YOMEDIA
ADSENSE
Bài giải phần giải mạch P3
98
lượt xem 11
download
lượt xem 11
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Chapter 3, Solution 1. v1 8Ω 2Ω 40 Ω v2 6A 10 A At node 1, 6 = v1/(8) + (v1 - v2)/4 At node 2, v1 - v2/4 = v2/2 + 10 Solving (1) and (2), v1 = 9.143V, v2 = -10.286 V 2 v1 (9.143)2 P8Ω = = = 10.45 W 8 8 48 = 3v1 - 2v2 (1) 40 = v1 - 3v2 (2) P4Ω = (v 1 − v 2 )2 4 = 94.37 W v1 (= 10.286)2 = 52.9 W P2Ω = 2 = 2 2 Chapter 3, Solution 2 At node 1, v − v2 − v1 v1 − = 6+ 1 10 5 2 At node 2, v2 v −...
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giải phần giải mạch P3
- Chapter 3, Solution 1. v1 40 Ω v2 6A 8Ω 10 A 2Ω At node 1, 6 = v1/(8) + (v1 - v2)/4 48 = 3v1 - 2v2 (1) At node 2, v1 - v2/4 = v2/2 + 10 40 = v1 - 3v2 (2) Solving (1) and (2), v1 = 9.143V, v2 = -10.286 V v1 (9.143)2 2 P8Ω = = = 10.45 W 8 8 (v 1 − v 2 )2 P4Ω = = 94.37 W 4 v1 (= 10.286)2 P2Ω = 2 = = 52.9 W 2 2 Chapter 3, Solution 2 At node 1, − v1 v1 v − v2 − = 6+ 1 60 = - 8v1 + 5v2 (1) 10 5 2 At node 2, v2 v − v2 = 3+ 6+ 1 36 = - 2v1 + 3v2 (2) 4 2 Solving (1) and (2), v1 = 0 V, v2 = 12 V
- Chapter 3, Solution 3 Applying KCL to the upper node, v0 vo vo v 10 = + + +2+ 0 v0 = 40 V 10 20 30 60 v0 v v v i1 = = 4 A , i2 = 0 = 2 A, i3 = 0 = 1.33 A, i4 = 0 = 67 mA 10 20 30 60 Chapter 3, Solution 4 v1 2A v2 i1 i2 i3 i4 5Ω 10 Ω 10 Ω 5Ω 5A 4A At node 1, 4 + 2 = v1/(5) + v1/(10) v1 = 20 At node 2, 5 - 2 = v2/(10) + v2/(5) v2 = 10 i1 = v1/(5) = 4 A, i2 = v1/(10) = 2 A, i3 = v2/(10) = 1 A, i4 = v2/(5) = 2 A Chapter 3, Solution 5 Apply KCL to the top node. 30 − v 0 20 − v 0 v 0 + = v0 = 20 V 2k 6k 4k
- Chapter 3, Solution 6 v 2 − 12 v 0 v 0 − 10 i1 + i2 + i3 = 0 + + =0 4 6 2 or v0 = 8.727 V Chapter 3, Solution 7 At node a, 10 − Va Va Va − Vb = + → 10 = 6Va − 3Vb (1) 30 15 10 At node b, Va − Vb 12 − Vb − 9 − Vb + + =0 → 24 = 2Va − 7Vb (2) 10 20 5 Solving (1) and (2) leads to Va = -0.556 V, Vb = -3.444V Chapter 3, Solution 8 3Ω i1 v1 i3 5Ω i2 + 3V + V0 2Ω – + 4V0 – – 1Ω v1 v1 − 3 v1 − 4 v 0 i1 + i2 + i3 = 0 + + =0 5 1 5 2 8 But v 0 = v1 so that v1 + 5v1 - 15 + v1 - v1 = 0 5 5 or v1 = 15x5/(27) = 2.778 V, therefore vo = 2v1/5 = 1.1111 V
- Chapter 3, Solution 9 3Ω i1 v1 i3 6Ω + v0 – i2 + 12V + v1 8Ω + – 2v0 – – At the non-reference node, 12 − v1 v1 v1 − 2 v 0 = + (1) 3 8 6 But -12 + v0 + v1 = 0 v0 = 12 - v1 (2) Substituting (2) into (1), 12 − v1 v1 3v1 − 24 = + v0 = 3.652 V 3 8 6 Chapter 3, Solution 10 At node 1, v 2 − v1 v = 4+ 1 32 = -v1 + 8v2 - 8v0 (1) 1 8 1Ω 2i0 4A v0 v1 v2 8Ω 2Ω 4Ω i0
- At node 0, v0 v 4= + 2I 0 and I 0 = 1 16 = 2v0 + v1 (2) 2 8 At node 2, v 2 − v1 v 2 v 2I0 = + and I 0 = 1 v2 = v1 (3) 1 4 8 From (1), (2) and (3), v0 = 24 V, but from (2) we get v 4− o io = 2 = 2 − 24 = 2 − 6 = - 4 A 2 4 Chapter 3, Solution 11 4Ω i1 v i2 3Ω i3 10 V + – 5A 6Ω Note that i2 = -5A. At the non-reference node 10 − v v +5= v = 18 4 6 10 − v i1 = = -2 A, i2 = -5 A 4 Chapter 3, Solution 12 10 Ω v1 20 Ω v2 50 Ω i3 24 V + – 5A 40 Ω
- 24 − v 1 v − v 2 v1 − 0 At node 1, = 1 + 96 = 7v1 - 2v2 (1) 10 20 40 v1 − v 2 v 2 At node 2, 5 + = 500 = -5v1 + 7v2 (2) 20 50 Solving (1) and (2) gives, v1 = 42.87 V, v2 = 102.05 V v v i1 = 1 = 1.072 A, v2 = 2 = 2.041 A 40 50 Chapter 3, Solution 13 At node number 2, [(v2 + 2) – 0]/10 + v2/4 = 3 or v2 = 8 volts But, I = [(v2 + 2) – 0]/10 = (8 + 2)/10 = 1 amp and v1 = 8x1 = 8volts Chapter 3, Solution 14 5A 8Ω v0 v1 1Ω 2Ω 20 V – 4Ω + 40 V + – v1 − v 0 40 − v 0 At node 1, +5= v1 + v0 = 70 (1) 2 1 v1 − v 0 v v + 20 At node 0, +5= 0 + 0 4v1 - 7v0 = -20 (2) 2 4 8 Solving (1) and (2), v0 = 20 V
- Chapter 3, Solution 15 5A 8Ω v0 v1 1Ω 2Ω 20 V – 4Ω + 40 V + – Nodes 1 and 2 form a supernode so that v1 = v2 + 10 (1) At the supernode, 2 + 6v1 + 5v2 = 3 (v3 - v2) 2 + 6v1 + 8v2 = 3v3 (2) At node 3, 2 + 4 = 3 (v3 - v2) v3 = v2 + 2 (3) Substituting (1) and (3) into (2), − 56 2 + 6v2 + 60 + 8v2 = 3v2 + 6 v2 = 11 54 v1 = v2 + 10 = 11 i0 = 6vi = 29.45 A 2 2 v1 54 P65 = = v1 G = 6 = 144.6 W 2 R 11 2 − 56 P55 = v G = 2 2 5 = 129.6 W 11 P35 = (v L − v 3 ) G = (2) 2 3 = 12 W 2
- Chapter 3, Solution 16 2S v1 v2 8S v3 i0 + 13 V + 2A 1S v0 4S – – At the supernode, 2 = v1 + 2 (v1 - v3) + 8(v2 – v3) + 4v2, which leads to 2 = 3v1 + 12v2 - 10v3 (1) But v1 = v2 + 2v0 and v0 = v2. Hence v1 = 3v2 (2) v3 = 13V (3) Substituting (2) and (3) with (1) gives, v1 = 18.858 V, v2 = 6.286 V, v3 = 13 V Chapter 3, Solution 17 i0 4Ω 2Ω 10 Ω 60 V 8Ω 60 V + 3i0 –
- 60 − v1 v1 v1 − v 2 At node 1, = + 120 = 7v1 - 4v2 (1) 4 8 2 60 − v 2 v1 − v 2 At node 2, 3i0 + + =0 10 2 60 − v1 But i0 = . 4 Hence 3(60 − v1 ) 60 − v 2 v1 − v 2 + + =0 1020 = 5v1 - 12v2 (2) 4 10 2 60 − v1 Solving (1) and (2) gives v1 = 53.08 V. Hence i0 = = 1.73 A 4 Chapter 3, Solution 18 –+ v2 v1 v3 10 V 2Ω 2Ω + + 5A v1 v3 4Ω 8Ω – – (a) (b) v 2 − v1 v 2 − v3 At node 2, in Fig. (a), 5 = + 10 = - v1 + 2v2 - v3 (1) 2 2 v 2 − v1 v 2 − v 3 v1 v 3 At the supernode, + = + 40 = 2v1 + v3 (2) 2 2 4 8 From Fig. (b), - v1 - 10 + v3 = 0 v3 = v1 + 10 (3) Solving (1) to (3), we obtain v1 = 10 V, v2 = 20 V = v3
- Chapter 3, Solution 19 At node 1, V1 − V3 V1 − V2 V1 5 = 3+ + + → 16 = 7V1 − V2 − 4V3 (1) 2 8 4 At node 2, V1 − V2 V2 V2 − V3 = + → 0 = −V1 + 7V2 − 2V3 (2) 8 2 4 At node 3, 12 − V3 V1 − V3 V2 − V3 3+ + + =0 → − 36 = 4V1 + 2V2 − 7V3 (3) 8 2 4 From (1) to (3), 7 − 1 − 4 V1 16 − 1 7 − 2 V2 = 0 → AV = B 4 2 − 7 V3 − 36 Using MATLAB, 10 V = A −1 B = 4.933 → V1 = 10 V, V2 = 4.933 V, V3 = 12.267 V 12.267 Chapter 3, Solution 20 Nodes 1 and 2 form a supernode; so do nodes 1 and 3. Hence V1 V2 V3 + + =0 → V1 + 4V2 + V3 = 0 (1) 4 1 4 . V1 . V2 2Ω V3 4Ω 1Ω 4Ω
- Between nodes 1 and 3, − V1 + 12 + V3 = 0 → V3 = V1 − 12 (2) Similarly, between nodes 1 and 2, V1 = V2 + 2i (3) But i = V3 / 4 . Combining this with (2) and (3) gives . V2 = 6 + V1 / 2 (4) Solving (1), (2), and (4) leads to V1 = −3V, V2 = 4.5V, V3 = −15V Chapter 3, Solution 21 4 kΩ 2 kΩ 3v0 v3 3v0 v1 v2 + + + + + v0 v3 v2 3 mA 1 kΩ – – – (b) (a) Let v3 be the voltage between the 2kΩ resistor and the voltage-controlled voltage source. At node 1, v − v 2 v1 − v 3 3x10 −3 = 1 + 12 = 3v1 - v2 - 2v3 (1) 4000 2000 At node 2, v1 − v 2 v1 − v 3 v 2 + = 3v1 - 5v2 - 2v3 = 0 (2) 4 2 1 Note that v0 = v2. We now apply KVL in Fig. (b) - v3 - 3v2 + v2 = 0 v3 = - 2v2 (3) From (1) to (3), v1 = 1 V, v2 = 3 V
- Chapter 3, Solution 22 12 − v 0 v1 v − v0 At node 1, = +3+ 1 24 = 7v1 - v2 (1) 2 4 8 v1 − v 2 v 2 + 5v 2 At node 2, 3 + = 8 1 But, v1 = 12 - v1 Hence, 24 + v1 - v2 = 8 (v2 + 60 + 5v1) = 4 V 456 = 41v1 - 9v2 (2) Solving (1) and (2), v1 = - 10.91 V, v2 = - 100.36 V Chapter 3, Solution 23 v1 v 2 At the supernode, 5 + 2 = + 70 = v1 + 2v2 (1) 10 5 Considering Fig. (b), - v1 - 8 + v2 = 0 v2 = v1 + 8 (2) Solving (1) and (2), v1 = 18 V, v2 = 26 V v1 v2 –+ 5A 2A 8V + + 10 Ω 5Ω v1 v2 – – (a) (b)
- Chapter 3, Solution 24 6mA 1 kΩ 2 kΩ 3 kΩ V1 V2 + io - 30V 15V - 4 kΩ 5 kΩ + At node 1, 30 −V 1 V V − V2 =6+ 1 + 1 → 96 = 7V1 − 2V2 (1) 1 4 2 At node 2, (−15 −V 2) V2 V2 − V1 6+ = + → 30 = −15V1 + 31V2 (2) 3 5 2 Solving (1) and (2) gives V1=16.24. Hence io = V1/4 = 4.06 mA Chapter 3, Solution 25 i0 v0 20V + 2Ω 10V + – – 4Ω 40V + 1Ω – 2Ω Using nodal analysis, 20 − v 0 40 − v 0 10 − v 0 v −0 + + = 0 v0 = 20V 1 2 2 4 20 − v 0 i0 = = 0A 1
- Chapter 3, Solution 26 At node 1, 15 − V1 V − V3 V1 − V2 = 3+ 1 + → − 45 = 7V1 − 4V2 − 2V3 (1) 20 10 5 At node 2, V1 − V2 4 I o − V2 V2 − V3 + = (2) 5 5 5 V − V3 But I o = 1 . Hence, (2) becomes 10 0 = 7V1 − 15V2 + 3V3 (3) At node 3, V − V3 − 10 − V3 V2 − V3 3+ 1 + + =0 → − 10 = V1 + 2V2 − 5V3 (4) 10 5 5 Putting (1), (3), and (4) in matrix form produces 7 − 4 − 2 V1 − 45 7 − 15 3 V2 = 0 → AV = B 1 2 − 5 V3 − 10 Using MATLAB leads to − 9.835 −1 V = A B = − 4.982 − 1.96 Thus, V1 = −9.835 V, V2 = −4.982 V, V3 = −1.95 V Chapter 3, Solution 27 At node 1, 2 = 2v1 + v1 – v2 + (v1 – v3)4 + 3i0, i0 = 4v2. Hence, 2 = 7v1 + 11v2 – 4v3 (1) At node 2, v1 – v2 = 4v2 + v2 – v3 0 = – v1 + 6v2 – v3 (2) At node 3, 2v3 = 4 + v2 – v3 + 12v2 + 4(v1 – v3)
- or – 4 = 4v1 + 13v2 – 7v3 (3) In matrix form, 7 11 − 4 v 1 2 1 − 6 1 v = 0 2 4 13 − 7 v 3 − 4 7 11 −4 2 11 −4 ∆ = 1 −6 1 = 176, ∆ 1 = 0 −6 1 = 110 4 13 −7 −4 13 −7 7 2 −4 7 11 2 ∆2 = 1 0 1 = 66, ∆ 3 = 1 − 6 0 = 286 4 −4 −7 4 13 − 4 ∆ 1 110 ∆ 66 v1 = = = 0.625V, v2 = 2 = = 0.375V ∆ 176 ∆ 176 ∆3 286 v3 = = = 1.625V. ∆ 176 v1 = 625 mV, v2 = 375 mV, v3 = 1.625 V. Chapter 3, Solution 28 At node c, Vd − Vc Vc − Vb Vc = + → 0 = −5Vb + 11Vc − 2Vd (1) 10 4 5 At node b, Va + 45 − Vb Vc − Vb Vb + = → − 45 = Va − 4Vb + 2Vc (2) 8 4 8 At node a, Va − 30 − Vd Va Va + 45 − Vb + + =0 → 30 = 7Va − 2Vb − 4Vd (3) 4 16 8 At node d, Va − 30 − Vd Vd Vd − Vc = + → 150 = 5Va + 2Vc − 7Vd (4) 4 20 10 In matrix form, (1) to (4) become
- 0 − 5 11 − 2 Va 0 1 − 4 2 0 Vb − 45 7 − 2 0 − 4 V = 30 → AV = B c 5 0 2 − 7 V 150 d We use MATLAB to invert A and obtain − 10.14 −1 7.847 V = A B= − 1.736 − 29.17 Thus, Va = −10.14 V, Vb = 7.847 V, Vc = −1.736 V, Vd = −29.17 V Chapter 3, Solution 29 At node 1, 5 + V1 − V4 + 2V1 + V1 − V2 = 0 → − 5 = 4V1 − V2 − V4 (1) At node 2, V1 − V2 = 2V2 + 4(V2 − V3 ) = 0 → 0 = −V1 + 7V2 − 4V3 (2) At node 3, 6 + 4(V2 − V3 ) = V3 − V4 → 6 = −4V2 + 5V3 − V4 (3) At node 4, 2 + V3 − V4 + V1 − V4 = 3V4 → 2 = −V1 − V3 + 5V4 (4) In matrix form, (1) to (4) become 4 − 1 0 − 1 V1 − 5 − 1 7 − 4 0 V2 0 0 − 4 5 − 1 V = 6 → AV = B 3 − 1 0 − 1 5 V 2 4 Using MATLAB, − 0.7708 −1 1.209 V = A B= 2.309 0.7076 i.e. V1 = −0.7708 V, V2 = 1.209 V, V3 = 2.309 V, V4 = 0.7076 V
- Chapter 3, Solution 30 v2 –+ 40 Ω I0 120 V v1 20 Ω v0 10 Ω 1 2 + 100 V – 4v0 + 2I0 – 80 Ω At node 1, v 1 − v 2 100 − v 1 4 v o − v 1 = + (1) 40 10 20 But, vo = 120 + v2 v2 = vo – 120. Hence (1) becomes 7v1 – 9vo = 280 (2) At node 2, vo − 0 Io + 2Io = 80 v + 120 − v o v o 3 1 = 40 80 or 6v1 – 7vo = -720 (3) 7 − 9 v 1 280 from (2) and (3), 6 − 7 v = − 720 o 7 −9 ∆= = −49 + 54 = 5 6 −7 280 − 9 7 280 ∆1 = = −8440 , ∆2 = = −6720 − 720 − 7 6 − 720
- ∆1 − 8440 ∆ − 6720 v1 = = = −1688, vo = 2 = − 1344 V ∆ 5 ∆ 5 Io = -5.6 A Chapter 3, Solution 31 1Ω + v0 – v1 v2 2v0 v3 2Ω i0 1A 10 V + 4Ω 1Ω 4Ω – At the supernode, v1 v 2 v1 − v 3 1 + 2v0 = + + (1) 4 1 1 But vo = v1 – v3. Hence (1) becomes, 4 = -3v1 + 4v2 +4v3 (2) At node 3, v2 10 − v 3 2vo + = v1 − v 3 + 4 2 or 20 = 4v1 + v2 – 2v3 (3) v3 At the supernode, v2 = v1 + 4io. But io = . Hence, 4 v2 = v1 + v3 (4) Solving (2) to (4) leads to, v1 = 4 V, v2 = 4 V, v3 = 0 V.
- Chapter 3, Solution 32 5 kΩ v3 10 V 20 V –+ +– v1 v2 + + loop 1 v3 v1 loop 2 10 kΩ 12 V + – – – 4 mA (b) (a) We have a supernode as shown in figure (a). It is evident that v2 = 12 V, Applying KVL to loops 1and 2 in figure (b), we obtain, -v1 – 10 + 12 = 0 or v1 = 2 and -12 + 20 + v3 = 0 or v3 = -8 V Thus, v1 = 2 V, v2 = 12 V, v3 = -8V. Chapter 3, Solution 33 (a) This is a non-planar circuit because there is no way of redrawing the circuit with no crossing branches. (b) This is a planar circuit. It can be redrawn as shown below. 4Ω 3Ω 5Ω 12 V + 2Ω – 1Ω
- Chapter 3, Solution 34 (a) This is a planar circuit because it can be redrawn as shown below, 7Ω 2Ω 1Ω 3Ω 6Ω 10 V + 5Ω – 4Ω (b) This is a non-planar circuit. Chapter 3, Solution 35 30 V + 20 V + – – + i1 i2 v0 4 kΩ 2 kΩ 5 kΩ – Assume that i1 and i2 are in mA. We apply mesh analysis. For mesh 1, -30 + 20 + 7i1 – 5i2 = 0 or 7i1 – 5i2 = 10 (1) For mesh 2, -20 + 9i2 – 5i1 = 0 or -5i1 + 9i2 = 20 (2) Solving (1) and (2), we obtain, i2 = 5. v0 = 4i2 = 20 volts.
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn