Ergodic properties
-
Let X be a projective manifold and f : X → X a rational mapping with large topological degree, dt λk−1 (f ) := the (k − 1)th dynamical degree of f . We give an elementary construction of a probability measure µf such that d−n (f n )∗ Θ → µf for every smooth probability measure Θ on X. We show t that every quasiplurisubharmonic function is µf -integrable. In particular µf does not charge either points of indeterminacy or pluripolar sets, hence µf is f -invariant with constant jacobian f ∗ µf = dt µf...
20p noel_noel 17-01-2013 45 4 Download
-
We prove that almost every nonregular real quadratic map is ColletEckmann and has polynomial recurrence of the critical orbit (proving a conjecture by Sinai). It follows that typical quadratic maps have excellent ergodic properties, as exponential decay of correlations (Keller and Nowicki, Young) and stochastic stability in the strong sense (Baladi and Viana). This is an important step in achieving the same results for more general families of unimodal maps.
52p noel_noel 17-01-2013 58 5 Download