YOMEDIA
ADSENSE
SKKN: Biên soạn câu hỏi trắc nghiệm khách quan chủ đề nguyên hàm và tích phân theo các cấp độ nhận thức
48
lượt xem 2
download
lượt xem 2
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Đề tài nghiên cứu có tính khả thi, và ứng dụng vào thực tiễn, mang lại hiệu quả cao trong giờ học Toán ở trường phổ thông. Giúp học sinh có niềm say mê và hứng thú với môn học đồng thời khắc sâu được kiến thức cũng như thấy được mối liên quan giữa các kiến thức của môn học.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: SKKN: Biên soạn câu hỏi trắc nghiệm khách quan chủ đề nguyên hàm và tích phân theo các cấp độ nhận thức
- BÁO CÁO KẾT QUẢ NGHIÊN CỨU, ỨNG DỤNG SÁNG KIẾN 1. Lời giới thiệu Sau ba năm thực hiện thi TNKQ môn toán, tôi nhận thấy học sinh gặp nhiều khó khăn trong việc định hướng, tìm phương án giải quyết câu hỏi TNKQ, đặc biệt còn lúng túng trong việc áp dụng kiến thức đã học vào bài toán, không phân biệt được mức độ câu hỏi nên việc phân bố thời gian vào các câu hỏi chưa thật sự hợp lý. Với mục đích giúp học sinh về cơ bản phân loại được cấp độ câu hỏi (nhận biết, thông hiểu, vận dụng, vận dụng cao) để phân bố thời gian, định hướng tìm phương án giải quyết tối ưu cho các câu hỏi TNKQ về Nguyên hàm và tích phân trong kỳ thi THPT quốc gia năm 2020, tôi lựa chọn sáng kiến "Biên soạn câu hỏi trắc nghiệm khách quan chủ đề nguyên hàm và tích phân theo các cấp độ nhận thức" Trong khuôn khổ của sáng kiến, căn cứ vào nội dung đề thi THPT quốc gia năm 2017, năm 2018; năm 2019 của Bộ GD&ĐT, tôi trình bày nội dung là biên soạn câu hỏi TNKQ có liên quan đến chương 3 giải tích lớp 12 (Nguyên hàm – Tích phân và Ứng dụng) theo từng cấp độ nhận thức: nhận biết, thông hiểu, vận dụng, vận dụng cao. Trong mỗi phần đều có một hệ thống các câu hỏi trắc nghiệm được phân loại để giáo viên và học sinh tham khảo trong quá trình giảng dạy và học tập. 2. Tên sáng kiến: Biên soạn câu hỏi trắc nghiệm khách quan chủ đề nguyên hàm và tích phân theo các cấp độ nhận thức 3. Tác giả sáng kiến: Họ và tên: Phạm Thanh Đức Địa chỉ tác giả sáng kiến: Trường THPT Trần Hưng Đạo Số điện thoại: 0346172708 E_mail:phamthanhduc.gvtranhungdao@vinhphuc.edu.vn 4. Chủ đầu tư tạo ra sáng kiến: Phạm Thanh Đức 5. Lĩnh vực áp dụng sáng kiến: Toán giải tích 12 6. Ngày sáng kiến được áp dụng lần đầu hoặc áp dụng thử: 12/2019 7. Mô tả bản chất của sáng kiến: Phần 1. THỰC TRẠNG CỦA VẤN ĐỀ 1. Về thực trạng biên soạn câu hỏi TNKQ của giáo viên, làm bài tập TNKQ của học sinh Qua một số năm thực hiện việc biên soạn đề thi, tôi nhận thấy việc biên soạn câu hỏi TNKQ của một số giáo viên môn Toán còn gặp nhiều lúng túng, khó khăn, một số câu hỏi TNKQ chưa rõ ràng, hỏi nhiều vấn đề khác nhau 2
- trong một câu hỏi, việc biên soạn các phương án trả lời chưa hợp lý, chưa có các phương án nhiễu phù hợp với từng câu hỏi. Thực nghiệm cho học sinh làm đề minh họa kỳ thi THPT quốc gia của Bộ GD&ĐT, đề thử nghiệm của Bộ, kết quả thu được không cao do học sinh chưa phân biệt được câu hỏi nào thuộc cấp độ nào, vẫn còn dành nhiều thời gian để làm một câu trắc nghiệm. 2. Về câu hỏi/đề thi trắc nghiệm khách quan Có rất nhiều loại câu hỏi TNKQ như: Trắc nghiệm nhiều lựa chọn (MCQ: Multiple choise questions); trắc nghiệm đúng, sai; trắc nghiệm điền khuyết; trắc nghiệm ghép đôi. Trong đề thi THPT quốc gia, chỉ xét câu hỏi TNKQ nhiều lựa chọn (MCQ) với 4 phương án để thí sinh trả lời, trong đó chỉ có một phương án đúng. Câu MCQ gồm 2 phần: Phần 1: Câu phát biểu căn bản, gọi là câu dẫn hoặc câu hỏi. Phần 2: Các phương án để thí sinh lựa chọn, trong đó chỉ có 1 phương án đúng hoặc đúng nhất, các phương án còn lại là phương án nhiễu. Trong phạm vi của đề tài này, tôi chỉ xét đến câu hỏi TNKQ nhiều lựa chọn (MCQ) với 4 phương án trả lời, trong đó chỉ có một phương án đúng. 3. Về câu hỏi MCQ (Multiple choise questions) a) Đặc tính của câu hỏi trắc nghiệm khách quan nhiều lựa chọn Phân biệt các cấp độ của câu hỏi MCQ (theo GS. Boleslaw Niemierko) Cấp độ Mô tả Học sinh nhớ các khái niệm cơ bản, có thể nêu lên hoặc nhận Nhận biết ra chúng khi được yêu cầu. Học sinh hiểu các khái niệm cơ bản và có thể vận dụng chúng, Thông khi chúng được thể hiện theo cách tương tự như cách giáo viên hiểu đã giảng hoặc như các ví dụ tiêu biểu về chúng trên lớp học. Vận dụng Học sinh có thể hiểu được khái niệm ở một cấp độ cao hơn “thông hiểu”, tạo ra được sự liên kết logic giữa các khái niệm cơ bản và có thể vận dụng chúng để tổ chức lại các thông tin đã 3
- Cấp độ Mô tả được trình bày giống với bài giảng của giáo viên hoặc trong sách giáo khoa. Học sinh có thể sử dụng các kiến thức về môn học chủ đề để giải quyết các vấn đề mới, không giống với những điều đã được Vận dụng học, hoặc trình bày trong sách giáo khoa, nhưng ở mức độ phù cao hợp nhiệm vụ, với kỹ năng và kiến thức được giảng dạy phù hợp với mức độ nhận thức này. Đây là những vấn đề, nhiệm vụ giống với các tình huống mà Học sinh sẽ gặp phải ngoài xã hội. Theo lí thuyết khảo thí hiện đại, các câu hỏi MCQ có thể phân chia thành các cấp độ như sau: Cấp độ Mô tả Chỉ yêu cầu thí sinh sử dụng những thao tác tư duy đơn giản như tính toán số học, ghi nhớ, áp dụng trực tiếp các công Câu hỏi dễ thức, khái niệm… (cấp độ nhận Lời giải chỉ bao gồm 1 bước tính toán, lập luận. biết, thông Mối quan hệ giữa giả thiết và kết luận là trực tiếp. hiểu) Câu hỏi đề cập tới các nội dung kiến thức sơ cấp, trực quan, không phức tạp, trừu tượng. Yêu cầu thí sinh sử dụng những thao tác tư duy tương đối Câu hỏi trung đơn giản như phân tích, tổng hợp, áp dụng một số công thức, bình khái niệm cơ bản… (tương đương Lời giải bao gồm từ 1 tới 2 bước tính toán, lập luận. cấp độ vận Giả thiết và kết luận có mối quan hệ tương đối trực tiếp. dụng) Câu hỏi đề cập tới các nội dung kiến thức tương đối cơ bản, không quá phức tạp, trừu tượng. Yêu cầu thí sinh sử dụng các thao tác tư duy cao như phân Câu hỏi khó tích, tổng hợp, đánh giá, sáng tạo. (tương đương Giả thiết và kết luận không có mối quan hệ trực tiếp. cấp độ vận Lời giải bao gồm từ 2 bước trở lên. dụng cao) Câu hỏi đề cập tới các nội dung kiến thức khá sâu sắc, trừu tượng. b) Một số nguyên tắc khi viết câu hỏi MCQ 4
- Câu hỏi viết theo đúng yêu cầu của các thông số kỹ thuật trong ma trận chi tiết đề thi đã phê duyệt, chú ý đến các qui tắc nên theo trong quá trình viết câu hỏi. Câu hỏi không được sai sót về nội dung chuyên môn. Câu hỏi có nội dung phù hợp thuần phong mỹ tục Việt Nam; không vi phạm về đường lối chủ trương, quan điểm chính trị của Đảng, của nước Cộng hoà Xã hội Chủ nghĩa Việt Nam. Câu hỏi phải là mới; không sao chép nguyên dạng từ sách giáo khoa hoặc các nguồn tài liệu tham khảo; không sao chép từ các nguồn đã công bố bản in hoặc bản điện tử dưới mọi hình thức. Câu hỏi cần khai thác tối đa việc vận dụng các kiến thức để giải quyết các tình huống thực tế trong cuộc sống. Các ký hiệu, thuật ngữ sử dụng trong câu hỏi phải thống nhất. c) Kĩ thuật viết câu hỏi MCQ Mỗi câu hỏi phải đo một kết quả học tập quan trọng (mục tiêu xây dựng): Cần xác định đúng mục tiêu của việc kiểm tra, đánh giá để từ đó xây dựng câu hỏi cho phù hợp. Tập trung vào một vấn đề duy nhất: một câu hỏi tự luận có thể kiểm tra được một vùng kiến thức khá rộng của một vấn đề. Tuy nhiên, đối với câu MCQ, người viết cần tập trung vào một vấn đề cụ thể hơn (hoặc là duy nhất). Dùng từ vựng một cách nhất quán với nhóm đối tượng được kiểm tra. Tránh việc một câu trắc nghiệm này gợi ý cho một câu trắc nghiệm khác, giữ các câu độc lập với nhau. Tránh các kiến thức quá riêng biệt hoặc câu hỏi dựa trên ý kiến cá nhân. Tránh sử dụng các cụm từ đúng nguyên văn trong sách giáo khoa. Tránh việc sử dụng sự khôi hài. Tránh viết câu không phù hợp với thực tế. 5
- d) Một số lưu ý khi viết phần dẫn Đảm bảo rằng các hướng dẫn trong phần dẫn là rõ ràng và việc sử dụng từ ngữ cho phép thí sinh biết chính xác họ được yêu cầu làm cái gì. Để nhấn mạnh vào kiến thức thu được nên trình bày câu dẫn theo định dạng câu hỏi thay vì định dạng hoàn chỉnh câu. Nếu phần dẫn có định dạng hoàn chỉnh câu, không nên tạo một chỗ trống ở giữa hay ở bắt đầu của phần câu dẫn. Tránh sự dài dòng trong phần dẫn. Nên trình bày phần dẫn ở thể khẳng định, Khi dạng phủ định được sử dụng, từ phủ định cần phải được nhấn mạnh hoặc nhấn mạnh bằng cách đặt in đậm, hoặc gạch chân, hoặc tất cả các cách trên. e) Kỹ thuật viết các phương án lựa chọn Phải chắc chắn có và chỉ có một phương án đúng hoặc đúng nhất đối với câu chọn một phương án đúng/đúng nhất. Nên sắp xếp các phương án theo một thứ tự nào đó. Cần cân nhắc khi sử dụng những phương án có hình thức hay ý nghĩa trái ngược nhau hoặc phủ định nhau. Các phương án lựa chọn phải đồng nhất theo nội dung, ý nghĩa. Các phương án lựa chọn nên đồng nhất về mặt hình thức (độ dài, từ ngữ,…). Tránh lặp lại một từ ngữ/thuật ngữ nhiều lần trong câu hỏi. Viết các phương án nhiễu ở thể khẳng định. Tránh sử dụng cụm từ “tất cả những phương án trên”, “không có phương án nào”. Tránh các thuật ngữ mơ hồ, không có xác định cụ thể về mức độ như “thông thường”, “phần lớn”, “hầu hết”,... hoặc các từ hạn định cụ thể như “luôn luôn”, “không bao giờ”, “tuyệt đối”. Phương án nhiễu không nên “sai” một cách quá lộ liễu. 6
- Phần 2. CÁC BIỆN PHÁP TIẾN HÀNH ĐỂ GIẢI QUYẾT VẤN ĐỀ Dưới đây, tôi trình bày một số câu hỏi trắc nghiệm được xây dựng theo nội dung, theo từng cấp độ nhận biết căn cứ trên đề minh họa, đề thi của Bộ GD&ĐT. Bên cạnh đó, phân tích một số sai lầm thường mắc phải khi biên soạn câu hỏi trắc nghiệm khách quan trong chủ đề này. 1. Biên soạn câu hỏi TNKQ phần nguyên hàm 1.1. Biên soạn câu hỏi ở cấp độ nhận biết Câu 1. Hàm số có nguyên hàm trên khoảng nếu A. xác định trên . B. có giá trị lớn nhất trên . C. có giá trị nhỏ nhất trên . D. liên tục trên . Câu 2. Xét hai khẳng định sau: (I) Mọi hàm số liên tục trên đoạn đều có đạo hàm trên đoạn đó. (II) Mọi hàm số liên tục trên đoạn đều có nguyên hàm trên đoạn đó. Trong hai khẳng định trên: A. Chỉ có (I) đúng. B. Chỉ có (II) đúng. C. Cả hai đều đúng. D. Cả hai đều sai. Câu 3. Xét hai câu sau: (I) (II) Trong hai câu trên: A. Chỉ có (I) đúng. B. Chỉ có (II) đúng. C. Cả hai câu đều đúng. D. Cả hai câu đều sai. Phân tích: (I) hiển nhiên đúng, đây là một tích chất của nguyên hàm. (II) sai trong trường hợp Câu 4. Các khẳng định nào sau đây là sai ? A. . B. C. . D. ( là hằng số khác 0). Câu 5. Trong các khẳng định sau, khẳng định nào sai ? A. là một nguyên hàm của . 7
- B. là một nguyên hàm của . C. Nếu và đều là nguyên hàm của hàm số thì D. . Câu 6. Trong các khẳng định sau, khẳng định nào sai ? A. Nếu là một nguyên hàm của hàm số thì mọi nguyên hàm của đều có dạng ( là hằng số). B. . C. là một nguyên hàm của hàm số . D. là một nguyên hàm của hàm số . Câu 7. Trong các khẳng định sau, khẳng định nào sai ? A. ( là hằng số). B. ( là hằng số). C. ( là hằng số). D. ( là hằng số). Câu 8. Hàm số có nguyên hàm trên tập nào sau đây ? A. . B. . C. . D. . Câu 9. Tìm nguyên hàm của hàm số A. B. C. D. Câu 10. Tìm nguyên hàm của hàm số A. B. C. D. Câu 11. Tìm nguyên hàm của hàm số A. B. C. D. Câu 12. Tìm nguyên hàm của hàm số A. B. C. D. Câu 13. Tìm nguyên hàm của hàm số A. B. C. D. Câu 14. Tìm nguyên hàm của hàm số A. B. C. D. Câu 15. Tính ta được kết quả nào sau đây ? 8
- A. B. . C. . D. Câu 16. Hàm số nào sau đây không phải là nguyên hàm của hàm số ? A. B. C. D. Câu 17. Hàm số là một nguyên hàm của hàm số nào say đây ? A. B. C. D. Câu 18. Tìm nguyên hàm của hàm số . A. . B. . C. . D. . Câu 19. Nguyên hàm của hàm số là hàm số nào sau đây ? A. B. C. D. . Câu 20. Hàm số là nguyên hàm của hàm số nào ? A. B. C. D. Ở các câu hỏi này, học sinh chỉ cần nhớ được nguyên hàm của một số hàm số cơ bản (đã có trong sách giáo khoa) là nhận biết được phương án trả lời đúng. Các câu hỏi trên, đều có các phương án nhiễu "hợp lí", là phương án nhiễu mà học sinh nhầm với việc tìm nguyên hàm và tính đạo hàm của các hàm số cơ bản. 1.2. Biên soạn câu hỏi ở cấp độ thông hiểu Ở cấp độ thông hiểu Học sinh hiểu các khái niệm cơ bản và có thể vận dụng chúng, khi chúng được thể hiện theo cách tương tự như cách giáo viên đã giảng hoặc như các ví dụ tiêu biểu về chúng trên lớp học. Câu 1. là một nguyên hàm của hàm số và Tính A. B. C. D. Câu 2. là một nguyên hàm của hàm số và Tính A. B. C. D. 9
- Câu 3. là một nguyên hàm của hàm số và Tính A. B. C. D. Phân tích: Các câu 1, 2, 3 học sinh cần thực hiện theo 2 bước (đơn giản) để lựa chọn phương án đúng: Tìm họ nguyên hàm của hàm số có chứa hằng số C. Tìm C bằng các điều kiện đề bài, từ đó tính được giá trị cần tìm. Câu 4. Nếu thì là hàm số nào trong các hàm số sau ? A. . B. . C. . D. . Câu 5. Nếu thì là: A. . B. . C. . D. . Câu 6. Tìm tất cả các tham số thực để hàm số là một nguyên hàm của hàm số . A. . B. . C. . D. . Câu 7. Một nguyên hàm của hàm số là kết quả nào sau đây, biết A. B. C. D. Câu 8. Hàm số có và , tính A. B. C. D. Câu 9. Cho hàm số . Tìm để nguyên hàm của thỏa mãn và . A. . B. . C. . D. . Câu 10. Cho hàm số . Nếu là nguyên hàm của hàm số và đồ thị đi qua điểm thì là: A. . B. C. D. Câu 11. Tìm nguyên hàm của hàm số . A.. B. . C. . D. . 10
- 1.3. Biên soạn câu hỏi ở cấp độ vận dụng (vận dụng thấp) Học sinh phải hiểu được khái niệm ở một cấp độ cao hơn “thông hiểu”, tạo ra được sự liên kết logic giữa nguyên hàm, tính chất của nguyên hàm để tổ chức lại lại các thông tin đã được trình bày giống với bài giảng của giáo viên hoặc trong sách giáo khoa. Câu 1. Tìm họ nguyên hàm cùa hàm số A. B. C. D. Câu 2. Tìm họ nguyên hàm của hàm số A. B. C. D. Câu 3. Tìm họ nguyên hàm của hàm số A. B. C. D. Phân tích: Trong câu 1, 2, 3 nếu học sinh thực hiện "lời giải ngược", tính đạo hàm để lựa chọn phương án đúng sẽ mất rất nhiều thời gian. Nếu học sinh tìm nguyên hàm bằng phương pháp từng phần, đặt: thì việc tìm nguyên hàm sẽ mất nhiều thời gian. Phương án tối ưu trong các bài toán này là chọn hệ số C thích hợp khi tìm v từ dv: . Chúng ta sẽ tìm được ngay nguyên hàm của và lựa chọn được phương án đúng. Câu 4. là một nguyên hàm của hàm số Tìm A.. B. . C. . D. . Câu 5. là một nguyên hàm của hàm số . Tìm A.. B. . 11
- C. . D. Câu 6. là họ các nguyên hàm của hàm số . là hàm số nào sau đây? A.. B. . C. . D. . Câu 7. Tìm . A. . B. . C. . D. . Câu 8. là nguyên hàm của hàm số và Tìm A. . B. . C. . D. . Câu 9. là nguyên hàm của hàm số và Tìm A. . B. . C. . D. Câu 10. Tìm A. B. C. D. Câu 11. Tìm A. . B. . C. . D. . 1.4. Biên soạn câu hỏi ở cấp độ vận dụng cao Các câu hỏi được xây dựng từ các bài toán Vật lí, sử dụng ý nghĩa Vật lí của đạo hàm và các tính chất Vật lí. Câu 1. Một vật chuyển động có gia tốc (m/s2). Vận tốc ban đầu của vật là 8m/s. Vận tốc của vật sau 10 giây bằng bao nhiêu ? (làm tròn đến hàng phần chục). A. 20,0 m/s B. 8,5 m/s C. 12,0 m/s. D. 16,0 m/s. Câu 2. Một vật đang chuyển động với vận tốc 10m/s thì tăng tốc với gia tốc (m/s2). Quãng đường vật đi được trong khoảng thời gian 5 giây kể từ lúc bắt đầu tăng tốc bằng bao nhiêu ? A. 200 m. B. 150 m. C. 95 m. D. 250 m. Câu 3. Một vật đang chuyển động với vận tốc 20 m/s thì tăng tốc với gia tốc (m/s2). Quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc bằng bao nhiêu ? 12
- A. 900 m. B. 700 m. C. 200 m. D. 950 m. Câu 4. Một ô tô đang chạy với vận tốc m/s thì người lái đạp phanh. Sau khi đạp phanh, ôtô chuyển động chậm dần đều với vận tốc m/s, trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ôtô còn di chuyển bao nhiêu mét ? A. 2 m B. 5 m C. 10 m D. 20 m. Câu 5. Một vật chuyển động với vận tốc . Quãng đường vật đó đi được trong 4 giây đầu tiên bằng bao nhiêu ? (làm tròn kết quả đến hàng phần trăm). A. m. B. m. C. m. D. m. Câu 6. Bạn Nam ngồi trên máy bay đi du lịch thế giới và vận tốc chuyển động của máy bay là . Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là : A. 36m. B. 252m. C. 1134m. D. 966m. Câu 7. Một ô tô đang chạy với vận tốc 10m/s thì người lái đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc (m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét ? A. 0,2 m. B. 2 m. C. 10 m. D. 20 m. Câu 8. Một vật đang chuyển động với vận tốc 10m/s thì tăng tốc với gia tốc (m/s2). Quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc bằng bao nhiêu ? A. . B. . C.. D.. Câu 9. Một vật chuyển động với vận tốc m/s, có gia tốc . Vận tốc ban đầu của vật là . Vận tốc của vật sau 10 giây là (làm tròn kết quả đến hàng đơn vị): A. . B. . C. . D. . Câu 10. Một đám vi trùng ngày thứ có số lượng là . Biết rằng và lúc đầu đám vi trùng có 250.000 con. Sau 10 ngày số lượng vi trùng là (lấy xấp xỉ hang đơn vị): A. 264.334 con. B. 257.167 con. C. 258.959 con. D. 253.584 con. Câu 11. Gọi là mực nước ở bồn chứa sau khi bơm nước được giây. Biết rằng và lúc đầu bồn không có nước. Tìm mức nước ở bồn sau khi bơm nước được 6 giây (làm tròn kết quả đến hàng phần trăm): A. 2,33 cm. B. 5,06 cm. C. 2,66 cm. D. 3,33 cm. Để làm được dạng bài tập này, học sinh phải nhớ ý nghĩa Vật lí của đạo hàm, từ đó suy ra: nếu biết vận tốc của chuyển động thì ta có thể tìm được phương trình của chuyển động dựa vào giả thiết ban đầu và công thức 13
- 2. Biên soạn câu hỏi TNKQ phần tích phân và ứng dụng 2.1. Biên soạn câu hỏi ở cấp độ nhận biết Câu 1. Nếu thì bằng bao nhiêu ? A. B. C. D. Câu 2. Nếu thì bằng bao nhiêu ? A. B. C. D. Câu 3. Nếu thì bằng bao nhiêu ? A. B. C. D. Câu 4. Kết quả của phép tính bằng bao nhiêu ? A. B. C. D. Câu 5. Tích phân bằng bao nhiêu ? A. B. C. D. Câu 6. Tích phân bằng bao nhiêu ? A. B. C. D. Câu 7. Tích phân bằng bao nhiêu ? A. B. C. D. Câu 8. Tích phân bằng bao nhiêu ? A. B. C. D. Câu 9. Tích phân bằng bao nhiêu ? A. B. C. D. Câu 10. Tích phân bằng bao nhiêu ? A. B. C. D. Câu 11. Tích phân bằng bao nhiêu ? A. B. C. D. Câu 12. Tích phân bằng bao nhiêu ? A. B. C. D. Câu 13. Kết quả của tích phân bằng bao nhiêu ? A. B. C. D. Câu 14. Kết quả của tích phân bằng bao nhiêu ? A. B. C. D. Câu 15. Kết quả của tích phân bằng bao nhiêu ? 14
- A. B. C. D. Câu 16. Tích phân . Giá trị của a bằng bao nhiêu ? A. B. C. D. Câu 17. Diện tích S của hình phẳng được giới hạn bởi hai đồ thị hàm số và hai đường thẳng được tính bằng công thức nào sau đây ? A. B. C. D. Các câu hỏi trên kiểm tra học sinh nhớ các tính chất cơ bản của tích phân, ý nghĩa hình học của tích phân, có thể nêu lên hoặc nhận ra được các tính chất đó trong một bài toán cụ thể, đơn giản. Với những bài toán hỏi kết quả của tích phân, học sinh có thể dùng MTCT để tính và so sánh với các phương án trả lời và lựa chọn phương án đúng. 2.2. Biên soạn câu hỏi ở cấp độ thông hiểu Câu 1. Kết quả của tích phân bằng bao nhiêu ? A. B. C. D. Câu 2. Kết quả của tích phân bằng bao nhiêu ? A. B. C. D. Câu 3. Kết quả của tích phân bằng bao nhiêu ? A. B. C. D. Câu 4. Biết kết quả của tích phân Khi đó bằng bao nhiêu? A. B. C. D. Câu 5. Cho tích phân , với cách đặt thì tích phân đã cho bằng với tích phân nào ? A. B. C. D. Câu 6. Biến đổi thành , với . Khi đó là hàm số nào trong các hàm số sau: A. B. C. D. Câu 7. Giả sử và và thì bằng? A. 5. B. 1. C. 1. D. 5. Câu 8. Tích phân bằng bao nhiêu? A. B. C. D. 15
- Câu 9. Cho hình phẳng giới hạn bởi đồ thị hàm số , trục Ox và hai đường thẳng , . Viết công thức tính thể tích V của khối tròn xoay khi quay hình đó quanh trục hoành? A. B. C. D. Câu 10. Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số và A. B. C. D. Câu 11. Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số và A. B. C. D. Câu 12. Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số và A. B. C. D. Câu 13. Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số, trục Ox và hai đường thẳng bằng bao nhiêu? A. (đvdt). B. (đvdt). C. (đvdt). D. Câu 14. Thể tích V của vật thể tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng , xung quanh trục hoành bằng bao nhiêu? A. (đvtt). B. (đvtt). C. (đvtt). D. (đvtt). Câu 15. Cho đồ thị hàm số như hình vẽ. Diện tích S của phần hình phẳng tô đậm được tính bằng công thức nào? A. B. C. D. 2.3. Biên soạn câu hỏi ở cấp độ vận dụng (vận dụng thấp) Câu 1. Biết Tính A. B. C. D. Câu 2. Biết Tính A. B. C. D. 16
- Câu 3. Biết Tính A. B. C. D. Câu 4. Cho tích phân với . Chọn khẳng định đúng trong các khẳng định sau: A. . B. . C. . D. . * Phân tích câu 1: Trong một số đề thi khảo sát chất lượng của các trường THPT trên toàn quốc, không có các điều kiện Như vậy, liệu có đúng không ? Ta thấy, nếu không có điều kiện thì có vô số bộ số thỏa mãn. Thật vậy, ta có: 17
- Thực hiện phép "tịnh tiến" theo bộ số , giả sử: Đến đây, ta thấy có vô số bộ số thỏa mãn điều kiện (*), chẳng hạn, nếu thì . Do đó, sẽ có vô số bộ thỏa mãn điều kiện . Vì vậy, sẽ không có đáp án phù hợp. Các câu 2, 3, 4 tương tự. Câu 5. Cho tích phân . Biết rằng . Giá trị của m là: A. 2 B. 3 C. D. 8 Câu 6. Để hàm số thỏa mãn và thì a, b nhận giá trị : A. B. C. D. Câu 7. Tập hợp tất cả các giá trị của m sao cho = 5 là tập nào sau đây ? A. {5} B. {1 ; 5} C. {4} D. {4 ; 1} Câu 8. Biết rằng Giá trị của a bằng bao nhiêu ? A. 9 B. 3 C. 27 D. 81 Câu 9. Biết tích phân , với là phân số tối giản. Giá trị bằng: A. B. C. D. Câu 10. Tìm sao cho A. B. C. D. 2 Câu 11. Giá trị nào của b để A. b = 2 hoặc b = 3. B. b = 0 hoặc b = 1. C. b = 6 hoặc b = 0. D. b = 1 hoặc b = 5. Câu 12. Cho , giá trị thoản mãn đẳng thức nào sau đây: A. B. C. D. Câu 13. khi đó giá trị của a bằng bao nhiêu ? A. B. C. D. Câu 14. Biết rằng tích phân , tích bằng A. B. C. D. Câu 15. . Giá trị của c bằng bao nhiêu ? 18
- A. B. C. D. 2.4. Biên soạn câu hỏi ở cấp độ vận dụng cao Câu 1. Diện tích S của hình phẳng trong hình vẽ sau bằng bao nhiêu ? A. B. C. D. Câu 2. Hình phẳng (H) là phần gạch chéo trên hình vẽ. Với Diện tích S của hình phẳng (H) bằng bao nhiêu? A. B. C. D. Câu 3. Tính thể tích vật thể nằm giữa hai mặt phẳng có phương trình , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục tại điểm có hoành độ là một phần tư đường tròn bán kính , ta được kết quả nào sau đây? A. B. C. D. Câu 4. Khi quay hình phẳng giới hạn bởi đồ thị ( C), trục tung và tiếp tuyến của đồ thị (C) tại điểm xung quanh trục tạo thành khối tròn xoay có thể tích V bằng bao nhiêu ? 19
- A. B. C. D. Câu 5. Khi quay hình phẳng giới hạn bởi đồ thị hai hàm số và xung quanh trục Ox tạo thành khối tròn xoay có thể tích V bằng bao nhiêu ? A. B. C. D. Câu 6. Cho (H) là hình phẳng giới hạn bởi các đường và Thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox bằng bao nhiêu? A. B. C. D. Câu 7. Cho (H) là hình phẳng giới hạn bởi các đường và Thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox bằng bao nhiêu? A. B. C. D. Câu 8. Cho (H) là hình phẳng giới hạn bởi các đường và Thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox bằng bao nhiêu? A. B. C. D. Phân tích câu 6, 7, 8: Bài toán: Tính thể tích V của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số và hai đường thẳng quanh trục ? * Học sinh thường mắc sai làm, tính thể tích V bằng công thức: . Công thức trên chỉ đúng trong trường hợp trên đoạn đồ thị hai hàm số trên cùng nằm phí trên hoặc cùng nằm phí dưới trục hoành. * Nếu trên khoảng hai đồ thị trên nằm về hai phía của trục hoành thì thể tích V ở trên được tính theo các bước sau: Giải phương trình trên khoảng và xét dấu của trên khoảng . Giả sử: + 0 0 + Khi đó, thể tích V tính theo công thức 20
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn