S i 11 (241)-201S<br />
<br />
NG6NNGC&B5IS6NG<br />
<br />
97<br />
<br />
|NG6N NGIT HOC-vlTNGff HOC-NGOAI NGd<br />
<br />
TH^TIM HIEU LOGIC TRONG MQT S6<br />
TRUYEN ClTCM DAN GIAN VlfT NAM<br />
TRY TO UNDERSTAND THE LOGIC OF VIETNAM'S FUNNY FOLK STORIES<br />
NGUYfiN H O A N G YfiN<br />
(TS; Dfi hgc TSy Bic)<br />
Abstract: Vietnam's finmy folk stories have the mechanism causing lim from creating<br />
implicit meanings basuig on breaking the common pragmatic rules. In some of fliem, die<br />
violation consists of logical elements. The three fiiimy stories are analyzed to determine and<br />
temporarily name one type of logic in Vietnam's fiinny folk stories.<br />
Key words: Vietnam's fiinnyfolkstories; logic; mechanism causing liin.<br />
hi$n rd' [3]. Do dd, chfic chto ton tfi nhftng<br />
LMddiu<br />
1.1. Logic hgc li khoa hgc nghito dm lofi logic khie nhau trong mgi tinh huing,<br />
nhftng quy luft vi btoh thic suy lufti cia tu hoin cinh, ngay ci nhfing hito htpng vin bj<br />
duy nhfim di tdi nhto Aide ding dfin hidn flivic coi li "phi logic" nhit djnh cflng cd logic<br />
khfich quan. Logic hgc phit triin ttt rit sdm vfi ritog<br />
dft dugc tit nhiiu thinh tvni, diu tidn v4 cbi<br />
1.1 Ti nhflng ggi ^ cia tfie gii Hoing Phd<br />
yiu d lihh vye toto hgc. Cuii tiii ki XX, vfi Hi Ld, ching tdi tin rfing nhttng hito tugng<br />
nhftng phuong phip Uifin hgc dugc vfti dyng phi logic do vi phfm cie quy tfie ngft dyng<br />
vfio nghito ciu cfic ngfinh khoa hgc xS hdi, vfi nhfim myc dich gfiy eudi trong truyto"udi dto<br />
diu tito Ifi ngdn ngft hgc. Cfic phuong phip vfi gian Vift Nam chfic chfin cung cd nhttng logic<br />
cfic lofi logic khfic nhau duge vfti dyng nhiiu ridng eia nd. Vdi suy nghl dd, ehing tdi thtt<br />
tiong nhftng khfio ettu ngdn ngfi. Logic tid tim hiiu Logic trong m$l si tniy(n cudi ddn<br />
tiifinh mdt diim tvra trong vide nghidn ciu gian Vi^lNam.<br />
ngdn ngft ty nhida Mil quan hd giiia logic<br />
Co chi gSy cudi trong tiuyto eudi dto gian<br />
hgc vfi ngdn ngtt hgc trd ndn gin bd, hip dan Vi^t Nam thvrc ra li co chi tfo ra cfic nghia<br />
cic nh4 nghito ettu.<br />
hfim an tito CO sd vi phfm cie nguytotfie ngtt<br />
Trayto cudi dto gian Vidt Nam Ifi mOt dyngflidngfliudng.Vdi quan niim nhttng vi<br />
phin ehuong trinh vfin hgc dSn gian dugc dua phfm dd li sai - phi logic ching tdi dfi tiin<br />
vio gitog dfy trong nhfi tiudng. Viie tim hiiu binhtimhiiu logic tiuyto cudi Vidt Nam tito<br />
tiuyto cudi dto gian Viit Nam 14 mdt vide CO sd tim ra sy cd li tiong chinh nhftng hito<br />
Ifim hip din song vd eiing khd khfin. Tfie gifi tirgng pbi logic iy.<br />
Hotog Phd trong bii "Logic ngdn ngff h(K^' Thdng thudng ndi theo loi hto in sd gittp<br />
(fi di eft) din nhfing hito tugng dugc coi 14 ngudi ndi khdng can tivc tiip tiii hito myc<br />
mo hi khd hiiu song vin cd logic. Logic cia dfeh, dyng y (phd phfin, dfi kfeh, ti cfio) cia<br />
svi kidn, tinh huing dd dugc d$t trong nhiing minh qua cfiu chft. Ngudi ndi sd trinh dugc sy<br />
inii quan hd vdi nhfing tri thic phi thdng cia phto ing, bfit bd cia dii tugng bj phd fdiin, di<br />
ngudi dgc, gfin vditinhhuing, vfin cinh ritog kich. D$c bidt, hidu qufi cia iii ndi niy cao<br />
cia vfin bin. "Ldm khi cdi goi Id "phi logic" hon loi ndi phd phto dfi kich trvrc tiip bdi nd<br />
thdt ra Id cdt logic md chimg ta chua phdt thi hidn duge sy thdng minh, tfii tii, sy df ddm<br />
<br />
98<br />
<br />
N G 6 N N G C & D6I S6NG<br />
<br />
hay thto thiy eia ngudi phd phto. Nd khiin<br />
eho doi tugng bj dfi kidi, chi giiu phii im ttc,<br />
bvrc tic, )ciu hi, ngugng,.. .mi d4nh bim byng<br />
khdng ndi dugc cto gi bdi ngudi ndi "vd can".<br />
Cae tfie gifi dto gian stt dyng m$t trong cfic<br />
cfich tfO nghia h t o an hidu qufi li ehi dgng<br />
xiy dvmg nhfing hoin cinh cd li di cho nhto<br />
v^t vi phfm cfic nguyto tfie ngft dyng:<br />
nguydn tfie ehiiu vft ehi xuit, nguydn tfie l$p<br />
lufti, nguyen tfie hdi thofi, s i dyng cfic hinh<br />
vi ngdn ngtt gito tiip, ttt dd tfo ra tiing cudi<br />
vdi nhfing y nghTa khfic nhau.<br />
Do dd, CO sd de nhto ra nhftng vi phfm<br />
nfiy 14 nhftng li thuyit vi cic nguydn tfie ngft<br />
dyng. Qua vige nhto dito nhttng vi phfm<br />
cfic nguydn tfie ngtt dyng, ching tdi nhto<br />
thiy bto thto nhttng vi phfm niy cung cd if,<br />
cd logic ridng. Nhto fliic dugc nhttng vi<br />
phfm Ito ngudi dgc bft cudi, song di hiiu<br />
dugc tinh cd If, ed logic cia nhfhig sai phfm<br />
thi khdng phfii ai cung nlito ra dugc. Tiong<br />
bii viit niy, ehing tdi tiin hinh thi li giii<br />
logic cua nhttng hidn tugng sai phfm iy<br />
tiong mdt si truygn cudi.<br />
2. Khfio sit at thi<br />
2.L Cd m$t vin di djt ra Ifi, nhftng li<br />
thuyit lidn quan trvrc tiip din n$i dimg khto<br />
sfit cia chtog tdi mdi ehu yiu dttng Ifi d<br />
nhiing ggi md rat ehimg ehung vi svr tin tfi<br />
ciia cfic lofi logic khic nhau trong ngdn ngft.<br />
Bdi flii, chtog tdi mfnh dfn di xuit, ty xSy<br />
dyng m0t co sd If tiiuyit ttt trenflivrctd<br />
khio sfit, phto tfch mgt sitiruy$neudi dto<br />
gian Vidt Nam. Theo dd, ching tdi sd di theo<br />
phuong phip quy nfp: di ttt phto tfch vf dy,<br />
rut ra nhto xdt, ndu If do d^t tdn lofi logic<br />
bfing md hlnh. Cy thi qua cie budc sau:<br />
1/Phto tich mgt si vto bto cy tiii; 2/Nhto<br />
xdt: v i CO chi gSy eudi do vi phfm cfic<br />
nguyto tfie ngft dyng vi Xic djnh cie lofi<br />
logic cia tiuydn cudi (tito co sd nhfing vi<br />
phfm cie nguyen tfie ngft dyng).<br />
11 Phdntichvldtf<br />
VI dfi 1. Quan sip Oinh bi<br />
<br />
s i l l (241)j01L.<br />
<br />
.. Via bto: Mqt anh Unh H «"* "^^<br />
trifc, thay quan huyin ldm nhiiu dilu trdi md<br />
thudng hay chi nhgo. Quan vdn dinh bifngtr<br />
MQlhonucdngudidinvuchoanhtadntiSna<br />
n^i chv, quan mung thdm cd dip bdo thu,<br />
liin cho di bdt vi.<br />
Anh llnh l^ vi, ddt cd thdng con di theo.<br />
Quan v&a trdng thiy, ddp bdn thit: - Bdnhl<br />
Ddnh cho nd chiia cdi tdt dn hii Id *•'<br />
Anh llnh li ngodnh Up thing Ihtnh bdo con<br />
- Con lui ra Quan sdp ddnh bi diyl<br />
b. Co chd gfiy cudi: Cfiu chuvto g4y cudi<br />
do sy vi phfm nguydn tic vi chidu v|L Ngudi<br />
dto thich ngfo mfn vdi quan trto iy<br />
b. Co ( ^ gay eudi:<br />
Tnwto gay eudi d phit ngdn cuoi cing, bong nhflng tiuyto giy cudi do vi phfm quy<br />
fliiy do dfi eo tinh vi phfm quy tfie hgi thofi tfie cUiu v«t Odi dyng tinh da diiiu v|t) hay<br />
khi ei tinh lin>e bd ttt "thif trong ti hgp ttt quy tie hgi fliofi (dyatitosy mo hd vd ngUa<br />
"thit chff" de tfo nto hiiu lam v i eUiu vft. cia phfit ngdn) fliudng tin tfi logic l$p Id.<br />
Dfing Id nhfi nho phfii Hi ldi day di: - fWy td Nhftng vi phfm iy kU so sfinh vdi logic khfich<br />
fthlt) chd, kia cdng Id nhit) chd, bdm loan Id<br />
quan sd bj coi 14 pU logic, song dSt trong ngtt<br />
Ithll) chd cd<br />
cfinh ritog cia truydn chtog Ifi cd ^ ngUa, ed<br />
li bdi h t o y mfi ngirdi phfit ngdn (tfie gifi) gii<br />
c Logic ciia sy vi phfm:<br />
Ldi ndi eia fliiy do ifi khdng btoh thirdng gfim. Nhftiig ldi ndi da nghia, nhttng ciu ndi<br />
khi so sfinh vdi cie quy tie hdi thofi song gfin mo ho v4 cfitinhda cUiu vft kU du(^ tie gifi<br />
vdi ngtt cfinh cd van cd logic ritog. Thay do stt dyng eho nhto vft phfit ngdn bao gid ctog<br />
da CO tinh luge bd ttt "thjt" tfo ntotinh"1ft) flii Udn myc dfeh nfio dd. Di sft dyng dugc<br />
id" trong ldi ndi. Ldi ndi niy via cd thi Uiu cto ndi Ift) id chfic chfin ngudi ndi phfii cd tir<br />
theo nghia thyc: cfic mdn to diu Ito ttt thjt duy vi nhttng ldi ndi Ift) Id, nhto tbic tnrdc<br />
chd, Ifi via cd tlii Uiu theo sy quy cUiu; cic dugc Uto qui tforah t o -j eia Idi ndi iy. Ndi<br />
quan Ifi mgt lu chd - mgt lu chuyto to ban ci. cfich khfic chfic chfin tin tfi logic 1ft) Id Irong<br />
Cie quan di rit cay ci song khdng thi tiidi gi tiuyto cudi Vi$t Nam. NhOng ciu chuyto vi<br />
thiy di ci. Hito qui mia mai chto hiim 14 do logic Ift) id d phin phto tich di cho ehing ta<br />
ngudi nghe ty suyracdn bto flito eto ndi dfi flily didu dd. Viie nhto d i ^ logic Ift) Id trong<br />
dugc ngyy trang bfing mdt y ngUa khic - mOt tiuyto cudi Viit Nam cd vai trd quan tigng<br />
(fiiu btoh thudng. Thiy do da vto dvng tiifli cia ngft cfinh. S(i (fiing - sai cia ldi ndi l|p Id,<br />
1ft) Id cia eto ndi m$t cfich xuat sfie, tfo nto vito nto uiu theo nghIa nio 14 ding din vdi<br />
"tfnh anh toto" cho ldi ndi cia minh, ding hoto cinh cy tiii cia liuyto.<br />
thdi flii Uto thfii dg phd phto dfi kich bgn<br />
V4y logic 1ft) Id dugc xiy dvmg dvra tito<br />
tham quaiL Nhu vfy, id iing tin tfi logic ift)<br />
nhfing CO sd nfio?<br />
Id trong cto tiuyto niy. Ctog nhu nhttng cfiu<br />
Qua phto tich mdt si tniyto cudi trong<br />
chuyto khfic stt dyng tinh da nghia cia Idi ndi<br />
trong cto chuyto nfiy ed vaitidtfo Uto qui liuyto cudi dto gian Viit Nam, chtog tdi<br />
giy cudi v4 myc dich phd phto logic Ifti Id thi nhto thiy ed flii khfii quit quy titoh Unh<br />
Uto sy phong phi, (fi dfng, hip din, flii vj thinh logic lft> Id nhu sau:<br />
A (ngudi ndi) tforaphit ngdn X trong tinh<br />
eia ngdn ngft tilng Vigt<br />
huing Z<br />
13. CasdUnh thinh logic % Id<br />
X cd nUiu cieh Uiu khie nhau (XI, X2,<br />
Theo Ttt diin Tiing Vidt "Lfti Id: Cd tinh X3...)<br />
chit hai m^ khdng rd ring, dttt kfafit, nhfim lin<br />
A muin hudngfaMcich Uiu XI<br />
tiinh hoft: ehe gilu (fiiu ^": An ndi ldp Id.<br />
XI Ito in, chto biini,dikich... B (ngudi<br />
Ihdi dd lip Id khd Miu Trongfliycti, ed lit nghe)<br />
nUiu nhfhig ldi ndi, vigc i t o bay hfinh dgng,<br />
B khdng tiii tiich phft A vi tinh da nghia<br />
tilii dd Ift) Id khd ]a^ Co sd cia nhftng sy eiaXtrongZ.<br />
1ft) Id nfiy li dvra trto tinh hai m|t, khdng rd<br />
Nhd tinh da nghia cia X nto dyng ^ cia A<br />
ring cia ^ ngUa ldi ndi, hinh dOng,..Alvic vto dugc uiu mdt cieh di dfing. HontiiinOa,<br />
dfeh ciia ngudi si dyng Idi ndi hinh ddng "l^ A ed flii vto vto cfic etoh Uiu 4y di dii din<br />
IcT Ifi nhto lin trinh ho$e che giiu dieu gl. Ifi sy ttidi phft, bude tgi eia B. Thudng flilB<br />
<br />
Si 11 (241)-2015<br />
<br />
NG6NNGC&D6fIS6NG<br />
<br />
101<br />
<br />
3.1 Ci nhftng Uto tugng logic vfi pU<br />
sd khdng flii tiich gito A vi nghia cto chtt<br />
khdng trye tiip Ito to B. B ty nhto ra h t o :^ logic tiong tiuyto cudi dto gian Viit Nam<br />
diu hudng tdi mOt myc dich chung 14 tfo ra<br />
chtt khdng phii do A trvrctiipndi ra.<br />
CUnh bdi djic tiung tito mfi logic 1ft) Id tiing cudi. PU logic tfo nto dft; trung<br />
dfi dugc vto dyng rgng rii vto trong vige thi "truyin bia d(it" cdn logic Ifi tfo nto tinh "c6<br />
hito cie him ^ ( ^ ngirdi ndi. Stt dyng logic If, gfin bd, lito kit cto Uto tugng, sy kito<br />
Ift) Id (nhit li bongflidiphong kiin), ngudi cia tiuyto cudi. Tuy nUdn, tto dyng giy<br />
ndi cd thi dto bto an toto tinh mfng kU cudi cia nbibig Uto tugng phi logic li\re t i ^<br />
gitotiipIdn to dfi kich m$t dii tinimg nio dd. v4 mfnh mS hon 14 logic nii tfi gfin vdi ngtt<br />
Do dd, ngudi vfti dyng logic 1ft) id thinh cfinh, tinh huing tniyto- Logic cia nhihig<br />
cdng li ngudi khdng cU diing c t o mi cdn tit Uto tugng pU logic thudng hudng tdi viic<br />
thdng minh, tii gidi. Hon the, vto dyng logic tfo ra cUeu siu eia tiing cudi trong dyng ^<br />
1ft) Id vto cic tic phim vto hgc sd tfo ra phd phin, di kich xa hii, hay mia mai tfnh<br />
dugc nhttng diiu thi vj, hip din, ldi cuin etoh. Sau nhfhig tiing cudi gidn gia tfo ndn<br />
bdi nhfing Uto tugng pM logic li nhttng<br />
ngudi dgc, bit hg phii tu duy.<br />
khto phi vi y flittc xi hdi siu sfic d tttng<br />
3.KitIu$nbandiu<br />
3.1. Ranh gidi gifta logic vi pU logic vin tmydn.<br />
rat mong manh, trong sy doi sinh v(Ji hoto<br />
3.3. Mgi svr vjt, Uto tugng tin tfi, xiy ra<br />
cinh niy mit Uto tm^mg cd thi Ifi pU logic trong thi gidi khto quan xung quanh ta bao<br />
song dft trong hoto cinh khto cflng chinh gid cflng cd quy lii$t ridng cia nd. Di vto<br />
hitotirgngiy Ifi cd logic, ed li ridng eia nd. ngdn ngtt vto chuong nhiing quy lu$t khtoh<br />
Ldi ndi mo hi cia nhi nho tiong "Birn chd quan niy dugc phii hgp vin logie nhto thic<br />
C(f' [8, i 84] 14 pU logic so vdi nguydn tfie hdi cia ngudi stog tic ndn tvrflitonhttng svr vft,<br />
fliofi bdi sy mo hi vfi khdng diy d i lugng tin Udn tugng dugc phto inh trong vto chuong<br />
tiong ldi ndi. Song cflng ehinh ldi ndi iy kU cflng cd logic ritog di tin tfi. Vide tim Uiu<br />
dft vto trong hoin cinh ridng cia tiuydn Ifi logic cia nhfing Uto tugng pU logic cUnh<br />
cd logic eia tfnh lip Ittng (choi chft), logic li tim u i u y dd eia ngudi stog tto kU xiy<br />
cua to muu. Khdng phfii nglu nUdn nhi nho dvmg ldn nhftng Uto tugng cd vin di logic.<br />
vi phfm phuong chto vi lugng, dng dfi ci Do dd mi vide phin tich, c t o nhto tiuyto<br />
tinh ndi flitta dd dft mye dich khoe khoang cudi ctog dugc siu sfic vi toto (fito hon.<br />
cia minh. Diiu dd cho thiy svr cin tUit phii<br />
T A I LIpU THAM K H A O<br />
xfic djnh mit co sd logic chuin mvrc kU dfinh<br />
1. Didp Quang Ban (2009), Giao tiip,<br />
gii mdt Uto tugng 14 lo^e hay pU logic. Mii diin ngdn vd cdu tgo cua vdn bdn, Nxb Gito<br />
quan hd gitta logic v4 pU logic 14 mii quan dye.<br />
h? gfin bd m$t tiiiit tiong ctog mdt Uto<br />
2. Truong Chinh-Phong Chiu (2004),<br />
tirgng. Cto ctt di xie djnh mdt Udn tirgng Tiing cudi ddn gian Viit Nam, Nxb Khoa<br />
pho logic 14 nhfing "Irl thic phi Ihon^' hay hgcXah$i,HiNdi.<br />
"togic IMch quan". Trong ndi tfi nhftng Uto<br />
3. Hotog Phd (ehi bito) (1994), Ti diin<br />
tiigng bj xem 14 pU logic ludn cd nhftng hd tiing Viit, Nxb khoa hgc Xa h^i. Hi Ndi.<br />
tiling logic ritog gfin vdi ngft cinh, tinh<br />
4. Nguyin Hotog Yin (2011), Hdm i h^l<br />
huing mi Uto tugng xiy ra. V4 nhu viy, thogi trong truyin cudi ddn gian Viit Nam,<br />
phfii chtog cd mdt kidii logic lip Id vfi nhftng Nxb Tft diln Btoh khoa, H4 Nil.<br />
kiiu logic khfic nfta xuit Uto tiong cto<br />
5. Yuie.G (1997, bto djch tiing Viit<br />
tiuydn eudi dto gian Viit Nam dft tiong ngft 2003), Dvng hgc, Nxb Dfi hgc CMc gia H4<br />
cfinh ritog eiatiingtiuydn.<br />
Nii.<br />
<br />