Bài giảng Lý thuyết đồ thị: Chương 4 - ThS. Nguyễn Khắc Quốc
lượt xem 14
download
Nội dung chương 4 Đồ thị phẳng và tô màu đồ thị thuộc bài giảng Lý thuyết đồ thị nhằm trình bày về những kiến thức sau: định nghĩa, chứng minh và ví dụ đồ thị phẳng, định nghĩa, chứng minh và ví dụ đồ thị không phẳng, chứng minh mệnh đề tô màu đồ thị.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Lý thuyết đồ thị: Chương 4 - ThS. Nguyễn Khắc Quốc
- CHƯƠNG 4 ĐỒ THỊ PHẲNG VÀ TÔ MÀU ĐỒ THỊ Ths. Nguyễn Khắc Quốc IT.Deparment – Tra Vinh University 1
- BÀI TOÁN. Từ xa xưa đã lưu truyền một bài toán cổ “Ba nhà, ba giếng”: - Có ba nhà ở gần ba cái giếng, nhưng không có đường nối thẳng các nhà với nhau cũng như không có đường nối thẳng các giếng với nhau. Có lần bất hoà với nhau, họ tìm cách làm các đường khác đến giếng sao cho các đường này đôi một không giao nhau. Họ có thực hiện được ý định đó không? ThS. Nguyễn Khắc Quốc 2
- BÀI TOÁN (tt). - Bài toán này có thể được mô hình bằng đồ thị phân đôi đầy đủ K3,3. - Câu hỏi ban đầu có thể diễn đạt như sau: - Có thể vẽ K3,3 trên một mặt phẳng sao cho không có hai cạnh nào cắt nhau? Chúng ta sẽ nghiên cứu bài toán: Có thể vẽ một đồ thị trên một mặt phẳng không có các cạnh nào cắt nhau không. - Đặc biệt, chúng ta sẽ trả lời bài toán ba nhà ba giếng. - Thường có nhiều cách biểu diễn đồ thị. - Khi nào có thể tìm được ít nhất một cách biểu diễn đồ thị không có cạnh cắt nhau? ThS. Nguyễn Khắc Quốc 3
- 4.1. ĐỒ THỊ PHẲNG. 4.1.1. Định nghĩa: - Một đồ thị được gọi là phẳng nếu nó có thể vẽ được trên một mặt phẳng mà không có các cạnh nào cắt nhau (ở một điểm không phải là điểm mút của các cạnh). - Hình vẽ như thế gọi là một biểu diễn phẳng của đồ thị. - Một đồ thị có thể là phẳng ngay cả khi nó thường được vẽ với những cạnh cắt nhau, vì có thể vẽ nó bằng cách khác không có các cạnh cắt nhau. ThS. Nguyễn Khắc Quốc 4
- 4.1. ĐỒ THỊ PHẲNG (tt). Thí dụ: K4 là đồ thị phẳng bởi vì có thể vẽ lại như hình dưới không có đường cắt nhau Vẽ lại K4 Đồ thị K4 K4 vẽ không cắt nhau ThS. Nguyễn Khắc Quốc 5
- 4.1. ĐỒ THỊ PHẲNG (tt). 4.1.2. Định nghĩa: - Cho G là một đồ thị phẳng. - Mỗi phần mặt phẳng giới hạn bởi một chu trình đơn không chứa bên trong nó một chu trình đơn khác, gọi là một miền (hữu hạn) của đồ thị G. - Chu trình giới hạn miền là biên của miền. - Mỗi đồ thị phẳng liên thông có một miền vô hạn duy nhất (là phần mặt phẳng bên ngoài tất cả các miền hữu hạn). - Số cạnh ít nhất tạo thành biên gọi là đai của G; trường hợp nếu G không có chu trình thì đai chính là số cạnh của G. ThS. Nguyễn Khắc Quốc 6
- 4.1. ĐỒ THỊ PHẲNG (tt). Thí dụ: 1) Một cây chỉ có một miền, đó là miền vô hạn. 2) Đồ thị phẳng ở hình bên có 5 miền, M5 là miền vô hạn, + miền M1 có biên abgfa, + miền M2 có biên là bcdhgb, … Chu trình đơn abcdhgfa không giới hạn một miền vì chứa bên trong nó chu trình đơn khác là abgfa. ThS. Nguyễn Khắc Quốc 7
- 4.1. ĐỒ THỊ PHẲNG (tt). 4.1.3. Định lý (Euler, 1752): Nếu một đồ thị phẳng liên thông có n đỉnh, p cạnh và d miền thì ta có hệ thức: n p + d = 2. Chứng minh: - Cho G là đồ thị phẳng liên thông có n đỉnh, p cạnh và d miền. - Ta bỏ một số cạnh của G để được một cây khung của G. - Mỗi lần ta bỏ một cạnh (p giảm 1) thì số miền của G cũng giảm 1 (d giảm 1), còn số đỉnh của G không thay đổi (n không đổi). - Như vậy, giá trị của biểu thức n p + d không thay đổi trong suốt quá trình ta bỏ bớt cạnh của G để được một cây. - Cây này có n đỉnh, do đó có n 1 cạnh và cây chỉ có một miền, vì vậy: n p + d = n (n 1) + 1 = 2. ThS. Nguyễn Khắc Quốc 8
- 4.1. ĐỒ THỊ PHẲNG (tt). - Hệ thức n p + d = 2 thường gọi là “hệ thức Euler cho hình đa diện”, vì được Euler chứng minh đầu tiên cho hình đa diện có n đỉnh, p cạnh và d mặt. - Mỗi hình đa diện có thể coi là một đồ thị phẳng. - Chẳng hạn hình tứ diện ABCD và hình hộp ABCDA’B’C’D’ có thể biểu diễn bằng các đồ thị dưới đây. ThS. Nguyễn Khắc Quốc 9
- 4.1. ĐỒ THỊ PHẲNG (tt). 4.1.4. Hệ quả: - Trong một đồ thị phẳng liên thông tuỳ ý, luôn tồn tại ít nhất một đỉnh có bậc không vượt quá 5. Chứng minh: - Trong đồ thị phẳng mỗi miền được bao bằng ít nhất 3 cạnh. - Mặt khác, mỗi cạnh có thể nằm trên biên của tối đa hai miền, nên ta có 3d 2p. -Nếu trong đồ thị phẳng mà tất cả các đỉnh đều có bậc không nhỏ hơn 6 thì do mỗi đỉnh của đồ thị phải là đầu mút của ít nhất 6 cạnh mà mỗi cạnh lại có hai đầu mút nên ta có 6n 2p hay 3n p. - Từ đó suy ra 3d+3n 2p+p hay d+n p, trái với hệ thức Euler d+n=p+2. ThS. Nguyễn Khắc Quốc 10
- 4.2. ĐỒ THỊ KHÔNG PHẲNG. 4.2.1. Định lý: Đồ thị phân đôi đầy đủ K3,3 là một đồ thị không phẳng. Chứng minh: - Giả sử K3,3 là đồ thị phẳng. - Khi đó ta có một đồ thị phẳng với 6 đỉnh (n=6) và 9 cạnh (p=9), nên theo Định lý Euler đồ thị có số miền là d=pn+2=5. - Ở đây, mõi cạnh chung cho hai miền, mà mỗi miền có ít nhất 4 cạnh. - Do đó 4d2p, tức là 4x52x9, vô lý. Như vậy định lý này cho ta lời giải của bài toán “Ba nhà ba giếng”, nghĩa là không thể thực hiện được việc làm các đường khác đến giếng sao cho các đường này đôi một không giao nhau. ThS. Nguyễn Khắc Quốc 11
- 4.2. ĐỒ THỊ KHÔNG PHẲNG (tt). 4.2.2. Định lý: - Đồ thị đầy đủ K5 là một đồ thị không phẳng. Chứng minh: - Giả sử K5 là đồ thị phẳng. - Khi đó ta có một đồ thị phẳng với 5 đỉnh (n=5) và 10 cạnh (p=10), nên theo Định lý Euler đồ thị có số miền là d=pn+2=7. -Trong K5, mỗi miền có ít nhất 3cạnh, mỗi cạnh chung cho hai miền, vì vậy 3d2n, tức là 3x72x10, vô lý. ThS. Nguyễn Khắc Quốc 12
- 4.2. ĐỒ THỊ KHÔNG PHẲNG (tt). 4.2.3. Chú ý: - Ta đã thấy K3,3 và K5 là không phẳng. - Rõ ràng, một đồ thị là không phẳng nếu nó chứa một trong hai đồ thị này như là đồ thị con. - Hơn nữa, tất cả các đồ thị không phẳng cần phải chứa đồ thị con nhận được từ K3,3 hoặc K5 bằng một số phép toán cho phép nào đó. + Cho đồ thị G, có cạnh (u,v). + Nếu ta xoá cạnh (u,v), rồi thêm đỉnh w cùng với hai cạnh (u,w) và (w,v) ta nói rằng ta đã thêm đỉnh mới w (bậc 2) đặt trên cạnh (u,v) của G. + Đồ thị G’ được gọi là đồng phôi với đồ thị G nếu G’ có được từ G bằng cách thêm các đỉnh mới (bậc 2) đặt trên các cạnh của G. ThS. Nguyễn Khắc Quốc 13
- 4.2. ĐỒ THỊ KHÔNG PHẲNG (tt). Thí dụ: Đồ thị G là đồng phôi với đồ thị G’. ThS. Nguyễn Khắc Quốc 14
- 4.2. ĐỒ THỊ KHÔNG PHẲNG (tt). 4.2.4. Định lý (Kuratowski): Đồ thị là không phẳng khi và chỉ khi nó chứa một đồ thị con đồng phôi với K3,3 hoặc K5. ThS. Nguyễn Khắc Quốc 15
- 4.2. ĐỒ THỊ KHÔNG PHẲNG (tt). Thí dụ: Đồ thị trong hình 1 và 2 là đồ thị phẳng. Các đồ thị này có 6 đỉnh, nhưng không chứa đồ thị con K3,3 được vì có đỉnh bậc 2, trong khi tất cả các đỉnh của K3,3 đều có bậc 3; cũng không thể chứa đồ thị con K5 được vì có những đỉnh bậc nhỏ hơn 4, trong khi tất cả các đỉnh của K5 đều có bậc 4. Đồ thị trong hình 3 là đồ thị không phẳng vì nếu xoá đỉnh b cùng các cạnh (b,a), (b,c), (b,f) ta được đồ thị con là K5. ThS. Nguyễn Khắc Quốc 16
- 4.3. TÔ MÀU ĐỒ THỊ. 4.3.1. Tô màu bản đồ: - Mỗi bản đồ có thể coi là một đồ thị phẳng. - Trong một bản đồ, ta coi hai miền có chung nhau một đường biên là hai miền kề nhau (hai miền chỉ có chung nhau một điểm biên không được coi là kề nhau). - Một bản đồ thường được tô màu, sao cho hai miền kề nhau được tô hai màu khác nhau. - Ta gọi một cách tô màu bản đồ như vậy là một cách tô màu đúng. ThS. Nguyễn Khắc Quốc 17
- 4.3. TÔ MÀU ĐỒ THỊ (tt). - Để đảm bảo chắc chắn hai miền kề nhau không bao giờ có màu trùng nhau, chúng ta tô mỗi miền bằng một màu khác nhau. - Tuy nhiên việc làm đó nói chung là không hợp lý. - Nếu bản đồ có nhiều miền thì sẽ rất khó phân biệt những màu gần giống nhau. - Do vậy người ta chỉ dùng một số màu cần thiết để tô bản đồ. Một bài toán được đặt ra là: Xác định số màu tối thiểu cần có để tô màu đúng một bản đồ. ThS. Nguyễn Khắc Quốc 18
- 4.3. TÔ MÀU ĐỒ THỊ (tt). Thí dụ: Bản đồ trong hình bên có 6 miền, nhưng chỉ cần có 3 màu (vàng, đỏ, xanh) để tô đúng bản đồ này. - Chẳng hạn, màu vàng được tô cho M1 và M4, màu đỏ được tô cho M2 và M6, màu xanh được tô cho M3 và M5. ThS. Nguyễn Khắc Quốc 19
- 4.3. TÔ MÀU ĐỒ THỊ (tt). 4.3.2. Tô màu đồ thị: - Mỗi bản đồ trên mặt phẳng có thể biểu diễn bằng một đồ thị, trong đó mỗi miền của bản đồ được biểu diễn bằng một đỉnh; các cạnh nối hai đỉnh, nếu các miền được biểu diễn bằng hai đỉnh này là kề nhau. - Đồ thị nhận được bằng cách này gọi là đồ thị đối ngẫu của bản đồ đang xét. - Rõ ràng mọi bản đồ trên mặt phẳng đều có đồ thị đối ngẫu phẳng. ThS. Nguyễn Khắc Quốc 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Lý thuyết đồ thị: Chương 4 - Đồ thị phẳng – Bài toán tô màu đồ thị
21 p | 215 | 28
-
Bài giảng Lý thuyết đồ thị: Chương 1 - ThS. Nguyễn Khắc Quốc
56 p | 142 | 18
-
Bài giảng Lý thuyết đồ thị: Chương 3 - Đồ thị Euler và đồ thị Hamilton
19 p | 148 | 16
-
Bài giảng Lý thuyết đồ thị: Chương 2 - Biểu diễn đồ thị trên máy tính
32 p | 119 | 16
-
Bài giảng Lý thuyết đồ thị: Chương 3 - ThS. Nguyễn Khắc Quốc
67 p | 115 | 13
-
Bài giảng Lý thuyết đồ thị: Chương 5 - Cây và cây khung của đồ thị
37 p | 177 | 12
-
Bài giảng Lý thuyết đồ thị: Chương 2 - ThS. Nguyễn Khắc Quốc
37 p | 115 | 12
-
Bài giảng Lý thuyết đồ thị: Chương 5 - ThS. Nguyễn Khắc Quốc
55 p | 109 | 8
-
Bài giảng Lý thuyết đồ thị: Chương 0 - Giới thiệu môn học
12 p | 104 | 7
-
Bài giảng Lý thuyết đồ thị: Chương 1 - Nguyễn Trần Phi Phượng
26 p | 188 | 7
-
Bài giảng Lý thuyết đồ thị: Bài toán ghép cặp
43 p | 141 | 6
-
Bài giảng Lý thuyết đồ thị - ĐH Hàng Hải
35 p | 96 | 6
-
Bài giảng Lý thuyết đồ thị - Bài 1: Đại cương về đồ thị
39 p | 39 | 5
-
Bài giảng Lý thuyết đồ thị - Bài 3: Đường đi, chu trình Hamilton
34 p | 75 | 5
-
Bài giảng Lý thuyết đồ thị: Chương 0 - Nguyễn Trần Phi Phượng
6 p | 93 | 4
-
Bài giảng Lý thuyết đồ thị: Chương 4 - Nguyễn Trần Phi Phượng
13 p | 120 | 4
-
Bài giảng Lý thuyết đồ thị: Chương 0 - Tôn Quang Toại
6 p | 7 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn