.  Công vận chuyển, cần năng lượng để hấp thu các chất dinh dưỡng, loại bỏ các chất thải và duy trì các cân bằng ion.
  3. Như ta biết, nhiều phân tử chất dinh dưỡng bên ngoài môi trường phải đi vào tế bào mặc dù nồng độ nội bào của các chất này thường cao hơn ngoại bào nghĩa là ngược với gradien điện hoá. Với các chất thải và các chất độc hại cần phải được loại bỏ khỏi tế bào, tình hình cũng diễn ra tương tự.  Công cơ học, có lẽ là loại công quen thuộc nhất trong ba loại công. Năng lượng ở đây cần cho việc thay đổi vị trí vật lý của các cơ thể, các tế bào và các cấu trúc bên trong tế bào. Hầu hết năng lượng sinh học bắt nguồn từ ánh sáng mặt trời khả kiến chiếu lên bề mặt trái đất. Quang năng được
  4. hấp thu bởi các sinh vật quang dưỡng trong quá trình quang hợp nhờ chất diệp lục và các sắc tố khác sau đó chuyển thành hoá năng. Trái với sinh vật quang dưỡng, nhiều vi khuẩn hoá tự dưỡng vô cơ (chemolithoautotrophs) lại thu được năng lượng nhờ oxy hoá các chất vô cơ. Hoá năng từ quang hợp và hoá dưỡng vô cơ sau đó có thể được các sinh vật quang tự dưỡng vô cơ và hoá tự dưỡng vô cơ sử dụng để chuyển CO2 thành các phân tử sinh học như Glucose (Hình 16.1).
  5.  Hình 16.1: Dòng carbon và năng lượng trong một hệ sinh thái (Theo: Prescott và cs, 2005) Các phân tử phức tạp do các cơ thể tự dưỡng tổng hợp (cả thực vật và vi sinh vật) được dùng làm nguồn carbon cho các sinh vật hoá dị dưỡng và các sinh vật tiêu thụ khác vốn sử dụng các phân tử hữu cơ phức tạp làm nguồn vật chất và năng lượng để xây dựng nên các cấu trúc tế bào của riêng mình (trên thực tế các sinh vật tự dưỡng cũng
  6. sử dụng các phân tử hữu cơ phức tạp). Các sinh vật hoá dị dưỡng thường sử dụng O2 làm chất nhận electron khi oxy hoá Glucose và các phân tử hữu cơ khác thành CO2. Trong quá trình này - được gọi là hô hấp hiếu khí - O2 đóng vai trò là chất nhận electron cuối cùng và bị khử thành nước. Quá trình trên giải phóng ra nhiều năng lượng. Do đó trong hệ sinh thái năng lượng được hấp thu bởi các cơ thể quang tự dưỡng và hoá tự dưỡng vô cơ. Sau đó, một phần năng lượng này được chuyền cho các cơ thể hoá dị dưỡng khi chúng sử dụng các chất dinh dưỡng bắt nguồn từ bọn tự dưỡng (Hình 16.1).
  7. CO2 tạo thành trong hô hấp hiếu khí có thể lại được lắp vào các phân tử hữu cơ phức tạp trong quang hợp và hoá tự dưỡng vô cơ. Rõ ràng, dòng carbon và năng lượng trong hệ sinh thái có liên quan mật thiết với nhau. Các tế bào phải vận chuyển năng lượng một cách có hiệu quả từ bộ máy sản xuất năng lượng tới các hệ thống thực hiện công. Nghĩa là, chúng cần có một đồng tiền chung về năng lượng để tiêu dùng, đó là Adenosine 5’- triPhosphate tức ATP (hình 16.2).
  8. Hình 16.2. Adenosine triPhosphate và Adenosine diPhosphate. (Theo Prescott, Harley và Klein, 2005)
  9. Hình 16.3: Chu trình năng lượng của tế bào. Khi ATP phân giải thành Adenosine diPhosphate (ADP) và ortoPhosphate (Pi) năng lượng giải phóng ra sẽ được dùng để thực hiện công hữu ích. Sau đó, năng lượng từ quang hợp, hô hấp hiếu khí, hô hấp kỵ khí và lên men lại được dùng để tái tổng hợp ATP từ ADP và Pi trong chu trình năng lượng của tế bào (Hình 16.3).
  10. ATP được tạo thành từ năng lượng cung cấp bởi hô hấp hiếu khí, hô hấp kị khí, lên men và quang hợp. Sự phân giải của ATP thành ADP và Phosphate (Pi) giúp cho việc sản ra công hóa học, công vận chuyển và công cơ học. 16.1.2. Các định luật về nhiệt động học Để hiểu được năng lượng tạo thành ra sao và ATP hoạt động như thế nào với vai trò là đồng tiền năng lượng ta cần nắm được một số nguyên lý cơ bản của nhiệt động học. Nhiệt động học phân tích những thay đổi về năng lượng trong một tổ hợp vật thể (ví dụ: một tế bào hay một cây) được gọi là một
  11. hệ thống. Mọi vật thể khác trong tự nhiên được gọi là môi trường xung quanh. Nhiệt động học tập trung vào sự sai khác năng lượng giữa trạng thái ban đầu và trạng thái cuối cùng của một hệ thống mà không quan tâm đến tốc độ của quá trình. Chẳng hạn, nếu một xoong nước được đun đến sôi thì, về nhiệt động học, chỉ điều kiện nước lúc ban đầu và khi sôi là quan trọng, còn việc nước được đun nhanh chậm ra sao và được đun trên loại bếp lò nào thì không cần chú ý. Trong nhiệt động học không thể không đề cập đến hai định luật quan trọng sau đây.
  12. Theo định luật thứ nhất, năng lượng không thể được tạo ra hoặc mất đi. Tổng năng lượng trong tự nhiên là hằng số mặc dù có thể được phân bố lại. Chẳng hạn, trong các phản ứng hoá học, thường diễn ra sự trao đổi năng lượng (Ví dụ, nhiệt được thoát ra ở các phản ứng ngoại nhiệt và được hấp thu trong các phản ứng nội nhiệt) nhưng những sự trao đổi nhiệt này không trái với định luật trên. Để xác định lượng nhiệt được sử dụng trong hoặc thoát ra từ một phản ứng nào đó người ta dùng hai loại đơn vị năng lượng: một calo (cal) là lượng nhiệt năng cần để tăng nhiệt độ của một gam nước từ
  13. 14,5 đến 15,50C. Lượng nhiệt cũng có thể được biểu hiện bằng joule (joule, J) là đơn vị của công. 1 cal của nhiệt tương đương với 4,1840 J của công. 1000 cal hay 1 kilocalo (kcal) là lượng nhiệt đủ đun sôi khoảng 1,9ml nước. 1 kilojoule (kj) là lượng nhiệt đủ đun sôi khoảng 0,44 ml nước hoặc giúp cho một người nặng 70 kg leo lên được 35 bậc. Joule thường được các nhà hoá học và vật lý học sử dụng, còn các nhà sinh học lại quen sử dụng calo khi nói về năng lượng. Vì vậy, calo cũng được sử dụng ở đây khi những sự thay đổi năng lượng được đề cập.
  14. Mặc dù năng lượng được bảo tồn trong tự nhiên nhưng định luật thứ nhất của nhiệt động học không giải thích được nhiều quá trình vật lý và hoá học. Hãy lấy một ví dụ đơn giản để làm sáng tỏ điều nói trên. Hình 16.4: Sự bành trướng của khí từ xylanh chứa đầy khí sang xylanh rỗng khí. (Theo Prescott, Harley và Klein, 2005)
  15. Giả dụ, ta nối một xylanh đầy khí với một xylanh rỗng khí bằng bằng một ống chứa 1 van (Hình 16.4). Nếu ta mở van khí sẽ từ xylanh đầy tràn sang xylanh rỗng cho đến khi khí áp cân bằng ở 2 xylanh. Năng lượng không chỉ được phân bố lại, nhưng cũng được bảo tồn. Sự bành trướng của khí được giải thích bằng định luật thứ hai của nhiệt động học và một trạng thái vật chất được gọi là entropi. Có thể xem entropi là đại lượng đo tính hỗn độn hoặc mất trật tự của một hệ thống. Tính hỗn độn của một hệ thống càng lớn thì entropi của hệ thống cũng càng lớn. Định luật thứ hai nói rằng các quá trình
  16. vật lý và hoá học diễn ra theo cách sao cho tính hỗn độn hoặc mất trật tự của cả hệ thống và môi trường xung quanh tăng tới cực đại có thể. Khí bao giờ cũng sẽ bành trướng sang xylanh trống.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2