(Luyện thi cấp tốc Toán) Chuyên đề khảo sát hàm số_Bài tập và hướng dẫn giải
lượt xem 323
download
Tham khảo tài liệu '(luyện thi cấp tốc toán) chuyên đề khảo sát hàm số_bài tập và hướng dẫn giải', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: (Luyện thi cấp tốc Toán) Chuyên đề khảo sát hàm số_Bài tập và hướng dẫn giải
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 12 tháng 06 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BÀI TẬP VỀ NHÀ (Chuyên đề khảo sát hàm số) −x +1 Câu I: Cho hàm số y = 2 x + 1 (C) I.1. Viết phương trình tiếp tuyến đi qua điểm M(2 ; 3) đến (C) I.2. Viết phương trình tiếp tuyến với (C), biết rằng tiếp tuyến đó đi qua giao điểm của 2 đường tiệm cận. I.3. Viết phương trình tiếp tuyến tại điểm M ∈ ( C ) , biết tiếp tuyến cắt 2 trục tọa độ tạo thành 1 tam giác có diện tích bằng 1. I.4. Viết phương trình tiếp tuyến tại điểm M ∈ ( C ) , biết tiếp tuyến cắt 2 trục tọa độ tạo thành 1 tam giác cân. ( m − 1) x + m C Câu II: Cho hàm số y = x−m ( m) II.1. CMR đồ thị hàm số luôn tiếp xúc với một đường thẳng cố định tại 1 điểm cố định. II.2. Tiếp tuyến tại M ∈ ( Cm ) cắt 2 tiệm cận tại A, B. CMR M là trung điểm của AB II.3. Cho điểm M ( x 0 , y 0 ) ∈ ( C3 ) . Tiếp tuyến của ( C3 ) tại M cắt các tiệm cận của (C) tại các điểm A và B. Chứng minh diện tích tam giác AIB không đổi, I là giao của 2 tiệm cận. Tìm M để chu vi tam giác AIB nhỏ nhất. Câu III: x 2 + 2mx + 1 − 3m 2 Cho hàm số y = . Tìm tham số m để hàm số có: x−m 1. Hai điểm cực trị nằm về hai phía trục tung. 2. Hai điểm cực trị cùng với gốc tọa độ O lập thành tam giác vuông tại O 3. Hai điểm cực trị cùng với điểm M(0; 2) thẳng hàng. 4. Khoảng cách hai điểm cực trị bằng m 10 . Hocmai.vn – Ngôi trường chung của học trò Việt 1
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 5. Cực trị và tính khoảng cách từ điểm cực tiểu đến TCX. 6. Cực trị và thỏa mãn: yCD + yCT > 2 3 . −x +1 Câu IV: Cho hàm số y = (C) 2x +1 Tìm m để (C) cắt đường thẳng ( d m ) : y = mx + 2m − 1 tại 2 điểm phân biệt A, B: a. Thuộc 2 nhánh của đồ thị (C) b. Tiếp tuyến tại A, B vuông góc với nhau uuu uuu r r c. Thỏa mãn điều kiện 4OA.OB = 5 − x 2 + 3x − 3 Câu V: Cho hàm số y = (1) 2 ( x − 1) a. Tìm m để đường thẳng y = m cắt đồ thị hàm số (1) tại A và B sao cho AB=2 b. Tìm m để đường thẳng d: y = m ( x − 2 ) + 3 và đường cong (1) cắt nhau tại A, B phân biệt sao cho M(2; 3) làm trung điểm của AB. Câu VI: ( m − 1) x + m C Cho hàm số y = x−m ( m) Dựa vào đồ thị hàm số, tùy theo m hãy biện luận số nghiệm của phương trình: 2x + 3 a. − 1 = log 2 m x −3 2x + 3 b. − 2m + 1 = 0 x−3 − x2 + 3x − 3 Câu VII: Cho hàm số y = (1) 2 ( x − 1) a. Tìm trên đồ thị 2 điểm A, B thuộc 2 nhánh sao cho AB min. Page 2 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 b. Tính diện tích tam giác tạo bởi tiệm cận xiên và các trục tọa độ. −x +1 Câu VIII: Cho hàm số y = (C) 2x +1 a. Tìm điểm M thuộc (C) sao cho tổng khoảng cách từ M đến 2 trục tọa độ đạt GTNN b. Tìm điểm M thuộc (C) sao cho tổng khoảng cách từ M đến 2 tiệm cận đạt GTNN c. Tìm 2 điểm A; B thuộc 2 nhánh của đồ thị hàm số sao cho AB min. ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 3 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG CÁC BTVN −x +1 Câu I: Cho hàm số y = (C) 2x +1 I.1. Viết phương trình tiếp tuyến đi qua điểm M(2 ; 3) đến (C) I.2. Viết phương trình tiếp tuyến với (C), biết rằng tiếp tuyến đó đi qua giao điểm của 2 đường tiệm cận. I.3. Viết phương trình tiếp tuyến tại điểm M ∈ ( C ) , biết tiếp tuyến cắt 2 trục tọa độ tạo thành 1 tam giác có diện tích bằng 1. I.4. Viết phương trình tiếp tuyến tại điểm M ∈ ( C ) , biết tiếp tuyến cắt 2 trục tọa độ tạo thành 1 tam giác cân. HDG 1 −3 Tập xác định: D = R \ − . Ta có: y ' = < 0, ∀x ∈ D ( 2 x + 1) 2 2 Bài 1: Vì đường thẳng x = 2 không là tiếp tuyến của (C), nên phương trình đường thẳng đi qua M (2; 3) có hệ số góc k có dạng: y = k ( x − 2 ) + 3 tiếp xúc với (C) khi và chỉ khi hệ: −x +1 2x +1 = k ( x − 2) + 3 −3 có nghiệm =k ( 2 x + 1) 2 Thế k từ pt thứ hai vào pt đầu ta được: −x +1 −3 2 ( = x − 2 ) + 3 ⇔ 7 x 2 + 4 x + 4 = 0 : Vô nghiệm 2 x + 1 ( 2 x + 1) Vậy không có tiếp tuyến nào đi qua M đến (C) Bài 2: 1 1 1 1 Hàm số có: TCĐ: x = − ; TCN: y = − ⇒ I − ; − 2 2 2 2 Page 4 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 1 Vì đường thẳng x = − không là tiếp tuyến của (C), nên phương trình đường thẳng đi 2 1 1 1 1 qua I − ; − có hệ số góc k có dạng: y = k x + + tiếp xúc với (C) khi và chỉ khi 2 2 2 2 hệ: −x +1 1 1 2x +1 = k x + 2 + 2 −3 có nghiệm =k ( 2 x + 1) 2 Thế k từ pt thứ hai vào pt đầu ta được: −x +1 −3 1 1 3 −3 = 2 x+ − ⇔ = 2 x + 1 ( 2 x + 1) 2 2 2 x + 1 2 ( 2 x + 1) :Vô nghiệm Vậy không có tiếp tuyến nào đi qua I đến (C) Bài 3: 1 3 1 Gọi M x0 − ; − ∈ ( C ) . Tiếp tuyến tại M có dạng: 2 4 x0 2 −3 3 1 −3 3 1 2 ( d:y= x − x0 ) + − = 2 x+ − 4 x0 4 x0 2 4 x0 2 x0 2 2 x0 ( x0 − 3) 3 − x0 Giả sử A = d ∩ Ox; B = d ∩ Oy suy ra: A ;0 ; B 0; 3 x0 1 2 OA.OB = ( 3 − x0 ) = 1 2 ∆OAB vuông tạo O ⇒ S ∆OAB = 2 3 6 6± 6 ⇒ 3 − x0 = ± ⇒ x0 = 2 2 −3 4− 6 −3 4+ 6 Vậy có 2 tiếp tuyến thỏa mãn là: y = x+ hay y = x− 40 − 12 6 20 40 + 12 6 20 Bài 4: Page 5 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Tiếp tuyến cắt 2 trục tọa độ tạo thành một tam giác cân nên hệ số góc của tiếp tuyến là k = ±1 . Gọi M ( x0 ; y0 ) ∈ ( C ) là tiếp điểm −3 −1 ± 3 - Nếu k = −1 ⇒ = −1 ⇒ 2 x0 + 1 = ± 3 ⇒ x0 = ( 2 x0 + 1) 2 2 −1 − 3 −1 − 3 Với x0 = ⇒ y0 = ⇒ tiếp tuyến là: y = − x − 1 − 3 2 2 −1 + 3 −1 + 3 Với x0 = ⇒ y0 = ⇒ tiếp tuyến là: y = − x − 1 + 3 2 2 −3 - Nếu k = −1 ⇒ 2 x + 1 2 = 1 ⇒ ( 2 x0 + 1) = −3 : Vô nghiệm 2 ( 0 ) Vậy có 2 tiếp tuyến thỏa mãn bài toán là: y = − x − 1 − 3 và y = − x − 1 + 3 ( m − 1) x + m C Câu II: Cho hàm số y = x−m ( m) II.1. CMR đồ thị hàm số luôn tiếp xúc với một đường thẳng cố định tại 1 điểm cố định. II.2. Tiếp tuyến tại M ∈ ( Cm ) cắt 2 tiệm cận tại A, B. CMR M là trung điểm của AB II.3. Cho điểm M ( x 0 , y 0 ) ∈ ( C3 ) . Tiếp tuyến của ( C3 ) tại M cắt các tiệm cận của (C) tại các điểm A và B. Chứng minh diện tích tam giác AIB không đổi, I là giao của 2 tiệm cận. Tìm M để chu vi tam giác AIB nhỏ nhất. HDG Bài 1: ( m − 1) x0 + m ; ∀m Gọi M ( x0 ; y0 ) là điểm cố định của hàm số ⇒ y0 = x0 − m ⇔ m ( x0 + y0 + 1) − ( x0 + x0 y0 ) = 0; ∀m x0 + y0 + 1 = 0 x0 = 0 ⇔ ⇔ x0 + x0 y0 = 0 y0 = −1 Với M ( 0; −1) , tiếp tuyến tại M là: y = y ' ( 0 ) x − 1 = − x − 1 Page 6 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Vậy đồ thị hàm số luôn tiếp xúc với một đường thẳng cố định y = − x − 1 tại M ( 0; −1) . Bài 2: m2 Ta có: y = m − 1 + ⇒ TCĐ: x = m và TCN: y = m − 1 x−m m2 Gọi M a + m; m − 1 + ∈ ( Cm ) , a ≠ 0 . Tiếp tuyến tại M có dạng: a m2 m2 m2 d : y = y '( a + m) ( x − a − m) + m −1 + = − 2 ( x − a − m) + m −1 + a a a Gọi A, B là giao điểm của đường thẳng d với TCN, TCĐ tương ứng nên: 2m 2 A ( 2a + m; m − 1) ; B m; m − 1 + a x A + xB = 2 xM Nhận thấy ⇒ M là trung điểm của AB (đpcm) y A + y B = 2 yM Bài 3: 9 9 Điểm M ∈ ( C3 ) : y = 2 + ⇒ M 3 + α; 2 + x −3 α 9 18 27 Phương trình tiếp tuyến của M có dạng: ∆ : y = − x+2+ + 2 α 2 α α Gọi A, B là giao điểm của đường thẳng d với TCN, TCĐ tương ứng nên: 18 A ( 2α + 3; 2 ) ; B 3; 2 + a Vì I là giao điểm của 2 tiệm cận nên I ( 3; 2 ) 1 1 18 + ∆IAB vuông tại I nên: S∆IAB = .IA.IB = . 2α . = 18 (đvdt) 2 2 α + Chu vi tam giác IAB là: 2 18 18 p = IA + IB + AB = 2α + + 4α 2 + α α Page 7 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 2 18 18 ≥ 2 2α + 2 4α 2 + = 12 + 2.2.18 = 12 + 6 2 α α 18 Dấu = xảy ra ⇔ 2α = ⇔ α = ±3 ⇔ M ( 6;5 ) hoặc M ( 0; −1) α Câu III: HDG: Tập xác định: D = R \ { m} 1 1 x 2 − 2 xm + m 2 − 1 Ta có: y = x + 3m + ⇒ y ' = 1− = x−m ( x − m) ( x − m) 2 2 1: Hàm số có hai điểm cực trị nằm về hai phía trục tung ⇔ y’ = 0 có 2 nghiệm trái dấu ⇔ g ( x) = x 2 − 2 xm + m2 − 1 có 2 nghiệm trái dấu cùng khác m m 2 − 1 < 0 ⇔ ⇔ −1 < m < 1 g ( m) ≠ 0 Vậy m ∈ ( −1;1) 2: x = x1 = m − 1 Có: y ' = 0 ⇔ x = x2 = m + 1 Do đó hàm số luôn đạt cực trị tại x1 ; x2 . Ta có: y1 = y ( x1 ) = 4m − 2; y2 = y ( x2 ) = 4m + 2 Gọi 2 điểm cực trị là A ( m − 1; 4m − 2 ) ; B ( m + 1; 4m + 2 ) uuu uuu r r ∆OAB vuông tại O ⇔ OA ⊥ OB ⇔ OA.OB = 0 ⇔ ( m − 1) ( m + 1) + ( 4m − 2 ) ( 4m + 2 ) = 0 85 ⇔ 17 m 2 − 5 = 0 ⇔ m = ± 17 85 Vậy m = ± là giá trị cần tìm. 17 Page 8 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 3:. uuu r uuur Ta có: MA = ( m − 1; 4m − 2 ) ; MB = ( m + 1; 4m ) uuu uuu r r A, M, B thẳng hàng ⇔ MA || MB ⇔ 4m ( m − 1) = ( m + 1) ( 4m − 2 ) 1 ⇔ 6m = 2 ⇔ m = 3 1 Đáp số: m = 3 4: Ta có: AB = m 10 ⇔ 4 + 42 = m 10 ⇔ m = 2 5: Mọi giá trị m thì hàm số luôn có cực trị. 1 Vì lim y − ( x + 3m ) = lim x →±∞ x − m = 0 ⇒ y = x + 3m là TCX của hàm số. x →±∞ Hàm số đạt cực tiểu tại x = m – 1. Khoảng cách từ điểm cực tiểu đến TCX là: ( m − 1) − ( 4m − 2 ) + 3m 1 h= = 2 2 6: 3 m > > 2 3 ⇔ 8m > 2 3 ⇔ 4 Ta có: yCD + yCT 3 m < − 4 3 3 Đáp số: m ∈ −∞; − ∪ ; ∞ 4 4 Page 9 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 −x +1 Câu IV: Cho hàm số y = (C) 2x +1 Tìm m để (C) cắt đường thẳng ( d m ) : y = mx + 2m − 1 tại 2 điểm phân biệt A, B: a. Thuộc 2 nhánh của đồ thị (C) b. Tiếp tuyến tại A, B vuông góc với nhau uuu uuu r r c. Thỏa mãn điều kiện 4OA.OB = 5 HDG: Xét phương trình hoành độ giao điểm: −x +1 1 = mx + 2m − 1 ⇔ f ( x ) = mx 2 + ( 5m − 1) x + 2m − 2 = 0 với x ≠ − 2x +1 2 1 ( C) cắt ( d m ) tại 2 điểm phân biệt A, B ⇔ f ( x ) = 0 có 2 nghiệm phân biệt khác − 2 m ≠ 0 m ≠ 0 ⇔ ∆ = 17 m 2 − 2m + 9 > 0 ⇔ (*) m ≠ −6 f − = − m− ≠ 0 1 1 3 2 4 2 a. Hai điểm A, B thuộc 2 nhánh của đồ thị 1 ⇔ f ( x ) = 0 có 2 nghiệm phân biệt x1 ; x2 mà x1 < − < x2 2 1 1 3 m > 0 ⇔ mf − = m − m − < 0 ⇔ 2 4 2 m < −6 b. Hệ số góc của tiếp tuyến tại A. B lần lượt là: −3 −3 k A = y ' ( xA ) = ; k B = y ' ( xB ) = ( 2 xA + 1) ( 2 xB + 1) 2 2 3 3 ⇒ k A .k B = . > 0 nên hai tiếp tuyên tại A, B không thể vuông góc với ( 2 xA + 1) ( 2 xB + 1) 2 2 nhau. Vậy không tồn tại m thảo mãn bài toán. c. Gọi x1 ; x2 là 2 nghiệm của f(x). Giả sử A ( x1 ; mx1 + 2m − 1) ; B ( x2 ; mx2 + 2m − 1) Page 10 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 5m − 1 x1 + x2 = − m Theo viet ta có: x x = 2m − 2 1 2 m uuu uuu r r uuu uuu 5 r r Có: 4OA.OB = 5 ⇔ OA.OB − = 0 4 5 ⇔ x1 x2 + ( mx1 + 2m − 1) ( mx2 + 2m − 1) − =0 4 5 ⇔ ( m 2 + 1) x1 x2 + m ( 2m − 1) ( x1 + x2 ) + ( 2m − 1) − 2 =0 4 5 ⇔ ( m 2 + 1) ( 2m − 2 ) − m ( 2m − 1) ( 5m − 1) + m ( 2m − 1) − 2 =0 4 3 ⇔ 4m 3 − m 2 − 2 m + =0 4 2 3 ⇔ ( 2m − 1) m + = 0 4 1 −3 ⇔ m= ∨m= 2 4 1 −3 Đáp số: m = ; 2 4 − x 2 + 3x − 3 Câu V: Cho hàm số y = (1) 2 ( x − 1) c. Tìm m để đường thẳng y = m cắt đồ thị hàm số (1) tại A và B sao cho AB=2 d. Tìm m để đường thẳng d: y = m ( x − 2 ) + 3 và đường cong (1) cắt nhau tại A, B phân biệt sao cho M(2; 3) làm trung điểm của AB. HDG a. Xét phương trình hoành độ giao điểm: − x 2 + 3x − 3 = m ⇔ f ( x ) = x 2 + ( 2m − 3) x + 3 − 2m = 0 ; với x ≠1 2 ( x − 1) Page 11 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Để hàm số (1) cắt đường thẳng y = m tại 2 điểm phân biệt ⇔ f ( x ) = 0 có 2 3 ∆ = ( 2m − 3 ) 2 − 4 ( 3 − 2m ) > 0 m > 2 nghiệm phân biệt khác 1 ⇔ ⇔ (*) f ( 1) ≠ 0 m < − 1 2 Với điều kiện (*), gọi x1 ; x2 là nghiệm của f ( x ) = 0 . Theo viet có: x1 + x2 = 3 − 2m x1 x2 = 3 − 2m Tọa độ A, B là: A ( x1 ; m ) ; B ( x2 ; m ) . Ta có: AB 2 = 2 ⇔ ( x1 − x2 ) = 2 ⇔ ( x1 + x2 ) − 4 x1 x2 = 2 2 2 1± 6 ⇔ ( 3 − 2m ) − 4 ( 3 − 2 m ) = 2 ⇔ 4 m 2 − 4 m − 5 = 0 ⇔ m = 2 2 1± 6 Đáp số: m = 2 b. Xét phương trình hoành độ giao điểm: − x 2 + 3x − 3 = m ( x − 2 ) + 3 ⇔ f ( x ) = ( 2m + 1) x 2 + 3 ( 1 − 2m ) x + 4m − 3 = 0 ; với x ≠ 1 2 ( x − 1) Để hàm số (1) cắt đường thẳng y = m ( x − 2 ) + 3 tại 2 điểm phân biệt ⇔ f ( x ) = 0 có 2 nghiệm phân biệt khác 1 7+2 7 m > 2m + 1 ≠ 0 2 ⇔ ∆ = 9 ( 1 − 2m ) − 4 ( 2m + 1) ( 4m − 3) > 0 ⇔ m < 7 − 2 7 2 2 f ( 1) ≠ 0 1 m ≠ − 2 3 ( 1 − 2m ) Với điều kiện trên, gọi x1 ; x2 là nghiệm của f ( x ) = 0 ⇒ x1 + x2 = − 2m + 1 Gọi 2 giao điểm là A ( x1 ; m ( x1 − 2 ) + 3) ; B ( x2 ; m ( x2 − 2 ) + 3) . Page 12 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Điểm M ( 2;3) ∈ d là trung điểm củ a AB 3 ( 1 − 2m ) 7 ⇔ x1 + x2 = 4 ⇔ − =4⇔m=− 2m + 1 2 7 Vậy m = − 2 Câu VI: ( m − 1) x + m C Cho hàm số y = x−m ( m) Dựa vào đồ thị hàm số, tùy theo m hãy biện luận số nghiệm của phương trình: 2x + 3 a. − 1 = log 2 m x −3 2x + 3 b. − 2m + 1 = 0 x−3 HDG Số nghiệm của phương trình f ( x ) = g ( m ) là số giao điểm của đường cong y = f ( x) và đường thẳng y = g ( m ) song song với trục hoành Ox khi vẽ lên hệ trục tọa độ Oxy. 2x + 3 a. Vẽ đồ thị hàm số ( C ) : y = như sau: x−3 - Giữ nguyên phần đồ thị nằm trên trục hoành Ox của ( C3 ) - kí hiệu là ( Ct ) - Lấy đối xứng phần đồ thị dưới trục hoành Ox qua Ox – kí hiệu Ct ( ) ' ⇒ ( C ) = ( Ct' ) ∪ ( Ct ) (Các bạn tự vẽ hình) 1 Kết luận: m≤ phương trình vô nghiệm 2 Page 13 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 1 m = ; 2 phương trình có nghiệm duy nhất 2 1 m ∈ ; 2 ∪ ( 2; +∞ ) phương trình có 2 nghiệm phân biệt 2 2x + 3 b. Vẽ đồ thị hàm số ( C ') : y = như sau: x−3 - Giữ nguyên nhánh phải của ( C3 ) - kí hiệu là ( C p ) - Lấy ( C p ) đối xứng nhánh trái của ( C3 ) qua trục hoành Ox ' ⇒ ( C ) = ( C p ) ∪ ( C p ) (Các bạn tự vẽ hình) ' 1 Kết luận: m≤− phương trình vô nghiệm 2 1 3 − < m ≤ phương trình có nghiệm duy nhất 2 2 3 m≥ phương trình có 2 nghiệm phân biệt 2 − x2 + 3x − 3 Câu VII: Cho hàm số y = (1) 2 ( x − 1) a. Tìm trên đồ thị 2 điểm A, B thuộc 2 nhánh sao cho AB min. b. Tính diện tích tam giác tạo bởi tiệm cận xiên và các trục tọa độ. HDG − x 2 + 3 x − 3 −1 1 a. Ta có: y = = x +1− 2 ( x − 1) 2 2 ( x − 1) −α 1 1 −β 1 1 Gọi A α + 1; − + thuộc nhánh trái, B β + 1; − + thuộc 2 2α 2 2 2β 2 nhánh phải của đồ thị hàm số với α < 0 < β . 2 1 1 1 Ta có: AB = ( β − α ) + ( β − α ) + − 2 2 4 β α Page 14 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 1 1 2 1 1 2 = ( β −α ) 1 + 1 + 2 1 + 1 − ≥ 4 αβ 4 αβ 4 αβ 1 = 5 αβ + +2≥ 2+2 5 αβ β = −α 1 Dấu = xảy ra ⇔ 1 ⇔ β = −α = 4 αβ = 5 5 1 1 4 5 1 1 1 4 5 1 A − 4 + 1; 4 − Vậy + ; B 4 + 1; − 4 + + thì ABmin = 2 + 2 5 5 2 5 2 2 5 2 5 2 2 −1 b. Hàm số có TCX: ∆ : y = x +1 . 2 Gọi A = ∆ ∩ Ox ⇒ A ( 2;0 ) ; B = ∆ ∩ Oy ⇒ B ( 0;1) 1 Nên S ∆OAB = OA.OB = 1 (đvdt) 2 −x +1 Câu VIII: Cho hàm số y = (C) 2x +1 a. Tìm điểm M thuộc (C) sao cho tổng khoảng cách từ M đến 2 trục tọa độ đạt GTNN b. Tìm điểm M thuộc (C) sao cho tổng khoảng cách từ M đến 2 tiệm cận đạt GTNN c. Tìm 2 điểm A; B thuộc 2 nhánh của đồ thị hàm số sao cho AB min. HDG 1 3 1 a. . Gọi M x0 − ; − ∈ ( C ) ; x0 ≠ 0 . Tổng khoảng cách từ M đến 2 2 4 x0 2 trục tọa độ là: 1 3 1 d = x0 − + − 2 4 x0 2 1 1 Với x0 ≤ 0 ⇒ d ≥ + =1 2 2 Page 15 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 1 3 1 3 Với x0 > 0 ⇒ d ≥ x0 − + − = x0 + −1 ≥ 3 −1 2 4 x0 2 4 x0 3 3 3 −1 3 −1 Dấu = xảy ra khi x0 = ⇔ x0 = ⇔M 2 ; 2 4 x0 2 3 −1 3 −1 2 ; 2 thì d min = Vậy M 3 −1 3 b. . Khoảng cách tứ M đến TCN, TCĐ làn lượt là: d1 = x0 ; d 2 = 4 x0 ⇒ d = d1 + d 2 = x0 + 3 3 3 ≥ 2 x0 . = 3 , dấu = xảy ra khi x0 = ± 4 x0 4 x0 2 3 −1 3 −1 − 3 −1 − 3 −1 Kết luận: M 2 ; 2 hoặc M ; là các điểm cần tìm 2 2 1 3 1 1 3 1 c . Gọi A a − ; − thuộc nhánh trái, B b − ; − thuộc nhánh phải 2 4a 2 2 4b 2 của đồ thị hàm số (C), với a < 0 < b . Ta có: 3 3 ( b − a) 2 2 3 3 3 3 −4ab AB = ( b − a ) + − ≥ 2 ( b − a ) − = 2 2 ≥ . =6 4b 4a 4b 4a 2 ab 2 −ab 3 b = −a a = − 2 Dấu bằng xảy ra ⇔ 3 3 ⇔ 2 ( b − a ) = 4b − 4a 2 b = 3 2 − 3 −1 − 3 −1 3 −1 3 −1 Vậy hai điểm cần tìm là: A 2 ; 2 ; B 2 ; 2 thì ABmin = 6 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 16 of 17
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Page 17 of 17
CÓ THỂ BẠN MUỐN DOWNLOAD
-
(Luyện thi cấp tốc Toán) Chuyên đề bất đẳng thức và min-max_Bài tập và hướng dẫn giải
15 p | 502 | 294
-
(Luyện thi cấp tốc Toán) Chuyên đề hình học giải tích phẳng_Bài tập và hướng dẫn giải
12 p | 501 | 288
-
(Luyện thi cấp tốc Toán) Chuyên đề hình học không gian_Bài tập và hướng dẫn giải
8 p | 471 | 248
-
(Luyện thi cấp tốc Toán) Chuyên đề hình học giải tích_Bài tập và hướng dẫn giải
11 p | 413 | 246
-
(Luyện thi cấp tốc Toán) Chuyên đề giới hạn tích phân_Bài tập và hướng dẫn giải
19 p | 329 | 200
-
Giáo án tuần 19 bài Tập đọc: Chuyện bốn mùa - Tiếng việt 2 - GV. Hoàng Quân
7 p | 892 | 46
-
Ôn thi Đại học: Bài toán dao động cơ học-con lắc lò xo
11 p | 240 | 35
-
Thi thử ĐH lần 1 môn Toán (A) năm 2010_Trường THPT chuyên Lê Quý Đôn
3 p | 343 | 33
-
Ôn thi Đại học: Bài toán sóng cơ
6 p | 105 | 18
-
Đề thi thử môn toán lớp 10 trường chuyên số 30
2 p | 81 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn