intTypePromotion=4
ADSENSE

Semi-supervised learning

Xem 1-11 trên 11 kết quả Semi-supervised learning
  • The amount of unlabeled linguistic data available to us is much larger and growing much faster than the amount of labeled data. Semi-supervised learning algorithms combine unlabeled data with a small labeled training set to train better models. This tutorial emphasizes practical applications of semisupervised learning; we treat semi-supervised learning methods as tools for building effective models from limited training data. An attendee will leave our tutorial with 1.

    pdf1p hongphan_1 15-04-2013 31 1   Download

  • Shortage of manually sense-tagged data is an obstacle to supervised word sense disambiguation methods. In this paper we investigate a label propagation based semisupervised learning algorithm for WSD, which combines labeled and unlabeled data in learning process to fully realize a global consistency assumption: similar examples should have similar labels.

    pdf8p bunbo_1 17-04-2013 26 1   Download

  • Semi-supervised word alignment aims to improve the accuracy of automatic word alignment by incorporating full or partial manual alignments. Motivated by standard active learning query sampling frameworks like uncertainty-, margin- and query-by-committee sampling we propose multiple query strategies for the alignment link selection task. Our experiments show that by active selection of uncertain and informative links, we reduce the overall manual effort involved in elicitation of alignment link data for training a semisupervised word aligner. ...

    pdf6p hongdo_1 12-04-2013 27 3   Download

  • We initiate a study comparing effectiveness of the transformed spaces learned by recently proposed supervised, and semisupervised metric learning algorithms to those generated by previously proposed unsupervised dimensionality reduction methods (e.g., PCA). Through a variety of experiments on different realworld datasets, we find IDML-IT, a semisupervised metric learning algorithm to be the most effective.

    pdf5p hongdo_1 12-04-2013 48 3   Download

  • While Active Learning (AL) has already been shown to markedly reduce the annotation efforts for many sequence labeling tasks compared to random selection, AL remains unconcerned about the internal structure of the selected sequences (typically, sentences). We propose a semisupervised AL approach for sequence labeling where only highly uncertain subsequences are presented to human annotators, while all others in the selected sequences are automatically labeled.

    pdf9p hongphan_1 14-04-2013 53 2   Download

  • We consider the problem of NER in Arabic Wikipedia, a semisupervised domain adaptation setting for which we have no labeled training data in the target domain. To facilitate evaluation, we obtain annotations for articles in four topical groups, allowing annotators to identify domain-specific entity types in addition to standard categories. Standard supervised learning on newswire text leads to poor target-domain recall.

    pdf12p bunthai_1 06-05-2013 44 2   Download

  • Partial cognates are pairs of words in two languages that have the same meaning in some, but not all contexts. Detecting the actual meaning of a partial cognate in context can be useful for Machine Translation tools and for Computer-Assisted Language Learning tools. In this paper we propose a supervised and a semisupervised method to disambiguate partial cognates between two languages: French and English. The methods use only automatically-labeled data; therefore they can be applied for other pairs of languages as well.

    pdf8p hongvang_1 16-04-2013 39 1   Download

  • The natural way overcoming the information loss of the above assumption is to represent the gene expression data as the hypergraph. Thus, in this paper, the three un-normalized, random walk, and symmetric normalized hypergraph Laplacian based semisupervised learning methods applied to hypergraph constructed from the gene expression data in order to predict the functions of yeast proteins are introduced.

    pdf7p praishy2 27-02-2019 6 0   Download

  • In this paper, we present a method for guessing POS tags of unknown words using local and global information. Although many existing methods use only local information (i.e. limited window size or intra-sentential features), global information (extra-sentential features) provides valuable clues for predicting POS tags of unknown words. We propose a probabilistic model for POS guessing of unknown words using global information as well as local information, and estimate its parameters using Gibbs sampling.

    pdf8p hongvang_1 16-04-2013 31 2   Download

  • This paper proposes a semi-supervised boosting approach to improve statistical word alignment with limited labeled data and large amounts of unlabeled data. The proposed approach modifies the supervised boosting algorithm to a semisupervised learning algorithm by incorporating the unlabeled data. In this algorithm, we build a word aligner by using both the labeled data and the unlabeled data. Then we build a pseudo reference set for the unlabeled data, and calculate the error rate of each word aligner using only the labeled data.

    pdf8p hongvang_1 16-04-2013 28 1   Download

  • Most attempts to train part-of-speech taggers on a mixture of labeled and unlabeled data have failed. In this work stacked learning is used to reduce tagging to a classification task. This simplifies semisupervised training considerably. Our prefered semi-supervised method combines tri-training (Li and Zhou, 2005) and disagreement-based co-training. On the Wall Street Journal, we obtain an error reduction of 4.2% with SVMTool (Gimenez and Marquez, 2004).

    pdf4p hongdo_1 12-04-2013 39 2   Download

CHỦ ĐỀ BẠN MUỐN TÌM

ADSENSE

p_strKeyword=Semi-supervised learning
p_strCode=semisupervisedlearning

nocache searchPhinxDoc

 

Đồng bộ tài khoản
2=>2