intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng môn Điện học (Phần 11)

Chia sẻ: Susu Nguyen | Ngày: | Loại File: PDF | Số trang:11

73
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

2.5 Lực hạt nhân mạnh, phân rã alpha và sự phân hạch Một khi các nhà vật lí nhận ra hạt nhân gồm có những proton tích điện dương và neutron không mang điện, họ lại có trong tay một vấn đề phải giải quyết.

Chủ đề:
Lưu

Nội dung Text: Bài giảng môn Điện học (Phần 11)

  1. Bài giảng Điện học (Phần 11) 2.5 Lực hạt nhân mạnh, phân rã alpha và sự phân hạch Một khi các nhà vật lí nhận ra hạt nhân gồm có những proton tích điện dương và neutron không mang điện, họ lại có trong tay một vấn đề phải giải quyết. Lực điện giữa các proton đều là lực đẩy, nên hạt nhân phải dễ dàng bay tản ra từng mảnh! Lí do mà mọi hạt nhân trong cơ thể bạn không nổ tung tức thời tại thời điểm này là còn có một lực khác nữa tác dụng. Lực này, gọi là lực hạt nhân mạnh, luôn luôn là lực hút, và tác dụng giữa neutron với neutron, neutron với proton, và proton với proton với độ lớn xấp xỉ bằng nhau. Lực hạt nhân mạnh không có bất kì tác dụng nào lên electron, đó là lí do tại sao nó không ảnh hưởng tới các phản ứng hóa học.
  2. q/ Lực hạt nhân mạnh đột ngột rất mạnh khi khoảng cách dưới 1 fm Không giống như lực điện, lực có độ lớn cho bởi định luật Coulomb có dạng đơn giản, không có công thức đơn giản nào cho mức độ mà lực hạt nhân phụ thuộc vào khoảng cách. Nói đại khái, nó phát huy tác dụng trong ngưỡng ~ 1 fm, nhưng giảm cực kì nhanh ở những khoảng cách lớn hơn (nhanh hơn 1/r2 nhiều). Vì bán kính của một neutron hay proton là vào khoảng 1 fm, nghĩa là khi một bó neutron và proton gói chặt vào nhau để hình thành nên hạt nhân, nên lực hạt nhân mạnh chỉ hiệu quả giữa những hạt lân cận. Hình r minh họa cách thức lực hạt nhân mạnh tác dụng để giữ hạt nhân bình thường lại với nhau, nhưng nó không thể giữ hạt nhân rất nặng khỏi bị phá vỡ thành từng phần. Trong hình r/1, một proton ở giữa một hạt nhân cacbon cảm nhận lực hạt nhân mạnh (các mũi tên) hút từ những lân cận gần nhất của nó. Các lực đó đều có hướng khác nhau, và có xu hướng triệt tiêu nhau. Điều tương tự cũng đúng cho các lực điện đẩy (không chỉ trong hình). Trong hình r/2, một proton ở rìa của hạt nhân chỉ có các lân cận ở một phía, và do đó tất cả lực hạt nhân mạnh tác dụng lên nó có xu hướng hút nó trở vào. Mặc dù tất cả lực điện từ năm proton kia (mũi tên đen) đều đẩy nó ra khỏi hạt nhân, nhưng chúng không đủ để thắng được lực hạt nhân mạnh.
  3. r/1. Các lực triệt tiêu nhau. 2. Các lực không triệt tiêu nhau. 3. Trong một hạt nhân nặng, số lượng lớn lực đẩy điện có thể thêm một lực so sánh được với lực hạt nhân mạnh. 4. Phát xạ alpha. 5. Sự phân hạch. Trong một hạt nhân rất nặng, r/3, một proton ở rìa chỉ có vài lân cận đủ gần để hút nó đáng kể thông qua lực hạt nhân mạnh, nhưng mỗi proton khác trong hạt nhân tác dụng một lực đẩy điện lên nó. Nếu hạt nhân đủ lớn, thì lực đẩy điện tổng hợp có thể đủ để thắng được sức hút của lực mạnh, và hạt nhân có thể nhả ra một proton. Tuy nhiên, sự phát xạ proton khá hiếm; loại phân rã phóng xạ phổ biến hơn ở hạt nhân nặng là phân rã alpha, minh họa trong hình r/4. [Phân rã alpha phổ biến hơn vì hạt alpha là sự sắp xếp rất bền của các neutron và proton]. Sự không cân bằng lực tương tự như trên, nhưng kẻ bị phóng ra là hạt alpha (hai proton và hai neutron) chứ không phải một proton. Hạt nhân cũng có khả năng tách thành hai mảnh có kích thước xấp xỉ bằng nhau, r/5, một quá trình gọi là sự phân hạch. Lưu ý là ngoài hai mảnh vỡ lớn, còn có một chùm neutron riêng lẻ. Trong quả bom phân hạch hạt nhân hoặc lò phản
  4. ứng phân hạch hạt nhân, một số neutron này bay ra và va chạm với hạt nhân khác, làm cho chúng cũng chịu sự phân hạch. Kết quả là một phản ứng dây chuyền. Khi một hạt nhân có thể chịu một trong những quá trình này, người ta nói nó có tính phóng xạ và chịu sự phân rã phóng xạ. Một số hạt nhân xuất hiện tự nhiên trên Trái Đất có tính phóng xạ. Thuật ngữ “phóng xạ” có nguồn gốc từ hình ảnh của Becquerel về những tia phát ra từ một thứ gì đó, chứ không phải từ sóng vô tuyến, chúng là một hiện tượng hoàn toàn khác. Thuật ngữ “phân rã” cũng có thể hơi dễ nhầm lẫn, vì nó ám chỉ hạt nhân chuyển hóa thành bụi hay dễ dàng biến mất – thật ra thì nó tách thành hai hạt nhân mới với cùng tổng số proton và neutron, nên thuật ngữ “biến đổi phóng xạ” sẽ thích hợp hơn. Mặc dù các electron của nguyên tử gốc chỉ là khán giả trong quá trình phân rã phóng xạ yếu, nhưng chúng ta thường nói kém chặt chẽ là “nguyên tử phóng xạ” chứ không nói “hạt nhân phóng xạ”. Sự ngẫu nhiên trong vật lí học Làm sao một nguy ên tử quyết định khi nào thì phân rã ? Chúng ta có thể tưởng tượng điều đó giống như một ngôi nhà bị mối mọt phá hoại càng ngày càng suy yếu đi, cho đến cuối cùng thì đến cái ngày trù định nó sẽ đổ sập xuống. Tuy nhiên, các thí nghiệm đã không thành công trong việc phát hiện “chiếc đồng hồ tíc tắc” như thế nằm dưới nền nhà; bằng chứng là mọi nguyên tử của một đồng vị cho trước là hoàn toàn đồng nhất. Tại sao một nguyên tử uranium lại phân rã vào lúc này, trong ngày hôm nay, còn nguyên tử kia thì sống thêm hàng triệu năm nữa ? Câu trả lời có vẻ nó là hoàn toàn ngẫu nhiên. Chúng ta có thể phát biểu chung chung về thời gian trung bình cần thiết cho một đồng vị nhất định phân rã, hay cần bao lâu cho phân nửa số nguyên tử trong một vật phân rã (chu kì bán rã của nó), nhưng chúng ta chưa bao giờ có thể tiên đoán được hành vi của một nguyên tử nhất định.
  5. Đây là ví dụ đầu tiên mà chúng ta gặp phải của sự ngẫu nhiên không thể tránh được trong các định luật vật lí. Nếu sự ngẫu nhiên này khiến cho bạn bực bội, hẳn bạn là một kẻ nghiêm túc. Câu nói nổi tiếng của Einstein là “… tôi bị thuyết phục rằng Ông ta (Chúa) không chơi trò xúc xắc”. Sự không ưa tính ngẫu nhiên của Einstein, và sự liên tưởng của ông về tính quyết định luận với thần thánh, quay lại với quan niệm thời kì Khai sáng xem vũ trụ là một bộ máy khổng lồ chỉ được đưa vào chuyển động ban đầu bởi Đấng sáng tạo. Vật lí học phải được xây dựng lại toàn bộ trong thế kỉ thứ 20 để hợp nhất với tính ngẫu nhiên cơ bản của vật lí, và cuộc cách mạng hiện đại này là chủ đề của quyển thứ sáu trong loạt bài giảng này. Đặc biệt, chúng ta sẽ gác lại sự phát triển của khái niệm chu kì bán ra cho đến lúc ấy. Bài giảng Điện học (Phần 10) 2.4 Cấu trúc của hạt nhân Proton
  6. Thực tế điện tích hạt nhân đều là bội số nguyên của e khiến nhiều nhà vật lí nghĩ rằng hạt nhân có lẽ gồm những hạt nhỏ hơn có điện tích riêng là +e, chứ không phải là một chất điểm. Bằng chứng ủng hộ cho ý tưởng này xuất hiện không bao lâu sau đó. Rutherford giải thích nếu ông bắn phá các nguy ên tử của một nguyên tố rất nhẹ bằng hạt alpha, thì điện tích nhỏ của hạt nhân bia sẽ mang lại lực đẩy rất yếu. Có lẽ một vài hạt alpha đó sẽ đến va chạm trực diện, tiến gần đến nỗi chúng xâm nhập thật sự vào một số hạt nhân bia. Hạt alpha chính là một hạt nhân, nên đây sẽ là va chạm giữa hai hạt nhân, và sự va chạm diễn ra dữ dội do tốc độ cao. Rutherford đã đào trúng mỏ vàng trong một thí nghiệm với hạt alpha đập vào bia chứa các nguyên tử nitrogen. Các hạt tích điện được phát hiện bay ra khỏi bia giống như các phần bay ra khỏi chiếc xe hơi trong một vụ tai nạn va chạm tốc độ cao. Phép đo sự lệch của những hạt này trong điện trường và từ trường cho thấy chúng có cùng tỉ số điện tích trên khối lượng như các nguyên tử hydrogen bị ion hóa một lần. Rutherford kết luận rằng có những hạt tích điện riêng phỏng đoán đã giữ điện tích của hạt nhân, và sau này chúng được đặt tên là proton. Hạt nhân hydrogen gồm một proton, và nói chung, số nguyên tử của một nguyên tố cho biết số proton chứa trong từng hạt nhân của nó. Khối lượng của proton lớn hơn khối lượng của electron khoảng 1800 lần. Neutron Sẽ thật đẹp và đơn giản nếu như mọi hạt nhân đều có thể cấu thành chỉ từ các proton, nhưng không phải như vậy. Nếu bạn chịu mất chút ít thời gian quan sát bảng tuần hoàn hóa học, bạn sẽ sớm lưu ý thấy mặc dù một số khối lượng nguyên tử rất gần với bội số nguyên của khối lượng nguyên tử hydrogen, nhưng nhiều nguyên tử khác thì không như vậy. Ngay cả khi khối lượng nguyên tử gần với số nguyên nhất, thì khối lượng của một nguyên tố ngoài hydrogen luôn lớn hơn số nguyên tử của nó, chứ không bằng số nguyên tử. Chẳng hạn, nguyên tử helium có hai proton, nhưng khối lượng của nó gấp 4 lần khối lượng nguyên tử hydrogen. Chadwick làm sáng tỏ tình trạng lộn xộn bằng cách chứng minh sự tồn tại của một hạt hạ nguyên tử mới. Không giống như electron và proton là những hạt mang điện, hạt này trung hòa về điện, và ông đặt tên cho nó là neutron. Thí nghiệm
  7. của Chadwick được mô tả chi tiết trong chương 4, quyển 2 của loạt bài giảng này, nhưng nói chung phương pháp đó là phơi một mẫu nguyên tố nhẹ beryllium trước dòng hạt alpha phát ra từ một cục radium. Beryllium chỉ có 4 proton, nên một hạt alpha tình cờ nhắm thẳng tới một hạt nhân beryllium có thể thật sự va chạm với nó chứ không bị lực đẩy điện đẩy lệch sang va chạm bên. Các neutron được quan sát thấy dưới dạng một dạng bức xạ mới phát ra từ va chạm, và Chadwick suy luận đúng đắn rằng chúng là những thành phần không còn nghi ngờ gì nữa của hạt nhân đã bị khám phá ra. Như đã mô tả trong cuốn Các định luật bảo toàn, Chadwick cũng đã xác định được khối lượng của neutron, nó rất gần với khối lượng của proton. Tóm lại, nguyên tử cấu thành từ ba loại hạt sau: m/ Ví dụ cấu trúc của nguyên tử hydrogen (hình trên) và helium (hình dưới). Ở kích cỡ này, quỹ đạo của electron sẽ có kích thước cỡ sân trường. Sự tồn tại của neutron giải thích khối lượng bí ẩn của các nguyên tố. Chẳng hạn, helium có khối lượng rất gần với bốn lần khối lượng hydrogen. Đấy là do ngoài hai proton của nó ra, nó còn chứa thêm hai neutron. Khối lượng của một nguyên tử về cơ bản được xác định bằng tổng số neutron và proton. Tổng số neutron và proton do đó thường được gọi là số khối của nguyên tử. Đồng vị
  8. Bây giờ chúng ta đã có cách hiểu rõ ràng của thực tế là helium nặng gần gấp bốn lần hydrogen, và tương tự cho tất cả số nguyên tử gần với một bội số nguyên lần khối lượng của hydrogen. Nhưng chẳng hạn còn đồng thì sao, nó có khối lượng nguyên tử gấp 63,5 lần hydrogen ? Rõ ràng không thể nào nghĩ rằng có nó thêm một nửa neutron nữa! Lời giải được tìm ra bằng cách đo tỉ số khối lượng trên điện tích của các nguyên tử bị ion hóa bậc một (các nguyên tử mất đi một electron). Kĩ thuật về cơ bản giống như kĩ thuật mà Thomson sử dụng cho tia catôt, ngoại trừ ở chỗ toàn bộ các nguyên tử không tự phát bứt ra khỏi bề mặt vật như các electron thỉnh thoảng vẫn làm. Hình o cho một ví dụ các ion được tạo ra và bơm vào giữa hai bản tích điện như thế nào để gia tốc. o/ Một mẫu thiết bị Thomson cải tiến dùng đo tỉ số khối lượng trên điện tích của các ion chứ không phải electron. Một mẫu nhỏ của nguy ên tố đang nghi vấn, trong ví dụ của chúng ta là đồng, được đun sôi trong lò để tạo ra một lớp hơi mỏng. (Một ống chân không liên tục hút lên buồng chính, giữ nó khỏi bị tích góp đủ chất khí làm dừng chùm ion). Một số nguyên tử hơi bị ion hóa bởi tia lửa điện hoặc tia cực tím. Các ion đi ra khỏi miệng vòi và đi vào vùng giữa các bản tích điện khi đó được gia tốc hướng lên phía trên của hình. Như trong thí nghiệm Thomson, tỉ số khối lượng trên điện tích được suy ra từ độ lệch của chùm tia.
  9. Bơm một chùm ion đồng vào dụng cụ đó, chúng ta tìm thấy một điều thật ngạc nhiên – chùm tia bị tách ra làm hai phần ! Các nhà hóa học vốn đã nâng cao đức tin vào sự giả định rằng mọi nguy ên tử của một nguy ên tố cho trước là đồng nhất, nhưng chúng ta tìm thấy 69% nguyên tử đồng có một khối lượng, và 31% lại có khối lượng khác. Không những thế, cả hai khối lượng đều rất gần với bội số nguyên của khối lượng hydrogen (lần lượt là 63 và 65). Đồng có được sự đồng nhất hóa tính của nó từ số proton trong hạt nhân của nó, 29, vì các phản ứng hóa học hoạt động bằng lực điện. Nhưng rõ ràng là một số nguyên tử đồng có 63 – 29 = 34 neutron, trong khi một số khác có 65 – 29 = 36 neutron. Số nguyên tử của đồng - 63,5 – phản ánh tỉ lệ của loại khối lượng 63 và loại khối lượng 65. Các trạng thái khối lượng khác nhau của một nguyên tố cho trước được gọi là đồng vị của nguyên tố đó. Các đồng vị có thể được gọi tên bằng cách thêm số khối vào góc trên bên trái của kí hiệu nguyên tố, ví dụ 65Cu. Ví dụ: Tại sao điện tích dương và điện tích âm của các bản gia tốc trong thiết bị tách đồng vị lại đảo ngược so với thiết bị Thomson ? Các phản ứng hóa học đều là sự trao đổi hoặc chia sẻ electron: hạt nhân phải ngồi ngoài trò khiêu vũ này vì lực đẩy điện ngăn cản chúng tiến tới đủ gần để tiếp xúc với nhau. Mặc dù proton thật sự có ảnh hưởng vô cùng quan trọng lên quá trình hóa học vì lực điện của chúng, nhưng neutron có thể không có ảnh hưởng nào lên phản ứng hóa học của nguyên tử. Chẳng hạn, không thể nào tách63Cu ra khỏi 65Cu bằng phản ứng hóa học. Đây là lí do tại sao các nhà hóa học chưa bao giờ nhận ra sự tồn tại của các đồng vị khác nhau. (Những đồng vị khác nhau, chính xác hoàn toàn phải xử sự hơi khác nhau, vì các nguyên tử càng nặng thì chuyển động
  10. càng chậm, và do đó phản ứng hơi khác nhau một chút về cường độ. Sự khác biệt rất nhỏ này được sử dụng, chẳng hạn, để tách những đồng vị uranium cần thiết cho chế tạo bom nguyên tử. Tính nhỏ yếu của hiệu ứng này khiến cho quá trình tách là một quá trình chậm chạp và khó khăn, đó là điều chúng ta phải cảm ơn vì nhờ thế mà vũ khí hạt nhân không được chế tạo bởi từng nhóm băng đảng khủng bố trên hành tinh). Kích thước và hình dạng của hạt nhân Vật chất hầu như đều là hạt nhân nếu chúng ta đếm chúng bằng trọng lượng, nhưng tính theo thể tích thì hạt nhân không nhiều như thế. Bán kính của một neutron hoặc proton rất gần với 1 fm (1 fm = 10-15 m), cho nên dù là một hạt nhân chì lớn với số khối 208 vẫn có đường kính chỉ khoảng 13 fm, nhỏ hơn mười ngàn lần đường kính của một nguyên tử điển hình. Trái với hình tượng quen thuộc của hạt nhân là một quả cầu nhỏ, hóa ra thì nhiều hạt nhân lại có dạng thon dài, giống như quả bóng bầu dục Mĩ, và một số thì có hình dạng không đối xứng một cách kì lạ giống như quả lê, hay con kiwi. Câu hỏi thảo luận A. Giả sử toàn bộ vũ trụ là một chiếc hộp ngũ cốc (rất lớn), và nhãn hàng hóa được giả sử là cho khách hàng thần thánh biết là bao nhiêu phần trăm bên trong hàng hóa là hạt nhân. Như vậy, đại khái thì sẽ có bao nhiêu phần trăm hạt nhân nếu dán nhãn theo khối lượng ? Còn khi dán nhãn theo thể tích thì sao ?
  11. p/ Nhà máy điện hạt nhân tại Cattenom, Pháp. Không giống như các nhà máy chạy than và dầu lửa cung cấp đa phần nguồn điện cho nước Mĩ, một nhà máy điện hạt nhân như thế này không giải phóng chất độc hay các khí nhà kính vào bầu khí quyển của Trái Đất, và do đó không góp phần vào sự ấm lên toàn cầu. Khói trắng thoát ra từ nhà máy này là hơi nước không phóng xạ. Mặc dù nhà máy điện hạt nhân làm phát sinh chất thải hạt nhân có thời gian sống lâu dài, nhưng người ta cho rằng chất thải đó ít gây đe dọa cho sinh quyển hơn các khí nhà kính.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2