YOMEDIA
ADSENSE
Bài giải phần giải mạch P4
91
lượt xem 14
download
lượt xem 14
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Chapter 4, Solution 1. 1Ω i 5Ω io 1V + − 8Ω 3Ω 8 (5 + 3) = 4Ω , i = 1 1 = 1+ 4 5 io = 1 1 i= = 0.1A 2 10 Chapter 4, Solution 2. 6 (4 + 2) = 3Ω, i1 = i 2 = 1 A 2 5Ω 4Ω io = 1 1 i1 = , v o = 2i o = 0.5V 2 4 i1 io i2 1A 8Ω 6Ω 2Ω If is = 1µA, then vo = 0.5µV Chapter 4, Solution 3. R 3R io 3R Vs 3R R + vo − (a) (b) 1V + − + − 3R 1.5R .(a) We transform the Y sub-circuit to the equivalent ∆ . R 3R...
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giải phần giải mạch P4
- Chapter 4, Solution 1. 1Ω i 5Ω io + 1V 8Ω 3Ω − 1 1 8 (5 + 3) = 4Ω , i = = 1+ 4 5 1 1 io = i= = 0.1A 2 10 Chapter 4, Solution 2. 1 6 (4 + 2) = 3Ω, i1 = i 2 = A 2 1 1 io = i1 = , v o = 2i o = 0.5V 2 4 5Ω i1 4Ω io i2 1A 8Ω 6Ω 2Ω If is = 1µA, then vo = 0.5µV Chapter 4, Solution 3. R 3R io 3R 3R + + 3R 1.5R + R 1V Vs vo − − − (b) (a)
- (a) We transform the Y sub-circuit to the equivalent ∆ . 3R 2 3 3 3 3 R 3R = = R, R + R = R 4R 4 4 4 2 vs vo = independent of R 2 io = vo/(R) When vs = 1V, vo = 0.5V, io = 0.5A (b) When vs = 10V, vo = 5V, io = 5A (c) When vs = 10V and R = 10Ω, vo = 5V, io = 10/(10) = 500mA Chapter 4, Solution 4. If Io = 1, the voltage across the 6Ω resistor is 6V so that the current through the 3Ω resistor is 2A. 2A 2Ω 2Ω 1A 3A 3A i1 + 3Ω 6Ω 4Ω Is 2Ω 4Ω Is v1 − (a) (b) vo 3 6 = 2Ω , vo = 3(4) = 12V, i1 = = 3A. 4 Hence Is = 3 + 3 = 6A If Is = 6A Io = 1 Is = 9A Io = 6/(9) = 0.6667A
- Chapter 4, Solution 5. 2Ω v1 3Ω vo + Vs 6Ω 6Ω 6Ω − 1 If vo = 1V, V1 = + 1 = 2V 3 2 10 Vs = 2 + v1 = 3 3 10 If vs = vo = 1 3 3 Then vs = 15 vo = x15 = 4.5V 10 Chapter 4, Solution 6 R2 R3 RT Let RT = R2 // R3 = , then Vo = Vs R2 + R3 RT +R1 R2 R3 V RT R2 + R3 R2 R3 k= o = = = Vs RT + R1 R2 R3 R1 R2 + R2 R3 + R3 R1 + R1 R2 + R3
- Chapter 4, Solution 7 We find the Thevenin equivalent across the 10-ohm resistor. To find VTh, consider the circuit below. 3Vx 5Ω 5Ω + + 4V 15 Ω VTh - 6Ω - + Vx - From the figure, 15 V x = 0, VTh = (4) = 3V 15 + 5 To find RTh, consider the circuit below: 3Vx 5Ω 5Ω V1 V2 + 4V 15 Ω 1A - 6Ω + Vx - At node 1, 4 − V1 V V − V2 = 3V x + 1 + 1 , V x = 6 x1 = 6 → 258 = 3V2 − 7V1 (1) 5 15 5 At node 2,
- V1 − V2 1 + 3V x + =0 → V1 = V2 − 95 (2) 5 Solving (1) and (2) leads to V2 = 101.75 V 2 V V 9 RTh = 2 = 101.75Ω, p max = Th = = 22.11 mW 1 4 RTh 4 x101.75 Chapter 4, Solution 8. Let i = i1 + i2, where i1 and iL are due to current and voltage sources respectively. 6Ω i2 i1 6Ω 4Ω 5A + 4Ω 20V − (a) (b) 6 20 i1 = (5) = 3A, i 2 = = 2A 6+4 6+4 Thus i = i1 + i2 = 3 + 2 = 5A Chapter 4, Solution 9. Let i x = i x1 + i x 2 where i x1 is due to 15V source and i x 2 is due to 4A source, 12 Ω i ix1 ix2 -4A + 10 Ω 40Ω 12Ω 10Ω 40Ω 15V − (a) (b)
- For ix1, consider Fig. (a). 10||40 = 400/50 = 8 ohms, i = 15/(12 + 8) = 0.75 ix1 = [40/(40 + 10)]i = (4/5)0.75 = 0.6 For ix2, consider Fig. (b). 12||40 = 480/52 = 120/13 ix2 = [(120/13)/((120/13) + 10)](-4) = -1.92 ix = 0.6 – 1.92 = -1.32 A p = vix = ix2R = (-1.32)210 = 17.43 watts Chapter 4, Solution 10. Let vab = vab1 + vab2 where vab1 and vab2 are due to the 4-V and the 2-A sources respectively. 3vab1 3vab2 10 Ω 10 Ω +− +− + + + 4V vab1 2A vab2 − − − (a) (b) For vab1, consider Fig. (a). Applying KVL gives, - vab1 – 3 vab1 + 10x0 + 4 = 0, which leads to vab1 = 1 V For vab2, consider Fig. (b). Applying KVL gives, - vab2 – 3vab2 + 10x2 = 0, which leads to vab2 = 5 vab = 1 + 5 = 6 V
- Chapter 4, Solution 11. Let i = i1 + i2, where i1 is due to the 12-V source and i2 is due to the 4-A source. 6Ω io i1 + 2Ω 3Ω 12V − (a) i2 4A ix2 4A 6Ω 2Ω 3Ω 2Ω 2Ω (b) For i1, consider Fig. (a). 2||3 = 2x3/5 = 6/5, io = 12/(6 + 6/5) = 10/6 i1 = [3/(2 + 3)]io = (3/5)x(10/6) = 1 A For i2, consider Fig. (b), 6||3 = 2 ohm, i2 = 4/2 = 2 A i = 1+2 = 3A Chapter 4, Solution 12. Let vo = vo1 + vo2 + vo3, where vo1, vo2, and vo3 are due to the 2-A, 12-V, and 19-V sources respectively. For vo1, consider the circuit below. 2A 2A 5Ω 4Ω io 5 Ω + vo1 − + vo1 − 6Ω 3Ω 12 Ω 5Ω
- 6||3 = 2 ohms, 4||12 = 3 ohms. Hence, io = 2/2 = 1, vo1 = 5io = 5 V For vo2, consider the circuit below. 6Ω 5Ω 4Ω 6Ω 5Ω + vo2 − + + vo2 − + 3Ω 12 Ω + 3Ω 3Ω 12V 12V v1 − − − 3||8 = 24/11, v1 = [(24/11)/(6 + 24/11)]12 = 16/5 vo2 = (5/8)v1 = (5/8)(16/5) = 2 V For vo3, consider the circuit shown below. 5Ω 4Ω 5Ω 4Ω + vo3 − + vo3 − + + 2Ω + 6Ω 12 Ω 19V 12 Ω v2 3Ω − − 19V − 7||12 = (84/19) ohms, v2 = [(84/19)/(4 + 84/19)]19 = 9.975 v = (-5/7)v2 = -7.125 vo = 5 + 2 – 7.125 = -125 mV Chapter 4, Solution 13 Let io = i1 + i2 + i3 , where i1, i2, and i3 are the contributions to io due to 30-V, 15-V, and 6-mA sources respectively. For i1, consider the circuit below.
- 1 kΩ 2 kΩ 3 kΩ + i1 30V - 4 kΩ 5 kΩ 3//5 = 15/8 = 1.875 kohm, 2 + 3//5 = 3.875 kohm, 1//3.875 = 3.875/4.875 = 0.7949 kohm. After combining the resistors except the 4-kohm resistor and transforming the voltage source, we obtain the circuit below. i1 30 mA 4 kΩ 0.7949 k Ω Using current division, 0.7949 i1 = (30mA) = 4.973 mA 4.7949 For i2, consider the circuit below. 1 kΩ 2 kΩ 3 kΩ i2 - 15V 4 kΩ 5 kΩ + After successive source transformation and resistance combinations, we obtain the circuit below: 2.42mA i2 4 kΩ 0.7949 k Ω Using current division, 0.7949 i2 = − (2.42mA) = −0.4012 mA 4.7949
- For i3, consider the circuit below. 6mA 1 kΩ 2 kΩ 3 kΩ i3 4 kΩ 5 kΩ After successive source transformation and resistance combinations, we obtain the circuit below: 3.097mA i3 4 kΩ 0.7949 k Ω 0.7949 i3 = − (3.097mA) = −0.5134 mA 4.7949 Thus, io = i1 + i2 + i3 = 4.058 mA Chapter 4, Solution 14. Let vo = vo1 + vo2 + vo3, where vo1, vo2 , and vo3, are due to the 20-V, 1-A, and 2-A sources respectively. For vo1, consider the circuit below. 6Ω 4Ω 2Ω + + vo1 3Ω − 20V − 6||(4 + 2) = 3 ohms, vo1 = (½)20 = 10 V
- For vo2, consider the circuit below. 6Ω 6Ω 4V 4Ω 2Ω 4Ω 2Ω −+ + + 1A vo2 3Ω vo2 3Ω − − 3||6 = 2 ohms, vo2 = [2/(4 + 2 + 2)]4 = 1 V For vo3, consider the circuit below. 6Ω 2A 2A 4Ω 2Ω 3Ω + vo3 3Ω 3Ω − − vo3 + 6||(4 + 2) = 3, vo3 = (-1)3 = -3 vo = 10 + 1 – 3 = 8 V Chapter 4, Solution 15. Let i = i1 + i2 + i3, where i1 , i2 , and i3 are due to the 20-V, 2-A, and 16-V sources. For i1, consider the circuit below. io + 20V 1Ω − i1 4Ω 2Ω 3Ω
- 4||(3 + 1) = 2 ohms, Then io = [20/(2 + 2)] = 5 A, i1 = io/2 = 2.5 A For i3, consider the circuit below. + 1Ω 4Ω 2Ω i3 vo ’ − 16V 3Ω + − 2||(1 + 3) = 4/3, vo’ = [(4/3)/((4/3) + 4)](-16) = -4 i3 = vo’/4 = -1 For i2, consider the circuit below. 1Ω 2A 1Ω 2A 2Ω (4/3)Ω i2 4Ω i2 3Ω 3Ω 2||4 = 4/3, 3 + 4/3 = 13/3 Using the current division principle. i2 = [1/(1 + 13/2)]2 = 3/8 = 0.375 i = 2.5 + 0.375 - 1 = 1.875 A p = i2R = (1.875)23 = 10.55 watts
- Chapter 4, Solution 16. Let io = io1 + io2 + io3, where io1, io2, and io3 are due to the 12-V, 4-A, and 2-A sources. For io1, consider the circuit below. io1 4Ω 3Ω 2Ω + 10 Ω 5Ω 12V − 10||(3 + 2 + 5) = 5 ohms, io1 = 12/(5 + 4) = (12/9) A For io2, consider the circuit below. 4A io2 3Ω 2Ω 4Ω 10Ω 5Ω i1 2 + 5 + 4||10 = 7 + 40/14 = 69/7 i1 = [3/(3 + 69/7)]4 = 84/90, io2 =[-10/(4 + 10)]i1 = -6/9 For io3, consider the circuit below. io3 3Ω 2Ω i2 4Ω 10 Ω 5Ω 2A 3 + 2 + 4||10 = 5 + 20/7 = 55/7 i2 = [5/(5 + 55/7)]2 = 7/9, io3 = [-10/(10 + 4)]i2 = -5/9 io = (12/9) – (6/9) – (5/9) = 1/9 = 111.11 mA
- Chapter 4, Solution 17. Let vx = vx1 + vx2 + vx3, where vx1,vx2, and vx3 are due to the 90-V, 6-A, and 40-V sources. For vx1, consider the circuit below. 30 Ω 10 Ω 20 Ω + − vx1 + 60 Ω 30 Ω 90V − io 10 Ω + − vx1 3A 20 Ω 12 Ω 20||30 = 12 ohms, 60||30 = 20 ohms By using current division, io = [20/(22 + 20)]3 = 60/42, vx1 = 10io = 600/42 = 14.286 V For vx2, consider the circuit below. 10 Ω i ’ 10 Ω i ’ o o + vx2 − + vx2 − 30 Ω 60 Ω 6A 30 Ω 20 Ω 20 Ω 6A 12 Ω io’ = [12/(12 + 30)]6 = 72/42, vx2 = -10io’ = -17.143 V For vx3, consider the circuit below. 10 Ω 10 Ω 10 Ω io” + − + − vx3 vx3 30 Ω 60 Ω 30 Ω + 20 Ω 7.5Ω 40V 4A − io” = [12/(12 + 30)]2 = 24/42, vx3 = -10io” = -5.714 vx = 14.286 – 17.143 – 5.714 = -8.571 V
- Chapter 4, Solution 18. Let ix = i1 + i2, where i1 and i2 are due to the 10-V and 2-A sources respectively. To obtain i1, consider the circuit below. 2Ω 10i1 i1 1Ω i1 1Ω 2Ω +− + 5i1 4Ω + 4Ω 10V 10V − − -10 + 10i1 + 7i1 = 0, therefore i1 = (10/17) A For i2, consider the circuit below. 10i2 i2 1Ω 2Ω i io 1Ω 2Ω o +− +− 10i2 4Ω + 4Ω 2A 2V − -2 + 10i2 + 7io = 0, but i2 + 2 = io. Hence, -2 + 10i2 +7i2 + 14 = 0, or i2 = (-12/17) A vx = 1xix = 1(i1 + i2) = (10/17) – (12/17) = -2/17 = -117.6 mA Chapter 4, Solution 19. Let vx = v1 + v2, where v1 and v2 are due to the 4-A and 6-A sources respectively. ix v1 ix v2 + + 2Ω 4A 8Ω v1 2Ω 6A 8Ω v2 −+ − −+ − 4ix 4ix (a) (b)
- To find v1, consider the circuit in Fig. (a). v1/8 = 4 + (-4ix – v1)/2 But, -ix = (-4ix – v1)/2 and we have -2ix = v1. Thus, v1/8 = 4 + (2v1 – v1)/8, which leads to v1 = -32/3 To find v2, consider the circuit shown in Fig. (b). v2/2 = 6 + (4ix – v2)/8 But ix = v2/2 and 2ix = v2. Therefore, v2/2 = 6 + (2v2 – v2)/8 which leads to v2 = -16 Hence, vx = –(32/3) – 16 = -26.67 V Chapter 4, Solution 20. Transform the voltage sources and obtain the circuit in Fig. (a). Combining the 6-ohm and 3-ohm resistors produces a 2-ohm resistor (6||3 = 2). Combining the 2-A and 4-A sources gives a 6-A source. This leads to the circuit shown in Fig. (b). i i 2A 6Ω 2Ω 3Ω 4A 2Ω 2Ω 6A (a) (b) From Fig. (b), i = 6/2 = 3 A Chapter 4, Solution 21. To get io, transform the current sources as shown in Fig. (a). io 6Ω 3Ω i + + + 6Ω 3Ω vo 2 A − 12V − 6V 2 A − (a) (b)
- From Fig. (a), -12 + 9io + 6 = 0, therefore io = 666.7 mA To get vo, transform the voltage sources as shown in Fig. (b). i = [6/(3 + 6)](2 + 2) = 8/3 vo = 3i = 8 V Chapter 4, Solution 22. We transform the two sources to get the circuit shown in Fig. (a). 5Ω 5Ω − 4Ω 10Ω + 10V 2A (a) i 1A 10Ω 4Ω 10Ω 2A (b) We now transform only the voltage source to obtain the circuit in Fig. (b). 10||10 = 5 ohms, i = [5/(5 + 4)](2 – 1) = 5/9 = 555.5 mA
- Chapter 4, Solution 23 If we transform the voltage source, we obtain the circuit below. 8Ω 10 Ω 6Ω 3Ω 5A 3A 3//6 = 2-ohm. Convert the current sources to voltages sources as shown below. 10 Ω 8Ω 2Ω + + 10V 30V - - Applying KVL to the loop gives − 30 + 10 + I (10 + 8 + 2) = 0 → I = 1A p = VI = I 2 R = 8 W
- Chapter 4, Solution 24 Convert the current source to voltage source. 16 Ω 1Ω 4Ω + 5Ω + 48 V 10 Ω Vo - + - 12 V - Combine the 16-ohm and 4-ohm resistors and convert both voltages sources to current Sources. We obtain the circuit below. 1Ω 2.4A 20 Ω 5Ω 2.4A 10 Ω Combine the resistors and current sources. 20//5 = (20x5)/25 = 4 Ω , 2.4 + 2.4 = 4.8 A Convert the current source to voltage source. We obtain the circuit below. 4Ω 1Ω + + 19.2V Vo 10 Ω - - Using voltage division, 10 Vo = (19.2) = 12.8 V 10 + 4 + 1
- Chapter 4, Solution 25. Transforming only the current source gives the circuit below. 9Ω 18 V −+ + 5Ω 12V − i − 4Ω 30 V vo + + − +− 2Ω 30 V Applying KVL to the loop gives, (4 + 9 + 5 + 2)i – 12 – 18 – 30 – 30 = 0 20i = 90 which leads to i = 4.5 vo = 2i = 9 V Chapter 4, Solution 26. Transform the voltage sources to current sources. The result is shown in Fig. (a), 30||60 = 20 ohms, 30||20 = 12 ohms 10 Ω + vx − 3A 30Ω 60Ω 6A 30Ω 20Ω 2A (a) 20 Ω 10 Ω 12 Ω + vx − + + − 60V i − 96V (b)
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn