YOMEDIA
ADSENSE
Bài giải phần giải mạch P11
77
lượt xem 11
download
lượt xem 11
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Chapter 11, Solution 1. v( t ) = 160 cos(50t ) i( t ) = -20 sin(50t − 30°) = 2 cos(50t − 30° + 180° − 90°) i( t ) = 20 cos(50t + 60°) p( t ) = v( t ) i( t ) = (160)(20) cos(50t ) cos(50t + 60°) p( t ) = 1600 [ cos(100 t + 60°) + cos(60°) ] W p( t ) = 800 + 1600 cos(100t + 60°) W P= 1 1 Vm I m cos(θ v − θi ) = (160)(20) cos(60°) 2 2 P = 800 W Chapter 11, Solution 2. First, transform the...
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giải phần giải mạch P11
- Chapter 11, Solution 1. v( t ) = 160 cos(50t ) i( t ) = -20 sin(50t − 30°) = 2 cos(50t − 30° + 180° − 90°) i( t ) = 20 cos(50t + 60°) p( t ) = v( t ) i( t ) = (160)(20) cos(50t ) cos(50t + 60°) p( t ) = 1600 [ cos(100 t + 60°) + cos(60°) ] W p( t ) = 800 + 1600 cos(100t + 60°) W 1 1 P= Vm I m cos(θ v − θi ) = (160)(20) cos(60°) 2 2 P = 800 W Chapter 11, Solution 2. First, transform the circuit to the frequency domain. 30 cos(500t ) → 30 ∠0° , ω = 500 0.3 H → jωL = j150 1 -j 20µF → = = - j100 jωC (500)(20)(10 -6 ) I I2 -j100 Ω I1 + 30∠0° V j150 Ω 200 Ω − 30∠0° I1 = = 0.2∠ − 90° = - j0.2 j150 i1 ( t ) = 0.2 cos(500 t − 90°) = 0.2 sin(500 t ) 30∠0° 0.3 I2 = = = 0.1342∠26.56° = 0.12 + j0.06 200 − j100 2 − j
- i 2 ( t ) = 0.1342 cos(500 t + 25.56°) I = I 1 + I 2 = 0.12 − j0.14 = 0.1844 ∠ - 49.4° i( t ) = 0.1844 cos(500t − 35°) For the voltage source, p( t ) = v( t ) i( t ) = [ 30 cos(500t ) ] × [ 0.1844 cos(500t − 35°) ] At t = 2 s , p = 5.532 cos(1000) cos(1000 − 35°) p = (5.532)(0.5624)(0.935) p = 2.91 W For the inductor, p( t ) = v( t ) i( t ) = [ 30 cos(500t ) ] × [ 0.2 sin(500t ) ] At t = 2 s , p = 6 cos(1000) sin(1000) p = (6)(0.5624)(0.8269) p = 2.79 W For the capacitor, Vc = I 2 (- j100) = 13.42∠ - 63.44° p( t ) = v( t ) i( t ) = [13.42 cos(500 − 63.44°) ] × [ 0.1342 cos(500t + 25.56°) At t = 2 s , p = 18 cos(1000 − 63.44°) cos(1000 + 26.56°) p = (18)(0.991)(0.1329) p = 2.37 W For the resistor, VR = 200 I 2 = 26.84 ∠25.56° p( t ) = v( t ) i( t ) = [ 26.84 cos(500t + 26.56°) ] × [ 0.1342 cos(500t + 26.56°) ] At t = 2 s , p = 3.602 cos 2 (1000 + 25.56°) p = (3.602)(0.1329 2 p = 0.0636 W
- Chapter 11, Solution 3. 10 cos(2t + 30°) → 10∠30° , ω= 2 1H → jωL = j2 1 0.25 F → = -j2 jωC I 4Ω I1 2Ω I2 + 10∠30° V j2 Ω -j2 Ω − ( j2)(2 − j2) j2 || (2 − j2) = = 2 + j2 2 10 ∠30° I= = 1.581∠11.565° 4 + 2 + j2 j2 I1 = I = j I = 1.581∠101.565° 2 2 − j2 I2 = I = 2.236 ∠56.565° 2 For the source, 1 S = V I* = (10∠30°)(1.581∠ - 11.565°) 2 S = 7.905∠18.43° = 7.5 + j2.5 The average power supplied by the source = 7.5 W For the 4-Ω resistor, the average power absorbed is 1 2 1 P = I R = (1.581) 2 (4) = 5 W 2 2 For the inductor, 1 2 1 S = I 2 Z L = (2.236) 2 ( j2) = j5 2 2 The average power absorbed by the inductor = 0 W
- For the 2-Ω resistor, the average power absorbed is 1 2 1 P = I 1 R = (1.581) 2 (2) = 2.5 W 2 2 For the capacitor, 1 2 1 S= I 1 Z c = (1.581) 2 (- j2) = - j2.5 2 2 The average power absorbed by the capacitor = 0 W Chapter 11, Solution 4. 20 Ω 10 Ω + I1 I2 50 V -j10 Ω j5 Ω − For mesh 1, 50 = (20 − j10) I 1 + j10 I 2 5 = (2 − j) I 1 + j I 2 (1) For mesh 2, 0 = (10 + j5 − j10) I 2 + j10 I 1 0 = (2 − j) I 2 + j2 I 1 (2) In matrix form, 5 2 − j j I 1 0 = j2 2 − j I 2 ∆ = 5 − j4 , ∆ 1 = 5 (2 − j) , ∆ 2 = -j10 ∆ 1 5 (2 − j) I1 = = = 1.746∠12.1° ∆ 5 − j4 ∆ 2 - j10 I2 = = = 1.562 ∠128.66° ∆ 5 - j4 For the source, 1 S= V I 1 = 43.65∠ - 12.1° * 2
- The average power supplied = 43.65 cos(12.1°) = 42.68 W For the 20-Ω resistor, 1 2 P = I 1 R = 30.48 W 2 For the inductor and capacitor, P=0W For the 10-Ω resistor, 1 2 P = I 2 R = 12.2 W 2 Chapter 11, Solution 5. Converting the circuit into the frequency domain, we get: 1Ω 2Ω + –j2 8∠–40˚ − j6 8∠ − 40° I1Ω = = 1.6828∠ − 25.38° j6(2 − j2) 1+ j6 + 2 − j2 1.6828 2 P1Ω = 1 = 1.4159 W 2 P3H = P0.25F = 0 j6 I 2Ω = 1.6828∠ − 25.38° = 2.258 j6 + 2 − j2 2.258 2 P2Ω = 2 = 5.097 W 2
- Chapter 11, Solution 6. 20 Ω 10 Ω + I1 I2 50 V -j10 Ω j5 Ω − For mesh 1, (4 + j2) I 1 − j2 (4 ∠60°) + 4 Vo = 0 (1) Vo = 2 (4 ∠60° − I 2 ) (2) For mesh 2, (2 − j) I 2 − 2 (4∠60°) − 4Vo = 0 (3) Substituting (2) into (3), (2 − j) I 2 − 8∠60° − 8 (4 ∠60° − I 2 ) = 0 40∠60° I2 = 10 − j Hence, 40∠60° - j8∠60° Vo = 2 4 ∠60° − = 10 − j 10 − j Substituting this into (1), j32 ∠60° 14 − j (4 + j2) I 1 = j8∠60° + = ( j8∠60°) 10 − j 10 − j (4∠60°)(1 + j14) I1 = = 2.498∠125.06° 21 + j8 1 2 1 P4 = I 1 R = (2.498) 2 (4) = 12.48 W 2 2 Chapter 11, Solution 7. 20 Ω 10 Ω + I1 I2 50 V -j10 Ω j5 Ω −
- Applying KVL to the left-hand side of the circuit, 8∠20° = 4 I o + 0.1Vo (1) Applying KCL to the right side of the circuit, V V1 8Io + 1 + =0 j5 10 − j5 10 10 − j5 But, Vo = V → V1 = Vo 10 − j5 1 10 10 − j5 Vo Hence, 8Io + Vo + =0 j50 10 I o = j0.025 Vo (2) Substituting (2) into (1), 8∠20° = 0.1 Vo (1 + j) 80∠20° Vo = 1+ j Vo 10 I1 = = ∠ - 25° 10 2 1 2 1 100 P= I 1 R = (10) = 250 W 2 2 2 Chapter 11, Solution 8. We apply nodal analysis to the following circuit. V1 Io -j20 Ω V2 I2 6∠0° A j10 Ω 0.5 Io 40 Ω At node 1, V1 V1 − V2 6= + V1 = j120 − V2 (1) j10 - j20 At node 2,
- V2 0 .5 I o + I o = 40 V1 − V2 But, Io = - j20 1.5 (V1 − V2 ) V2 Hence, = - j20 40 3V1 = (3 − j) V2 (2) Substituting (1) into (2), j360 − 3V2 − 3V2 + j V2 = 0 j360 360 V2 = = (-1 + j6) 6 − j 37 V2 9 I2 = = (-1 + j6) 40 37 2 1 2 1 9 P = I2 R = (40) = 43.78 W 2 2 37 Chapter 11, Solution 9. 6 Vo = 1 + Vs = (4)(2) = 8 V rms 2 Vo2 64 P10 = = mW = 6.4 mW R 10 The current through the 2 -kΩ resistor is Vs = 1 mA 2k P2 = I 2 R = 2 mW Similarly, P6 = I 2 R = 6 mW
- Chapter 11, Solution 10. No current flows through each of the resistors. Hence, for each resistor, P = 0 W. Chapter 11, Solution 11. ω = 377 , R = 10 4 , C = 200 × 10 -9 ωRC = (377)(10 4 )(200 × 10 -9 ) = 0.754 tan -1 (ωRC) = 37.02° 10k Z ab = ∠ - 37.02° = 6.375∠ - 37.02° kΩ 1 + (0.754) 2 i( t ) = 2 sin(377 t + 22°) = 2 cos(377 t − 68°) mA I = 2 ∠ - 68° 2 2 × 10 -3 S= I 2 Z ab = (6.375∠ - 37.02°) × 10 3 rms 2 S = 12.751∠ - 37.02° mVA P = S cos(37.02) = 10.181 mW Chapter 11, Solution 12. (a) We find Z Th using the circuit in Fig. (a). Zth 8Ω -j2 Ω (a) (8)(-j2) 8 Z Th = 8 || -j2 = = (1 − j4) = 0.471 − j1.882 8 − j2 17 Z L = Z * = 0.471 + j1.882 Ω Th
- We find VTh using the circuit in Fig. (b). Io + 8Ω Vth -j2 Ω 4∠0° A − (b) - j2 Io = (4∠0°) 8 − j2 - j64 VTh = 8 I o = 8 − j2 2 64 2 VTh 68 Pmax = = = 15.99 W 8RL (8)(0.471) (b) We obtain Z Th from the circuit in Fig. (c). 5Ω -j3 Ω j2 Ω Zth 4Ω (c) (5)(4 − j3) Z Th = j2 + 5 || (4 − j3) = j2 + = 2.5 + j1.167 9 − j3 Z L = Z * = 2.5 − j1.167 Ω Th
- Chapter 11, Solution 13. (a) We find Z Th at the load terminals using the circuit in Fig. (a). j100 Ω Zth 80 Ω -j40 Ω (a) (-j40)(80 + j100) Z Th = -j40 || (80 + j100) = = 51.2 − j1.6 80 + j60 Z L = Z * = 51.2 + j1.6 Ω Th (b) We find VTh at the load terminals using Fig. (b). Io j100 Ω + 3∠20° A 80 Ω -j40 Ω Vth − (b) 80 (8)(3∠20°) Io = (3∠20°) = 80 + j100 − j40 8 + j6 (- j40)(24∠20°) VTh = - j40 I o = 8 + j6 2 40 2 ⋅ 24 VTh 10 Pmax = = = 22.5 W 8RL (8)(51.2)
- From Fig.(d), we obtain VTh using the voltage division principle. 5Ω -j3 Ω j2 Ω + 10∠30° V + 4Ω − Vth − (d) 4 − j3 4 − j3 10 VTh = (10∠30°) = ∠30° 9 − j3 3 − j 3 2 5 10 2 ⋅ VTh 10 3 Pmax = = = 1.389 W 8RL (8)(2.5) Chapter 11, Solution 14. j24 Ω –j10 Ω I + 16 Ω VTh ZTh 40∠90º A 10 Ω j8 Ω _ (10 + j24)(16 + j8) Z Th = − j10 + = − j10 + 8.245 + j7.7 = 8.245 − j2.3Ω 10 + j24 + 16 + j8 Z = Z∗ = 8.245 + j2.3Ω Th
- 10 VTh = I(16 + j8) = j40(16 + j8) 10 + j24 + 16 + j8 = 173.55∠65.66° = 71.53 + j158.12 V 2 VTh 2 Pmax = I 2 8.245 = 2 8.245 = 456.6 W rms (2x8.245) 2 Chapter 11, Solution 15. To find Z Th , insert a 1-A current source at the load terminals as shown in Fig. (a). 1Ω 1 -j Ω 2 + Vo jΩ 2 Vo 1A − (a) At node 1, Vo Vo V2 − Vo + = → Vo = j V2 (1) 1 j -j At node 2, V2 − Vo 1 + 2 Vo = → 1 = j V2 − (2 + j) Vo (2) -j Substituting (1) into (2), 1 = j V2 − (2 + j)( j) V2 = (1 − j) V2 1 V2 = 1− j V2 1 + j VTh = = = 0.5 + j0.5 1 2 Z L = Z * = 0.5 − j0.5 Ω Th
- We now obtain VTh from Fig. (b). 1Ω -j Ω + + + 12∠0° V Vo jΩ 2 Vo Vth − − − (b) 12 − Vo Vo 2 Vo + = 1 j - 12 Vo = 1+ j Vo − (- j × 2 Vo ) + VTh = 0 (12)(1 + j2) VTh = -(1 + j2)Vo = 1+ j 2 12 5 2 VTh 2 Pmax = = = 90 W 8RL (8)(0.5) Chapter 11, Solution 16. 1 1 ω = 4, 1H → jωL = j 4, 1 / 20F → = = − j5 jωC j 4 x1 / 20 We find the Thevenin equivalent at the terminals of ZL. To find VTh, we use the circuit shown below. 0.5Vo 2Ω V1 4Ω V2 + + + 10
- At node 1, 10 − V1 V V − V2 = 1 + 0.25V1 + 1 → 5 = V1 (1 + j 0.2) − 0.25V2 (1) 2 − j5 4 At node 2, V1 − V2 V + 0.25V1 = 2 → 0 = 0.5V1 + V2 (−0.25 + j 0.25) (2) 4 j4 Solving (1) and (2) leads to VTh = V2 = 6.1947 + j 7.0796 = 9.4072∠48.81o Chapter 11, Solution 17. We find R Th at terminals a-b following Fig. (a). -j10 Ω 30 Ω a b 40 Ω j20 Ω (a) (30)( j20) (40)(-j10) Z Th = 30 || j20 + 40 || (- j10) = + 30 + j20 40 − j10 Z Th = 9.23 + j13.85 + 2.353 − j9.41 Z Th = 11.583 + j4.44 Ω Z L = Z * = 11.583 − j4.44 Ω Th We obtain VTh from Fig. (b). I1 I2 -j10 Ω 30 Ω j5 A + VTh − 40 Ω j20 Ω (b)
- Using current division, 30 + j20 I1 = ( j5) = -1.1 + j2.3 70 + j10 40 − j10 I2 = ( j5) = 1.1 + j2.7 70 + j10 VTh = 30 I 2 + j10 I 1 = 10 + j70 2 VTh 5000 Pmax = = = 53.96 W 8RL (8)(11.583) Chapter 11, Solution 18. We find Z Th at terminals a-b as shown in the figure below. 40 Ω -j10 Ω 40 Ω 80 Ω a Zth j20 Ω b (80)(-j10) Z Th = j20 + 40 || 40 + 80 || (-j10) = j20 + 20 + 80 − j10 Z Th = 21.23 + j10.154 Z L = Z * = 21.23 − j10.15 Ω Th Chapter 11, Solution 19. At the load terminals, (6)(3 + j) Z Th = - j2 + 6 || (3 + j) = -j2 + 9+ j Z Th = 2.049 − j1.561 R L = Z Th = 2.576 Ω
- To get VTh , let Z = 6 || (3 + j) = 2.049 + j0.439 . By transforming the current sources, we obtain VTh = (4 ∠0°) Z = 8.196 + j1.756 2 VTh 70.258 Pmax = = = 3.409 W 8RL 20.608 Chapter 11, Solution 20. Combine j20 Ω and -j10 Ω to get j20 || -j10 = -j20 To find Z Th , insert a 1-A current source at the terminals of R L , as shown in Fig. (a). 4 Io Io 40 Ω V1 V2 + − -j20 Ω -j10 Ω 1A (a) At the supernode, V1 V V 1= + 1 + 2 40 - j20 - j10 40 = (1 + j2) V1 + j4 V2 (1) - V1 Also, V1 = V2 + 4 I o , where I o = 40 V2 1.1 V1 = V2 → V1 = (2) 1 .1 Substituting (2) into (1), V 40 = (1 + j2) 2 + j4 V2 1 .1
- 44 V2 = 1 + j6.4 V2 Z Th = = 1.05 − j6.71 Ω 1 R L = Z Th = 6.792 Ω To find VTh , consider the circuit in Fig. (b). 4 Io Io 40 Ω V1 V2 + − + + 120∠0° V -j20 Ω -j10 Ω Vth − − (b) At the supernode, 120 − V1 V V = 1 + 2 40 - j20 - j10 120 = (1 + j2) V1 + j4 V2 (3) 120 − V1 Also, V1 = V2 + 4 I o , where I o = 40 V2 + 12 V1 = (4) 1 .1 Substituting (4) into (3), 109.09 − j21.82 = (0.9091 + j5.818) V2 109.09 − j21.82 VTh = V2 = = 18.893∠ - 92.43° 0.9091 + j5.818 2 VTh (18.893) 2 Pmax = = = 6.569 W 8RL (8)(6.792)
- Chapter 11, Solution 21. We find Z Th at terminals a-b, as shown in the figure below. 100 Ω -j10 Ω a 40 Ω Zth 50 Ω j30 Ω b Z Th = 50 || [ - j10 + 100 || (40 + j30) ] (100)(40 + j30) where 100 || (40 + j30) = = 31.707 + j14.634 140 + j30 (50)(31.707 + j4.634) Z Th = 50 || (31.707 + j4.634) = 81.707 + j4.634 Z Th = 19.5 + j1.73 R L = Z Th = 19.58 Ω Chapter 11, Solution 22. i (t ) = 4 sin t , 0
- Chapter 11, Solution 23. 15, 0 < t < 2 v( t ) = 5, 2 < t < 6 Vrms = 2 1 6 [ ∫ 15 0 2 2 dt + ∫2 5 2 dt = 6 ] 550 6 Vrms = 9.574 V Chapter 11, Solution 24. 5, 0 < t < 1 T = 2, v( t ) = - 5, 1 < t < 2 Vrms = 2 1 2 [∫ 5 0 1 2 dt + ∫1 (-5) 2 dt = 2 ] 25 2 [1 + 1] = 25 Vrms = 5 V Chapter 11, Solution 25. 2 1 T 2 f rms = T 1 1 2 [2 3 2 ∫ 0 f ( t )dt = 3 ∫ 0 (−4) dt + ∫ 1 0dt + ∫2 4 dt ] 1 32 = [16 + 0 + 16] = 3 3 32 f rms = = 3.266 3
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn